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Tournament solutions play an important role within social choice theory
and the mathematical social sciences at large. In 2011, Brandt proposed
a new tournament solution called the minimal extending set (ME ) and an
associated graph-theoretic conjecture. If the conjecture had been true, ME
would have satisfied a number of desirable properties that are usually con-
sidered in the literature on tournament solutions. However, in 2013, the
existence of an enormous counter-example to the conjecture was shown us-
ing a non-constructive proof. This left open which of the properties are
actually satisfied by ME . It turns out that ME satisfies idempotency, irreg-
ularity, and inclusion in the iterated Banks set (and hence the Banks set, the
uncovered set, and the top cycle). Most of the other standard properties (in-
cluding monotonicity, stability, and computational tractability) are violated,
but have been shown to hold for all tournaments on up to 12 alternatives
and all random tournaments encountered in computer experiments.

1 Introduction

Many problems in the mathematical social sciences can be addressed using tournament
solutions, i.e., functions that associate with each connex and asymmetric relation on a set
of alternatives a non-empty subset of the alternatives. Tournament solutions are most
prevalent in social choice theory, where the binary relation is typically assumed to be
given by the simple majority rule (e.g., Moulin, 1986; Laslier, 1997). Other application
areas include multi-criteria decision analysis (e.g., Arrow and Raynaud, 1986; Bouyssou
et al., 2006), zero-sum games (e.g., Fisher and Ryan, 1995; Laffond et al., 1993; Duggan
and Le Breton, 1996), and coalitional games (e.g., Brandt and Harrenstein, 2010).

Examples of well-studied tournament solutions are the Copeland set, the uncovered
set, and the Banks set. A common benchmark for tournament solutions is which desirable
properties they satisfy (see, e.g., Laslier, 1997; Brandt et al., 2016, for an overview of
tournament solutions and their axiomatic properties).

In 2011, Brandt (2011) proposed a new tournament solution called the minimal extend-
ing set (ME ) and an associated graph-theoretic conjecture, which weakens a 20-year-old
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conjecture by Schwartz (1990). Brandt’s conjecture is closely linked to the axiomatic
properties of ME in the sense that if the conjecture had held, ME would have satis-
fied virtually all desirable properties that are usually considered in the literature on
tournament solutions. In particular, it would have been the only tournament solution
known to simultaneously satisfy stability and irregularity. In 2013, however, the ex-
istence of a counter-example with about 10104 alternatives was shown.1 The proof is
non-constructive and uses the probabilistic method (Brandt et al., 2013). This counter-
example also disproves Schwartz’s conjecture and implies that the tournament equilib-
rium set—a tournament solution proposed by Schwartz (1990)—violates most desirable
axiomatic properties.2

This left open which of the properties are actually satisfied by ME . In this paper,
we resolve these open questions. In particular, we show that ME fails to satisfy mono-
tonicity, stability, and computational tractability while it does satisfy a strengthening
of idempotency, irregularity, and inclusion in the (iterated) Banks set.3 Our negative
theorems for monotonicity and stability are based on the non-constructive existence
proof by Brandt et al. (2013). Concrete tournaments for which ME violates any of these
properties therefore remain unknown.

2 Preliminaries

A tournament T is a pair (A,�), where A is a finite set of alternatives and � a binary
relation on A, usually referred to as the dominance relation, that is both asymmetric
(a � b implies not b � a) and connex (a 6= b implies a � b or b � a). Thus, the
dominance relation is generally irreflexive (not a � a). Intuitively, a � b signifies that
alternative a is preferable to alternative b and we denote this by an edge from a to b in
our figures. The dominance relation can be extended to sets of alternatives by writing
A � B when a � b for all a ∈ A and b ∈ B. We also write a � B for {a} � B. Moreover,
for a subset of alternatives B ⊆ A, we will sometimes consider the restriction of the
dominance relation �B= � ∩ (B × B) and write T |B for (B,�B). The order |T | of a
tournament T = (A,�) refers to the cardinality of A. The set of all linear orders on
some set A is denoted by L(A). Define the set of all transitive subsets of a tournament
T as BT = {Q ⊆ A : �Q ∈ L(Q)} whereas BT (a) = {Q ∈ BT : a � Q} denotes the
set of all transitive subsets that a dominates. In such a case, a extends Q, implying
Q ∪ {a} ∈ BT .

A tournament solution is a function S that maps a tournament T = (A,�) to a
nonempty subset of its alternatives. We write S(B) instead of S(T |B) whenever the
tournament T is clear from the context.

1The bound is
(
215

30

)
< 10104. The weaker bound of 10136 mentioned by Brandt et al. (2013) stems from

the estimate
(
215

30

)
< 21530 .

