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Given a skew-symmetric matrix, the corresponding two-player symmetric
zero-sum game is defined as follows: one player, the row player, chooses a row
and the other player, the column player, chooses a column. The payoff of
the row player is given by the corresponding matrix entry, the column player
receives the negative of the row player. A randomized strategy is optimal
if it guarantees an expected payoff of at least 0 for a player independently
of the strategy of the other player. We determine the probability that an
optimal strategy randomizes over a given set of actions when the game is drawn
from a distribution that satisfies certain regularity conditions. The regularity
conditions are quite general and apply to a wide range of natural distributions.

JEL Classifications Code: C62, C72

1 Introduction

A (two-player) zero-sum game is played on a matrix where the row player chooses a row
and the column player chooses a column. The payoff of the row player is given by the
corresponding matrix entry, the column player receives the negative of the row player. Both
players may randomize over their actions. Von Neumann’s minimax theorem shows that
every zero-sum game admits a value, i.e., the row player can guarantee an expected payoff
for himself that is equal to the negative of the expected payoff that the column player can
guarantee for himself. A strategy that maximizes the minimal guaranteed expected payoff
of a player is a maximin strategy for this player. Pairs of maximin strategies correspond
to Nash equilibria of the game. We will refer to maximin strategies as optimal strategies.
A zero-sum game is symmetric if the corresponding payoff matrix is skew-symmetric.

Thus, both players have the same set of actions and every maximin strategy of the row
player is also a maximin strategy of the column player and vice versa. Moreover, both
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players can achieve a payoff of at least 0 by playing the same strategy as the other player.
This also implies that the value of a symmetric zero-sum game is 0. Symmetric zero-sum
games can be associated with weighted digraphs where the vertices correspond to actions
and the weights of the edges are the payoffs from choosing the corresponding actions.
Symmetric zero-sum games appear in many areas of natural science such as biology,

physics, and chemistry. We only give two examples here. In evolutionary biology, they can
be used to model population dynamics among multiple species with actions corresponding
to species and payoffs corresponding to the probabilities that an individual from one species
“beats” an individual from another species; the probabilities in an optimal strategy specify
the fractions of individuals from each species in a stable state. Hence, the support of an
optimal strategy constitutes the set of species that survive in a stable state. In quantum
physics, symmetric zero-sum games appear in bosonic systems where different quantum
states take the role of actions and the transition probabilities from one state to another
form the payoffs. Knebel et al. (2015) consider the support of optimal strategies in these
games to determine which states become condensates.
In this paper we show that, for every set of actions S, the probability that a symmetric

zero-sum game admits an optimal strategy with support S is 2−(n−1) if S has odd cardinality
and 0 otherwise, where n is the total number of actions. In particular, this probability only
depends on the parity of S. This stems from the fact that a skew-symmetric matrix of odd
size cannot have full rank.1 For the proof of this result we assume that the distribution of
games is symmetric and regular. A distribution is symmetric if it is invariant under negation
of all payoffs when the row player chooses an action from a certain set and the column player
chooses an action from the complement set. Intuitively, this condition prescribes that, in
the graph representation of the game, reversing all edges between S and its complement
set does not change the probability of the game being chosen. A distribution is regular
if a randomly chosen game almost surely admits a unique optimal strategy. We assume
throughout that games are drawn from a symmetric, regular distribution.
Related questions have been studied for various classes of games. Wilson (1971) showed

that the number of Nash equilibria is finite and odd for almost all n-person normal form
games. A different proof of the same statement was given by Harsanyi (1973a). McLennan
(2005) derived a formula for the expected number of Nash equilibria in which players play
a certain set of actions with positive probability in normal form games. His model assumes
that the payoffs of all players are independent and distributed uniformly over the unit
sphere. If games are distributed such that Nash equilibria are almost surely unique, the
expected number of Nash equilibria with given support is equal to the probability that the
game admits a Nash equilibrium with this support. Thus, our result can also be phrased
as determining the expected number of Nash equilibria with given support. Follow-up
work by McLennan and Berg (2005) has derived a formula for the expected number of
Nash equilibria of a random two-player normal form game. Similarly to McLennan (2005),