2A significantly smaller counter-example for Schwartz’s conjecture consisting of only 24 alternatives was
subsequently found by Brandt and Seedig (2013). However, this counter-example does not constitute
a counter-example to Brandt’s conjecture.

3Previously, the two statements on computational tractability and inclusion in the Banks set were only
known to hold if the (now disproved) conjecture had been true.
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Choosing from a transitive tournament is straightforward because every transitive
tournament—and all of its subtournaments—possess a unique maximal element. In
other words, the core of the problem of choosing from a tournament is the potential
intransitivity of the dominance relation. Clearly, every tournament contains transitive
subtournaments. For example, all subtournaments of order one or two are trivially
transitive. Based on these observations, it seems natural to consider inclusion-maximal
transitive subtournaments and collect their maximal elements in order to define a tour-
nament solution. This tournament solution is known as the Banks set.4

Formally, the Banks set BA(T ) of a tournament is defined as

BA(T ) = {a ∈ A : ∃B ∈ BT (a) such that @b : b � B ∪ {a}}.

In many cases, the Banks set contains all alternatives of a tournament. Since there are
tournaments T for which BA(BA(T )) ( BA(T ), one can define a series of more discrim-
inating tournament solutions by letting BA1(T ) = BA(T ) and BAk = BA(BAk−1(T ))
for all k > 1. The iterated Banks set BA∞(T ) of a tournament T is then defined as

BA∞(T ) =
⋂
k∈N

BAk(T ).

Due to the finiteness of T , BA∞(T ) = BA|T |(T ), and BA∞ is a well-defined tournament
solution.

Generalizing an idea by Dutta (1988), which in turn is based on the well-established no-
tion of von-Neumann-Morgenstern stable sets in cooperative game theory, Brandt (2011)
proposed another method for refining a tournament solution S by defining minimal sets
that satisfy a natural stability criterion with respect to S.5 A subset of alternatives
B ⊆ A is called S-stable for tournament solution S if

a /∈ S(B ∪ {a}) for all a ∈ A \B.

Since S(B ∪ {a}) = {a} if B = ∅, it follows that S-stable sets can never be empty. It
has turned out that BA-stable sets, so-called extending sets, are of particular interest
because they are strongly related to Schwartz’s tournament equilibrium set and because
they can be used to define a tournament solution that potentially satisfies a number of
desirable properties. An extending set is inclusion-minimal if it does not contain another
extending set. Since the number of alternatives is finite, inclusion-minimal extending
sets are guaranteed to exist. The union of all inclusion-minimal extending sets defines
the tournament solution ME (Brandt, 2011), i.e.,

ME (T ) =
⋃
{B : B is BA-stable and no C ( B is BA-stable }.

4Banks’s original motivation was slightly different as his aim was to characterize the set of outcomes
under sophisticated voting in the amendment procedure (Banks, 1985).

5A well-known example is the minimal covering set, which is the unique minimal set that is stable with
respect to the uncovered set (Dutta, 1988).
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Figure 1: In this tournament, ME (T ) = {a, b, d} whereas BA(T ) = {a, b, c, d}. Omitted
edges point downwards.

Example 1. Consider the tournament T in Figure 1. It is easy to verify that the max-
imal transitive sets in T are {a, b, c}, {a, e, b}, {a, c, e}, {b, c, d}, {c, d, e}, and {d, a, e}.
{e, b} (the only nontrivial transitive subset with e as maximal element) is extended by
a. Therefore, we have BA(T ) = {a, b, c, d}.

We claim that ME (T ) = {a, b, d}. To this end, let B be any extending set of T .
Assume that a /∈ B. Since B is non-empty and stable with respect to a, it must be
the case that d ∈ B. Then, b has to be contained in B as well because no alternative
could extend {b, d}. But then B cannot be stable with respect to a as there exists
no alternative that could extend {a, b}. Therefore, a ∈ B and immediately d ∈ B
(as nothing could extend {d, a}) and b ∈ B (as nothing could extend {b, d}). It turns
out that {a, b, d} is already an extending set because c 6∈ BA{a, b, c, d} = {a, b, d} and
e 6∈ BA{a, b, d, e} = {a, b, d}. So, {a, b, d} is the unique minimal extending set of T .

Note that ME (T ) is strictly contained in BA(T ). Tournament T is the smallest tour-
nament for which this is the case (Brandt et al., 2015). For this particular tournament,
ME (T ) and BA∞(T ) coincide.

We will show in Section 4.3 that

ME (T ) ⊆ BA∞(T ) ⊆ BA(T )

holds for all tournaments T and both inclusions may be strict.6

3 Minimal extending sets

Minimal extending sets satisfy a number of interesting properties.
First, it is obvious that an extending set remains an extending set when outside

alternatives are removed. Moreover, when the set was a minimal extending set, it is still
minimal in the reduced tournament.
6An analogous inclusion chain is known for the uncovered set, the iterated uncovered set, and the

minimal covering set (see, e.g., Laslier, 1997).
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Figure 2: Minimal extending sets remain minimal extending in subtourna-
ments (Lemma 1).

Lemma 1. Let T = (A,�) be a tournament, B ⊆ A an extending set in T , and C ⊆ A
such that B ⊆ C. Then, B is also an extending set in T |C . Moreover, if B is a minimal
extending set in T , then B is also a minimal extending set in T |C .

Proof. First assume that B is an extending set in T . To prove that B is an extending
set also in T |C , consider an arbitrary a ∈ C \B. Then, a ∈ A \B and, because B is an
extending set in T , also a /∈ BA(B ∪ {a}). The result then follows immediately.

Now, let B be a minimal extending set in T . As we have just seen, B is also an
extending set in T |C . To see that B is then also a minimal extending set in T |C , assume
for contradiction that there is a B′ ( B such that B′ is extending in T |C . As B′ is not
extending in T , there exist a set Q ⊆ B′ and an alternative a ∈ A \B′ such that Q∪{a}
is maximal in BT |B′∪{a} and a � Q. Having assumed that B′ is extending in T |C , it

follows that a ∈ A \ C. See Figure 2 for an illustration of the situation. However,
since B is an extending set in T , there is a b ∈ B with b � Q ∪ {a}. As Q ∪ {a} is
maximal in BT |B′∪{a} , it follows that b ∈ B \B′. Now, observe that Q ∪ {b} ∈ BT |B′∪{b}
and recall that B′ is extending in T |C . Accordingly, there is a b′ ∈ B′ with b′ � Q∪{b}.
Now, either a � b′ or b′ � a. In either case, Q ∪ {a} is not maximal in BT |B′∪{a} and a

contradiction entails.

Lemma 1 implies that minimal extending sets satisfy what is usually called internal
S-stability : For every minimal extending set B, BA(B) = B.

Secondly, from the definition of extending sets, it is immediate that a minimal extend-
ing set is unaffected by modifying the dominance relation among outside alternatives.

Lemma 2. Let T = (A,�) and T ′ = (A,�′) be tournaments such that B ⊆ A is a
minimal extending set in T and for all a ∈ A and b ∈ B, a �′ b if and only if a � b.
Then, B is a minimal extending set in T ′.

Brandt (2011) conjectured that every tournament contains a unique minimal extending
set and showed that, if the conjecture holds, ME satisfies a large number of desirable
properties. In 2013, however, Brandt et al. (2013) disproved the conjecture by a non-
constructive argument showing the existence of tournaments with more than one minimal
extending set.
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Lemma 3 (Brandt et al., 2013). There is a tournament with more than one minimal
extending set.

The existence proof consists of two steps. First, Brandt et al. (2013) have shown that
there is a tournament TCF with two disjoint “chain-free” subsets of alternatives A1 and
A2 such that for every transitive set B1 in BA1 , there is an a2 in A2 such that a2 � B1

and, conversely, every B2 ∈ BA2 is extended by an a1 ∈ A1.
Second, two isomorphic copies of TCF on alternative sets X and Y are combined into

TME with disjoint subsets X1, X2 and Y1, Y2. The dominance relation between X and
Y is depicted in Figure 3. Since X and Y both are extending sets and disjoint, TME

contains multiple minimal extending sets.
Some of our proofs require the existence of a tournament with exactly two minimal

extending sets that are disjoint. It is unknown whether the tournaments described
by Brandt et al. (2013) satisfy this property. To this end, we first show that every
tournament with multiple minimal extending sets contains a subtournament that can be
partitioned into exactly two minimal extending sets and that contains no other minimal
extending sets.7

Lemma 4. Let T = (A,�) be a tournament with multiple minimal extending sets. Then,
there is A′ ⊆ A such that T |A′ contains exactly two minimal extending sets B1 and B2

with B1 ∩B2 = ∅ and B1 ∪B2 = A′.

Proof. Let T = (A,�) be a tournament with distinct minimal extending sets B1, B2

such that C = B1∩B2 6= ∅. First, we show how to find a subtournament whose minimal
extending sets are mutually disjoint. Due to minimality of B1 (and B2), C is not an
extending set. Hence, there have to be Q ⊆ C and a ∈ A \ C such that a � Q and
Q ∪ {a} is maximal in BC∪{a} and cannot be extended by an alternative in C. Define
B′1 = {b ∈ B1 : b � Q} and B′2 = {b ∈ B2 : b � Q}.