1A skew-symmetric matrix of odd size G cannot have full rank, since det(G) = det(GT ) = det(−G) =
(−1)n det(G) = − det(G) and, hence, det(G) = 0.
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they assume that the payoffs of both players are drawn independently from a uniform
distribution on the unit sphere.
In zero-sum games every convex combination of Nash equilibria is again a Nash equi-

librium. Hence there is either a unique Nash equilibrium or infinitely many. However,
Wilson’s theorem does not imply that Nash equilibria are almost surely unique in low
dimensional subclasses of normal form games, e.g., zero-sum games, symmetric zero-sum
games, or tournament games.2 Fisher and Ryan (1992) showed that every tournament
game admits a unique optimal strategy and, hence, a unique Nash equilibrium. This result
was generalized by Laffond et al. (1997) to symmetric zero-sum games where all payoffs
are odd integers, and by Le Breton (2005) to symmetric zero-sum games where all payoffs
satisfy a more general congruency condition. Closest to the present paper is the work
of Roberts (2004), who proves the same formula that is derived in this paper for ran-
dom symmetric zero-sum games and a somewhat less general class of distributions. He
assumes that the payoffs are drawn i.i.d. from a distribution that is symmetric about 0,
i.e., a distribution with even density function. Rather than making assumptions about
the distributions of single payoffs, we only impose assumptions about the distribution of
the entire game matrix. In particular, we do not require payoffs to be independent or
identically distributed.
For (not necessarily symmetric) zero-sum games, the situation is less clear. Experiments

by Faris and Maier (1987) suggest that the size of the optimal strategy of a zero-sum game
chosen uniformly at random approximately follows a binomial distribution that chooses
half of the actions in expectation. Jonasson (2004) showed that optimal strategies are
almost surely unique if the payoffs are drawn from continuous i.i.d. random variables that
are symmetric about 0. Moreover, he proved that the expected fraction of actions in the
support of an optimal strategy is close to 1/2 when the number of actions goes to infinity.
Roberts (2006) considers zero-sum games where payoffs follow independent and identical
Cauchy distributions. Remarkably, he derives a closed form formula for the probability
that the pair of optimal strategies of a random game has a given support.
The proof of our main result (Theorem 1) is divided into three statements. In Propo-

sition 2 we determine the probability that an optimal strategy puts positive probability
on all actions, i.e., the probability that a game admits a totally mixed optimal strategy.
Lemma 4 establishes that the distribution of the subgame where both players are restricted
to the same set of actions is symmetric and regular if the distribution of the full game is
symmetric and regular. As a consequence of these two statements we get the probability
that such a subgame admits a totally mixed optimal strategy. Lastly, in Proposition 3
we determine the probability that an optimal strategy of a subgame is optimal in the full
game. The probability that a game admits an optimal strategy with given support may
then be derived easily. In this sense the structure of the proof is very similar to McLennan’s
(2005) argument.
Finally, we will argue that symmetric, regular distributions occur naturally. For example,

2Tournament games are symmetric zero-sum games in which all off-diagonal payoffs are either 1 or −1.
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if the payoffs of the game follow independent normal distributions the distribution of games
is symmetric and regular. More generally, we will show that every absolutely continuous
distribution is regular (Proposition 4). As noted before, every tournament game admits
a unique optimal strategy. Thus, the uniform distribution over all tournament games is
symmetric and regular. As a consequence, Theorem 1 implies a result of Fisher and Reeves
(1995), who determine the probability that the optimal strategy of a random tournament
game uses k actions with non-zero probability.

2 Preliminaries

A zero-sum game G is a matrix in RM×N , where M and N are the sets of actions for the
row and column player, respectively. We will write |N | = n for short. The matrix entry Gij
represents the payoff of the row player if he chooses row i and the column player chooses
column j. The set of all probability distributions over a finite set S is denoted by ∆(S),
i.e., ∆(S) = {p ∈ RS : p ≥ 0 and

∑
i∈S pi = 1}. A (randomized) strategy for the row player

or the column player is a probability distribution on M or N , respectively. The support
p+ of a strategy p ∈ ∆(N) is the set of actions to which p assigns positive probability, i.e.,
p+ = {i ∈ N : pi > 0}. For vectors v ∈ RN , we additionally define v− = {i ∈ N : vi < 0}. A
strategy q∗ is a maximin strategy for the row player if it maximizes his minimum expected
payoff, i.e.,

min
p∈∆(N)

q∗TGp ≥ max
q∈∆(M)

min
p∈∆(N)

qTGp.