Assume without loss of generality that a /∈ B1. Then, there has to be a b1 ∈ B1 that
extends {a} ∪Q because B1 is an extending set, i.e., B′1 is not empty. To show that B′1
and B′2 are disjoint, assume for contradiction that there is a b ∈ B′1 ∩ B′2. It is easy to
check that no matter whether a � b or b � a, Q ∪ {a, b} ∈ BC∪{a} and thus Q ∪ {a} is

7The proof is based on an argument by Brandt (2011, Lemma 2).

X1

X2

Y1

Y2

X Y

Figure 3: The structure of the tournament TME with two disjoint extending sets X and
Y as described by Brandt et al. (2013). The two subtournaments TME |X and
TME |Y are isomorphic. Their exact order is unknown and may be as large as
10104.
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not maximal in BC∪{a}. Hence, B′1 ∩ B′2 = ∅ and by stability of B2, there has to be a
b2 ∈ B2 that extends Q ∪ {b1}, i.e., B′2 is non-empty as well. The situation is depicted
in Figure 4.

B1

B′1

C

Q

B2

B′2

Figure 4: Relevant subsets in the argument to construct a tournament with disjoint
minimal extending sets B′1, B

′
2, given a tournament with overlapping minimal

extending sets B1, B2 (Lemma 4).

Next, we show that B′1 and B′2 are extending sets in T |B′1∪B′2∪Q. To this end, consider
a′ ∈ B′2 and R a maximal transitive subset of B′1 ∪Q such that a′ � R. It is easy to see
that Q ⊆ R due to B′1 � Q, B′2 � Q, and maximality of R. As B1 is an extending set in
T , there has to be a c ∈ B1 that extends R ∪ {a′}. By c � Q ⊆ R, c is contained in B′1,
i.e., B′1 (and analogously B′2) is an extending set in T |B′1∪B′2∪Q. Due to Lemma 1, B′1
and B′2 are also extending sets in T ′ = TB′1∪B′2 , which is of strictly smaller order than T .

Repeated application yields a subset A′ ⊆ A such that T |A′ only contains mutually
disjoint minimal extending sets. Now, let B1 and B2 be two minimal extending sets of
T |A′ . By Lemma 1, B1 and B2 are still minimal extending sets in T |B1∪B2 .

The following insight will later prove useful when reasoning about ME .

Corollary 1. Let T ∗ = (A,�∗) be a smallest tournament with multiple minimal extend-
ing sets. Then, T ∗ contains exactly two minimal extending sets that partition A.

For the remainder of this article, let T ∗ be such a tournament of minimal order with
multiple extending sets.8 Interestingly, the size of this tournament is unknown. Exhaus-
tive analysis has found no such tournament with up to 12 alternatives. Hence, the size
of a minimal counter-example must be at least 13 and at most 10104.

4 Properties of ME

We analyze ME with respect to two different types of properties: dominance-based
properties and choice-theoretic properties. Both serve as important benchmarks for the
evaluation of decision-theoretic and choice-theoretic concepts. We furthermore investi-
gate ME ’s relationship to other tournament solutions. Finally, we also give lower and
upper bounds on the computational complexity of deciding whether an alternative is in
ME for a given tournament.

8The proof of Lemma 4 shows that T ∗ contains exactly three extending sets: the two minimal extending
sets and the set of all alternatives.
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4.1 Dominance-based properties

In this section, we consider two properties that are based on the dominance relation.
The first property is called monotonicity and corresponds to a well-established standard
condition in social choice theory. It prescribes that a chosen alternative should still be
chosen if it is reinforced. Formally, a tournament solution S satisfies monotonicity if
a ∈ S(T ) implies a ∈ S(T ′) for all tournaments T = (A,�), T ′ = (A,�′), and a ∈ A
such that �A\{a} = �′A\{a} and for all b ∈ A \ {a}, a � b implies a �′ b. Equivalently,
monotonicity can be defined by requiring that unchosen alternatives remain unchosen
when they are weakened.

The second property, independence of unchosen alternatives, states that the choice
set should be unaffected by changes in the dominance relation between unchosen al-
ternatives. Formally, a tournament solution S is independent of unchosen alternatives
if S(T ) = S(T ′) for all tournaments T = (A,�) and T ′ = (A,�′) such that for all
a ∈ S(T ), b ∈ A, a � b if and only if a �′ b.

BA satisfies monotonicity, but violates independence of unchosen alternatives, and
BA∞ violates both properties. As it turns out, this is also the case for ME .

Theorem 1. ME does not satisfy monotonicity and independence of unchosen alterna-
tives.

Proof. Consider T ∗ = (A,�∗) from Corollary 1 with its two (disjoint) minimal extending
sets B1 and B2 and alternatives b1 ∈ B1, b2 ∈ B2 with b2 �∗ b1. Let T ∗b1 = (A,�′) be the
modified tournament such that T ∗|A\{b1} = T ∗b1 |A\{b1} and b1 �′ B1 \ {b1}, i.e., b1 now
dominates all other alternatives in B1. By Lemma 2, B2 is still a minimal extending set
in T ∗b1 . By minimality of T ∗, T ∗b1 can only have at most one more minimal extending set,
which furthermore, by Lemma 4, has to be B1. However, B1 itself is no extending set in
T ∗b1 as no alternative in B1 extends {b2, b1}. Hence, ME (T ∗b1) = B2, i.e., the strengthened
alternative b1 is no longer contained in ME .

Tournaments T ∗b1 and T ∗ are also witness to the fact that independence of unchosen
alternatives is violated.

An interesting aspect of minimal extending sets is that, by Lemma 2, they satisfy a
local variant of independence of unchosen alternatives, a property that their union (ME )
fails to satisfy. Minimal extending sets also satisfy a local variant of monotonicity: a
minimal extending set is unaffected by weakening outside alternatives.

4.2 Choice-theoretic properties

An important class of properties concerns the consistency of choice and relates choices
from different subtournaments of the same tournament to each other. A relatively strong
property of this type is stability (or self-stability) (Brandt and Harrenstein, 2011), which
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B C

S(B)

B C

S(C)

B ∪ C

S(B ∪ C)

Figure 5: A stable tournament solution S chooses a set from B ∪C (right) if and only if
it chooses the same set from both B (left) and C (middle).

requires that a set is chosen from two different sets of alternatives if and only if it is
chosen from the union of these sets (see Figure 5).9

Definition 1. A tournament solution S is stable if for all tournaments (A,�) and for
all non-empty subsets B,C,X ⊆ A with X ⊆ B ∩ C,

X = S(B) = S(C) if and only if X = S(B ∪ C).

Stability is a demanding property that is neither satisfied by BA nor by BA∞. Three
well-known tournament solutions that are stable are the top cycle, the minimal covering
set, and the bipartisan set. Stability is closely connected to rationalizability (Brandt
and Harrenstein, 2011) and together with monotonicity implies a weak notion of strate-
gyproofness (Brandt, 2015).

Stability can be factorized into conditions α̂ and γ̂ by considering each implication
in the above equivalence separately. The former is also known as Chernoff’s postulate
5∗ (Chernoff, 1954), the strong superset property (Bordes, 1979), outcast (Aizerman
and Aleskerov, 1995), and the attention filter axiom (Masatlioglu et al., 2012).10 A
tournament solution S satisfies α̂, if for all non-empty sets of alternatives B and C,

S(B ∪ C) ⊆ B ∩ C implies S(B ∪ C) = S(B) = S(C).

Equivalently, S satisfies α̂ if for all sets of alternatives B and C,

S(B) ⊆ C ⊆ B implies S(B) = S(C).

A tournament solution S satisfies γ̂, if for all sets of alternatives B and C,

S(B) = S(C) implies S(B ∪ C) = S(B) = S(C).

For a finer analysis, we split α̂ and γ̂ into two conditions (Brandt and Harrenstein,
2011, Remark 1).

9The term self-stability originates from the fact that a tournament solution S is (self-)stable if and only
if it returns the unique minimal S-stable set for every tournament T (cf. Brandt and Harrenstein,
2011, Th. 3).

10We refer to Monjardet (2008) for a more thorough discussion of the origins of this condition.
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stability

α̂

α̂⊆ α̂⊇

γ̂

γ̂⊆ γ̂⊇

idempotency

Figure 6: Logical relationships between choice-theoretic properties.

Definition 2. A tournament solution S satisfies

• α̂⊆ if for all B,C, it holds that S(B) ⊆ C ⊆ B implies S(C) ⊆ S(B),11

• α̂⊇ if for all B,C, it holds that S(B) ⊆ C ⊆ B implies S(C) ⊇ S(B),

• γ̂⊆ if for all B,C, it holds that S(B) = S(C) implies S(B) ⊆ S(B ∪ C), and

• γ̂⊇ if for all B,C, it holds that S(B) = S(C) implies S(B) ⊇ S(B ∪ C).