Maximin strategies for the column player are defined analogously. By the minimax theorem
the minimum expected payoff of the row player when he plays a maximin strategy is equal to
the negative of the minimum expected payoff of the column player when he plays a maximin
strategy. This payoff is called the value of the game. The set of pairs (q∗, p∗) such that
q∗ and p∗ are maximin strategies of the row player and the column player, respectively, is
the set of Nash equilibria of the game. We say that a strategy is an optimal strategy of
a player if it is a maximin strategy. Note that the set of optimal strategies of each player
is convex, since they are the sets of solutions to linear programs. Raghavan (1994) proved
that every action of the row player that yields the same payoff as an optimal strategy
against all optimal strategies of the column player is played with positive probability in
some optimal strategy of the row player. This is known as the equalizer theorem.

Proposition 1 (Raghavan, 1994). Let G be a game with value v ∈ R and i ∈ M . If
(Gp)i = v for all optimal strategies p of the column player, then there is an optimal strategy
q∗ of the row player with q∗i > 0.

Following Harsanyi (1973b), an equilibrium (q∗, p∗) is quasi-strict if every action of the
row player that is in the support of q∗ yields strictly more expected payoff against p∗ than
every action that is not in the support of q∗ (and similarly for the column player).3 It is

3Harsanyi introduced the concept of quasi-strong equilibria, which however was referred to as quasi-strict
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a well-known fact that if a game only admits quasi-strict equilibria, then it in fact has a
unique equilibrium. Lemma 1 shows that the converse is also true, i.e., if a game admits an
equilibrium that is not quasi-strict, then it cannot be the unique equilibrium of the game.
The proof of Lemma 1 makes use of the equalizer theorem.

Lemma 1. Let G be a game and (q∗, p∗) an equilibrium of G. If (q∗, p∗) is not quasi-strict,
then G has multiple equilibria.

Proof. Let v = (q∗)TGp∗ be the value of G. Assume for contradiction that (q∗, p∗) is the
unique equilibrium of G and (q∗, p∗) is not quasi-strict, i.e., without loss of generality there
is i 6∈ q∗+ such that (Gp∗)i = v. Then it follows from Proposition 1 that the row player
has an optimal strategy q̂∗ with q̂∗i > 0. In particular, q̂∗ 6= q∗. Then (q̂∗, p∗) is another
equilibrium of G. This contradicts uniqueness of (q∗, p∗).

3 Symmetric Zero-sum Games

Symmetric zero-sum games constitute a class of zero-sum games with particularly nice
properties. A zero-sum game is symmetric if G is skew-symmetric, i.e., G = −GT . For
brevity, we will simply use game to refer to a symmetric zero-sum game for the remainder
of the paper. The set of all games is denoted by G. Symmetry implies that the sets of
optimal strategies of both players coincide. We will hence simply use the term optimal
strategy without referring to a specific player.
For a set of actions S ⊆ N , a game G ∈ G, and a vector v ∈ RN , we denote by

GS = (Gij)i,j∈S and vS = (vi)i∈S the sub-matrix and sub-vector induced by S, respectively.
To simplify the proofs, we introduce special notation for particular classes of games. The
set of games where GS has multiple optimal strategies is denoted by G>1

S , i.e.,

G>1
S = {G ∈ G : GS has two distinct optimal strategies}

Note that G>1
N contains all games with two distinct optimal strategies. We write G>1 short

for G>1
N .

A strategy is totally mixed if all actions are played with strictly positive probability. The
set of all games where GS has a totally mixed optimal strategy is denoted by GS , i.e.,

GS = {G ∈ G : GS has an optimal strategy p with p+ = S}

Lastly, we define the set of all games that admit an optimal strategy with support S, i.e.,

G∗S = {G ∈ G : G has an optimal strategy p with p+ = S}.

Since every optimal strategy of the full game is also an optimal strategy of the subgame
induced by its support, G∗S is a subset of GS .

equilibria in subsequent papers to avoid confusion with Aumann’s notion of strong equilibria (Aumann,
1959).
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We assume that games are drawn from a probability distribution X. By X we denote a
random variable with distribution X, i.e., X ∼ X. For a set of games G′ ⊆ G, let PX(G′) be
the probability that a realization of X is in G′. To establish our results, we require that X
satisfies two regularity conditions. For S ⊆ N , we define the automorphism ΦS on G such
that, for all i, j ∈ N ,

(ΦS(G))ij =

{
Gij if i, j ∈ S or i, j ∈ N \ S, and
−Gij otherwise.