Obviously, for any tournament solution S we have

S satisfies stability if and only if S satisfies α̂ and γ̂, and

S satisfies α̂ if and only if S satisfies α̂⊆ and α̂⊇ , and

S satisfies γ̂ if and only if S satisfies γ̂⊆ and γ̂⊇ .

A tournament solution is idempotent if the choice set is invariant under repeated appli-
cation of the solution concept, i.e., S(S(A)) = S(A) for all tournaments T = (A,�).
It is easily seen that α̂⊇ is stronger than idempotency since S(T |S(T )) ⊇ S(T ) implies
S(T |S(T )) = S(T ).
Figure 6 shows the logical relationships between stability and its weakenings.

Theorem 2. ME satisfies (i) α̂⊇ but neither (ii) α̂⊆ nor (iii) γ̂⊇.

Proof. We show each statement separately. For (i), let T = (A,�) be a tournament with
minimal extending sets B1, . . . , Bk and let C ⊆ A such that ME (T ) = B1∪ . . .∪Bk ⊆ C.
By Lemma 1, every Bi is still a minimal extending set in T ′ = T |C . Hence, ME (T ′) ⊇
ME (T ).

11α̂⊆ has also been called the weak superset property or the Aı̈zerman property (e.g., Laslier, 1997;
Brandt, 2009).
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B1 B2

x

Figure 7: Structure of the tournament T ∗x used to show that ME violates α̂⊆ . Without
alternative x, this is a minimal tournament T ∗ among those with multiple
minimal extending sets (Theorem 2).

For (ii), consider again T ∗ = (A,�∗) from Corollary 1 with its two minimal extending
sets B1 and B2. We create a larger tournament T ∗x by adding an alternative x such that
B1 � x and x � B2. This tournament is depicted in Figure 7. Clearly, B1 still is a
minimal extending set and we claim that there is no other. Assume for contradiction
that there is another minimal extending set B′ 6= B1 in T ∗x . If x /∈ B′ then B′ is also a
minimal extending set in T ∗ by Lemma 1. As T ∗ has no minimal extending sets besides
B1 and B2, it follows that B′ = B2. But B2 cannot be an extending set in T ∗x because
for any b2 ∈ B2 there is no b′2 ∈ B2 that extends {x, b2}. If, on the other hand, x ∈ B′,
consider TB1∪B′ . Since B1 \ B′ � x, x does not contribute anything to B′ being an
extending set; it is dominated by all outside alternatives. Hence, B′ \ {x} is a minimal
extending set in T ′ = TB1∪B′\{x}. Moreover, B′ ∩B1 6= ∅ since otherwise {b1, x} cannot
be extended from within B′ for all b1 ∈ B1 due to x � B2. Therefore, T ′ contains two
overlapping minimal extending sets and |T ′| ≤ |T ∗|. This contradicts Corollary 1.

For (iii), consider T ∗ = (A,�∗) with its minimal extending sets B1 and B2. For all
b ∈ B2, let T ∗b = (B1 ∪ {b},�∗B1∪{b}). By Lemma 1, B1 is still a minimal extending set

in all T ∗b . There cannot be another minimal extending set B2 (containing b) because
otherwise T ∗b would have multiple extending sets, contradicting the minimality of T ∗.
Therefore, ME (T ∗b ) = B1 for all b ∈ B2. Note that A =

⋃
b∈B2

B1 ∪ {b}. If γ̂⊇ held for
ME , then repeated application of γ̂⊇ would imply ME (T ∗) ⊆ ME (T ∗b ) = B1. However,
ME (T ∗) = A, a contradiction, which concludes the proof.

It is open whether ME satisfies γ̂⊆ . Nevertheless, the fact that ME violates α̂⊆ and γ̂⊇
immediately implies that it violates stability.

Corollary 2. ME does not satisfy α̂ and γ̂ and is therefore not stable.

From Theorem 2, we also get that, in contrast to BA, ME is idempotent.

Corollary 3. ME satisfies idempotency.
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Figure 8: Extending sets remain extending sets when removing Banks losers (Lemma 5).

Interestingly, minimal extending sets themselves are stable sets. They satisfy a local
version of stability,12 namely

• removing alternatives outside of a minimal extending set has no effect because of
Lemma 1 (local α̂), and

• a set that is a minimal extending set in several tournaments is also a minimal
extending set in the union of these by the definition of minimal extending sets
(local γ̂).

4.3 Relationships to other tournament solutions

Besides the axiomatic properties of ME , we are also interested in its set-theoretic re-
lationships to other tournament solutions. Assuming that every tournament has only
one minimal extending set, Brandt (2011) showed that ME always selects subsets of BA
and subsets of the minimal covering set. Under an even stronger conjecture, he also
proved that ME always selects supersets of the tournament equilibrium set (Schwartz,
1990). Since the conjectures turned out to be incorrect (Lemma 3), these questions are
open again. We can now answer one of these in the affirmative, namely that ME indeed
chooses from BA. To this end, we prove a more general statement about the relationship
between extending sets and BA.13

Lemma 5. For all tournaments T , ME (T ) ⊆ ME (BA(T )).

Proof. Let T = (A,�) be a tournament. It suffices to show for every extending set
B ⊆ A in T , B ∩ BA(T ) is also an extending set in T |BA(T ). Let a ∈ A \ B and
Q ∈ BT |B (a) such that Q is inclusion-maximal in BT |B (a). Since B is an extending
set, there has to be some inclusion-maximal set Q′ ∈ B(T |B∪{a}) with Q ∪ {a} ( Q′.

12Interestingly, this is not the case for TEQ-retentive sets, which are otherwise quite similar to extending
sets.

13It even holds that ME(T ) = ME(BA(T )) for all tournaments T , but this stronger statement is not
required for Theorems 3 and 4.
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Let b be the maximal element of Q′, i.e., b � Q′ \ {b}. We claim that b ∈ BA(T ) (and
therefore b extends Q∪{a} in T |BA(T )). Suppose otherwise, then there exists c ∈ A such
that c � Q′. Since Q′ is inclusion-maximal in T |B∪{a}, c 6∈ B. By virtue of B being an
extending set, there has to be some d ∈ B such that d � (Q′ \ {a}) ∪ {c}. Since Q is
inclusion-maximal in BT |B (a), a 6� d and consequently d � a and d � Q′. This, however,
contradicts the inclusion-maximality of Q′ in T |B∪{a} as illustrated in Figure 8. Hence,
b ∈ B ∩ BA(T ) and b extends Q ∪ {a}, which concludes the proof.

Since ME (BA(T )) ⊆ BA(T ), Lemma 5 implies that ME is contained in BA.

Theorem 3. For all tournaments T , ME (T ) ⊆ BA(T ).

Moreover, by repeated application of Lemma 5 and the finiteness of the set of alter-
natives, it follows that ME is contained in BA∞.

Theorem 4. For all tournaments T , ME (T ) ⊆ BA∞(T ).

It is easy to construct tournaments T in which ME (T ) 6= BA∞(T ) (see Figure 9).

a b c

d e f

Figure 9: In this tournament, ME (T ) = {a, b, c} whereas BA∞(T ) = {a, b, c, d, e, f}.
Omitted edges point downwards.

From ME ’s inclusion in BA, it follows immediately that ME always chooses subsets of
the uncovered set and the top cycle. It remains open whether the tournament equilibrium
set is always contained in ME .

A tournament T = (A,�) is regular if |{z : x � z}| = |{z : y � z}| for all x, y ∈
A. A tournament solution is regular if S(T ) = A for all regular tournaments T =
(A,�). Finally, a tournament solution is irregular if it fails to be regular. Laslier (1997,
Theorem 7.1.3) showed that BA is irregular by constructing a corresponding tournament
on 45 alternatives. By Theorem 3, ME also has to be irregular. In Figure 10, we give
a smallest regular tournament in which ME and BA can be seen to be irregular. The
tournament is of order 13 and was found by exhaustively checking all tournaments of
increasing order where the tournaments were generated with the help of McKay’s nauty
package (McKay and Piperno, 2014).

Theorem 5. ME is irregular.

13



a b c

d

e

f

m

g

h

i

j k l

Figure 10: A regular tournament on 13 vertices. Omitted edges point downwards. Alter-
native m is not in BA and thereby not in ME . This is the smallest tournament
in which ME (and BA) is irregular.

4.4 Computational complexity

An important property of every tournament solution is whether it can be computed
efficiently. This is typically phrased as a decision problem that asks whether a given
alternative is contained in the choice set of a given tournament. Hardness of the decision
problem implies hardness of computing the tournament solution because if there were
an efficient algorithm for computing the choice set, this algorithm could be used to
efficiently solve the decision problem. While it is known that the decision problem for
BA is NP-hard (and therefore computationally intractable) (Woeginger, 2003), this has
no immediate consequence on the complexity of the problem for ME . For example,
Hudry (2004) has pointed out that individual alternatives in BA can be found efficiently
(in linear time). We show that computing ME is indeed NP-hard.

Theorem 6. Deciding whether an alternative in a tournament is contained in ME is
NP-hard.