Then X is symmetric if it is invariant under ΦS for every S ⊆ N , i.e., PX(G′) = PX(ΦS(G′))
for every G′ ⊆ G. Observe that, for all S, T ⊆ N , we have ΦS ◦ ΦT = ΦS∆T , where ∆ is
the symmetric difference of S and T . Furthermore, ΦS = ΦN\S for all S ⊆ N . As a
consequence, ({ΦS : S ⊆ N}, ◦) is a group with neutral element Φ∅ such that every element
is self-inverse. The fact that S∆T = T∆S implies that this group is abelian. Moreover, we
require X to be regular in the sense that X almost surely admits a unique optimal strategy
or, formally, PX(G>1) = 0.

4 The Result

The main result is obtained in Theorem 1 and states the following: if games are drawn
from a symmetric, regular probability distribution then, for every set of actions S, the
probability that a symmetric zero-sum game admits an optimal strategy with support S is
2−(n−1) if S has odd cardinality and 0 if S has even cardinality. Theorem 1 is an obvious
consequence of Lemma 4 and Propositions 2 and 3. The first lemma shows that every
strategy that is the unique optimal of some game puts positive probability on an odd
number of actions. This does not hold for non-symmetric zero-sum games. E.g., the game
known as matching pennies has a unique optimal strategy of size 2.

Lemma 2. Let G be a game and p be the unique optimal strategy of G. Then the support
of p has odd cardinality.

Proof. Assume for contradiction that p+ has even cardinality. Let p+ = S. Since p is the
unique optimal strategy of G, it follows from Lemma 1 that (Gp)i < 0 for all i 6∈ S. By
definition of S, |S \ {i}| is odd for i ∈ S. Hence, GS\{i} does not have full rank, i.e., there
is v ∈ Rn \ {0} with v− ∪ v+ ⊆ S \ {i} and GS\{i}vS\{i} = 0. Assume without loss of
generality that (Gv)i ≤ 0 (otherwise we take −v). Then, for ε > 0 small enough, we have
that pε = (1 − ε)p + εv ≥ 0 and Gpε ≤ 0, i.e., pε/|pε| is an optimal strategy of G. This
contradicts uniqueness of p.

Now we prove an equation that will be useful for the upcoming proofs.

Lemma 3. Let G ∈ G, v ∈ Rn, and S ⊆ N . Then,

ΦS(G)ΦS(v) = ΦS(Gv).
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Proof. This is readily checked by verifying the following sequence of equalities:

ΦS(G)ΦS(v) =

( S︷︸︸︷
Gij

N\S︷ ︸︸ ︷
−Gij

−Gij Gij

)
·

(
−vj
vj

)
=

(
−(Gv)i

(Gv)i

)
= ΦS(Gv).

For regular distributions, it follows quickly from Lemma 2 that the probability that
a game has an optimal strategy with even support size is 0. If the distribution is also
symmetric, it turns out that the probability that a game has an optimal strategy with
given support of odd size is independent of the chosen support. This is again specific to
symmetric zero-sum games and does not hold in general for zero-sum games.

Proposition 2. Let X be symmetric and regular. Then the probability that X has a totally
mixed optimal strategy is {

0 if n is even, and
2−(n−1) if n is odd.

Proof. First we consider the case when n is even. Assume that a game G ∈ G has a totally
mixed optimal strategy. It follows from Lemma 2 that G has multiple optimal strategies.
Thus, GN ⊆ G>1, which implies that PX(GN ) = 0.
Now assume that n is odd. For all S ⊆ N , let G=

S be the set of games with a vector v in
the null space such that v+ = N \ S. Note that G=

∅ is the set of all games with a totally
mixed optimal strategy. Every game is in G=

S for some S ⊆ N , since a skew-symmetric
matrix of odd size cannot have full rank (cf. Footnote 1). For S ⊆ N , let G0

S ⊆ G=
S be

the set of games with a vector v in the null space such that v+ = N \ S and vi = 0
for some i ∈ N . It follows from Lemma 3 that ΦS(G)ΦS(v) = 0. Since ΦS(v) ≥ 0 and
ΦS(v)i = 0, it follows from Lemma 1 that ΦS(G) has multiple optimal strategies. Thus,
ΦS(G0

S) ⊆ G>1. By symmetry of X, we then have PX(G0
S) = PX(ΦS(G0

S)) ≤ PX(G>1) = 0.
Hence, vectors in the null space almost surely have no entries equal to 0. This implies that
PX(G=

S ) = PX(ΦS∆T (G=
S )) = PX(G=

T ) for all S, T ⊆ N . Moreover, G=
S and G=

N\S only differ
by a null set, since v+ = N \(−v)+ if v has no zero entries. Hence PX(G=

S ) = PX(G=
S ∩G=

N\S)
for all S ⊆ N . Now we show that X almost surely has rank n − 1. From before we know
that X has rank at most n− 1. If X has rank less than n− 1, there are distinct v, w ∈ Rn
such that Xv = Xw = 0. But then λv + (1 − λ)w is in the null space of X and has an
entry equal to 0 for some λ ∈ R. This is a probability zero event as shown above. Hence,
X almost surely has rank n− 1. This implies that PX(G=

S ∩ G=
T ) = 0 for all S, T ⊆ N with

S 6= T and S 6= N \ T . Together, we get PX(G=
S ) = 2−(n−1) for all S ⊆ N .

It was already observed by Kaplansky (1945) that a game of even size cannot have a
unique, totally mixed optimal strategy, which follows from the fact that the rank of a
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skew-symmetric matrix is even.4 Moreover, Kaplansky (1995) shows that a game admits
a unique, totally mixed optimal strategy if and only if the principal Pfaffians of the corre-
sponding matrix alternate in sign.5 This result allows for a more algebraic but arguably
less instructive proof of Proposition 2.

Lemma 4. Let S ⊆ N . If X is symmetric and regular, then XS is a symmetric and regular.

Proof. Let S ⊆ N and X be symmetric and regular. First we show that XS is symmetric.
To this end, let T ⊆ S and G′S ⊆ GS . Then,

PXS (G′S) = PX({G ∈ G : GS ∈ G′S}) = PX(ΦT ({G ∈ G : GS ∈ G′S}))
= PX({ΦT (G) : G ∈ G and GS ∈ G′S}) = PX({G ∈ G : φT (GS) ∈ G′S})
= PX({G ∈ G : GS ∈ φT (G′S)}) = PXS (φT (G′S)).

The first and the last equality follow from the definition of XS . The second equality holds
by symmetry of X. The third equality uses the definition of ΦT as applied to sets of games.
The forth equality holds since ΦT is self-inverse and since ΦT commutes with restriction
to S. Lastly, the fifth equality again holds since ΦT is self-inverse.
Now we show by induction over |S| that XS is regular. If S = N the statement is

clear by the hypothesis of the lemma. For the induction step, let S ( N and assume
that XT is regular for all T ⊆ N with |T | > |S|. Assume for contradiction that XS is
not regular, i.e., PXS (G>1

S ) > 0. Let i ∈ N \ S and Si = S ∪ {i}. Then, we have that
PXSi ({GSi ∈ GSi : GS ∈ G>1

S }) = PXS (G>1
S ) > 0. We define

G−
Si

= {G ∈ GSi : p ∈ ∆(Si) with p+ = S,GSpS ≤ 0 and, (Gp)i ≤ 0 for some p ∈ ∆(Si)},

with G+
Si

defined by replacing the last ≤ by ≥. Since XT is symmetric for every T ⊆ N ,
it follows that PXSi (G

−
Si

) = PXSi (G
+
Si

). Moreover, G−
Si
∪ G+

Si
= {GSi ∈ GSi : GS ∈ G>1

S }
and, hence, PXSi (G

−
Si

) > 0. Now let G ∈ G−
Si
. If there is p ∈ ∆(Si) such that GSpS ≤ 0

and (Gp)i = 0, then if follows from Lemma 1 that G has multiple optimal strategies. If
(Gp)i < 0, there is q ∈ ∆(Si) such that qS 6= pS and GSqS ≤ 0. Such a q exists since
GS ∈ G>1

S by definition. But then (1 − λ)pSi + λqSi is another optimal strategy of G for
small λ > 0. In any case, G has two distinct optimal strategies. Thus, we have

PXSi (G
>1
Si ) ≥ PXSi (G

−
Si

) > 0,

which contradicts the induction hypothesis that XSi is regular.

By combining the last two statements we get the probability that XS admits a totally
mixed optimal strategy. In the next proposition we determine the probability that X has
an optimal strategy with support S given that XS has a totally mixed optimal strategy.

4The rank of a skew-symmetric matrix is even, since skew-symmetric matrices of odd size cannot have full
rank (cf. Footnote 1).

5The ith principal Pfaffian is the Pfaffian of the matrix obtained by deleting the ith row and ith.
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Proposition 3. Let X be symmetric and regular and S ⊆ N . Then PX(G∗S |GS) =
2−(n−|S|).

Proof. Let X be symmetric and regular and S ⊆ N . Recall that GS is the set of all games
where GS has a totally mixed optimal strategy. Moreover, we define GS(T ) to be the set
of all games where GS has a totally mixed optimal strategy such that the set of actions
yielding positive payoff corresponds exactly to the rows in T , i.e.,

GS(T ) = {G ∈ G : pS is a totally mixed optimal strategy of GS and (Gp)+ = T

for some p ∈ ∆(N)}.

Note that GS(∅) = G∗S and GS(T ) is non-empty only if T ⊆ N \S. It follows from Lemma 3
that ΦT (GS(T )) ⊆ G∗S for all T ⊆ N \S. For G ∈ G∗S \ΦT (GS(T )) we have that (Gp)i = 0 for
some i ∈ T . Then it follows from Lemma 1 that G has multiple optimal strategies. Thus,
by symmetry of X, we have PX(GS(T )) = PX(ΦT (GS(T ))) = PX(G∗S) for all T ⊆ N \ S.
Since, by Lemma 4, XS almost surely has a unique optimal strategy, we also have that
PX(GS(T ) ∩ GS(T ′)) = 0 for all distinct T, T ′ ⊆ N \ S. Since N \ S has 2n−|S| distinct
subsets, we get PX(G∗S |GS) = 2−(n−|S|).

The main result easily follows from Lemma 4 and Propositions 2 and 3.

Theorem 1. Let X be symmetric and regular. Then, for every S ⊆ N , the probability that
X has an optimal strategy with support S is{

0 if |S| is even, and
2−(n−1) if |S| is odd.

Observe that N has 2n−1 subsets of odd size. Hence, the probabilities above sum to 1.
We show that the assumptions in Theorem 1 are indeed necessary. It is easily seen

that the assumptions that X is symmetric and regular are necessary. The conclusion of
Theorem 1 does not hold for the distribution that returns the game with all payoffs equal to
0 with probability one, even though it is symmetric. Neither does Theorem 1 hold for the
distribution that returns the classic game of “rock, paper, scissors” with probability one,
even though it is regular. Theorem 1 may also fail if (not necessarily symmetric) zero-sum
games are sampled from a symmetric and regular distribution. If |M | = |N | = 2 and each
entry in the payoff matrix is drawn from a standard normal distribution, the probability
that an optimal strategy of the row player in the resulting zero-sum game has full support
is one third.
Lastly, we show that a distribution is regular if it is absolutely continuous (w.r.t. the

Lebesgue measure). In particular, a distribution is absolutely continuous if all payoffs are
independent, absolutely continuous random variables. This implies that, if payoffs are
drawn from independent, absolutely continuous distributions that are symmetric about 0,
e.g., normal distributions or uniform distributions on intervals that are symmetric about
0, then the induced distribution on the set of games is regular and symmetric.
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Proposition 4. If X is absolutely continuous, then it is regular.

Proof. Let X be absolutely continuous. Moreover, let G ∈ G>1. We will show that G
has a singular square sub-matrix of even size. As discussed before, every game that has
multiple optimal strategies admits an optimal strategy that is not quasi-strict. Let p be
an optimal strategy of G that is not quasi-strict, i.e., there is i 6∈ p+ such that (Gp)i = 0.
Let p+ = S. Then, GSpS = 0 and GS∪{i}pS∪{i} = 0. So either GS or GS∪{i} is a singular
square sub-matrix of even size.
Since X is absolutely continuous, every even-sized square sub-matrix ofX is almost surely

regular. Thus, X almost surely admits a unique optimal strategy, i.e., X is regular.
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