Proof. We reduce from the NP-complete problem 3SAT using the same construction
(but a different proof) that was used to show the hardness of computing the tournament
equilibrium set (Brandt et al., 2010). For ϕ a formula in 3-conjunctive normal form
given by

(x11 ∨ x21 ∨ x31) ∧ · · · ∧ (x1m ∨ x2m ∨ x3m),

14



Brandt et al. (2010) construct a tournament Tϕ = (U∪C,�) with C = {c0, c1, . . . , c4m−3}
and U =

⋃
1≤i≤4m−3 Ui, where

Ui =

{
{u1i , u2i , u3i } if i is odd,

{ui} if i is even.

Furthermore, the dominance relation � is defined such that, for all i, j, k, and k′ with
0 ≤ i, j ≤ 4m− 3 and 1 ≤ k < k′ ≤ m, the following conditions hold:

(i) ci � cj if and only if i > j,

(ii) ci � Uj if and only if i 6= j

(iii) u1i � u2i � u3i � u1i whenever i is odd,

(iv) ul4k−1 � ul
′
4k−3 whenever l 6= l′ (l, l′ ∈ {1, 2, 3}),

(v) ul
′
4k′−3 � ul4k−3 whenever xlk = ¬xl′k′ or xl

′
k′ = ¬xlk (l, l′ ∈ {1, 2, 3}),

(vi) ui � uj whenever i < j, for all ui ∈ Ui and uj ∈ Uj to which (iv) and (v) do not
apply.

If i = 4k − 3 for some 1 ≤ k ≤ 4m − 3, we say that Ui is a set of clause alternatives,
whereas, if i = 4k − 1 for some 1 ≤ k ≤ 4m − 3, Ui is said to be a set of channeling
alternatives. A clause alternative u and a channeling alternative u′ are said to be aligned
whenever u = ul4k−3 and u′ = ul

′
4k−1 for some k ≥ 0 and l = l′. If i is even, the alternative

in Ui is called a separating alternative. A complete example of such a tournament Tϕ is
shown in Figure 11. We prove that

ϕ is satisfiable if and only if c0 ∈ ME (Tϕ).

First, assume that ϕ is not satisfiable. Then, by a simple argument (Brandt et al.,
2010, proof of Theorem 2), we have c0 /∈ BA(Tϕ). From Theorem 3, it also follows that
c0 /∈ ME (Tϕ).

For the opposite direction, assume that ϕ is satisfiable and let α be the witnessing
assignment. We prove that c0 ∈ ME (Tϕ). Let

U− =
⋃

1≤k≤m
{uj4k−3 : xjk is false in α} and U+ = U \ U−.

We introduce, moreover, for every i with 1 ≤ i ≤ 4m− 3, the following notations:

U+
i = U+ ∩ Ui U≥i = Ui ∪ · · · ∪ U4m−3,

C≥i = Ci ∪ · · · ∪ C4m−3 U+
≥i = U+

i ∪ · · · ∪ U
+
4m−3.

We say that a subset V ⊆ U is i-leveled if V ∩Uj 6= ∅ for all j with 4m−3 ≥ j ≥ i. As α
is a satisfying assignment, we then have that U+ is 1-leveled. Moreover, for every i with
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p q ¬r

u17 u27 u37
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u13 u23 u33
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u8

u6

u4

u2

c0

c1
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c7

c9

c2

c4

c6

c8

} U9

} U8

} U7

} U6

} U5

} U4

} U3

} U2

} U1

} C0

} C1

} C2

} C3

} C4

} C5

} C6

} C7

} C8

} C9

Figure 11: The tournament Tϕ for ϕ = (¬p∨s∨q)∧(p∨s∨r)∧(p∨q∨¬r) as used in the

proof of Theorem 6. Every alternative ul4k−3 is denoted by the literal xlk it
represents and omitted edges point downwards. Furthermore, e.g., U5 is a set
of clause alternatives, u6 is a separating alternative, and u27 is a channeling
alternative.

4m− 3 ≥ i ≥ 1 and all u ∈ U+
i , there is a transitive i-leveled set Xu ⊆ U+

≥i including u

as maximal element. To see this, observe that we can always choose Xu ⊆ U+
≥i such

that X includes u, chooses exactly one alternative from Uj for every j ≥ i, and all clause
and channeling alternatives in X are aligned. The latter can always be guaranteed as all
channeling alternatives are included in U+. Moreover, α sets each propositional variable
either to true or to false, but not both, and, therefore, clause (v) above does not apply
to any pair of clause alternatives ul4k−3 and ul

′
4k′−3 in Xu. Hence, for all u, u′ ∈ Xu with

u ∈ Uj , u
′ ∈ Uj′ , it holds that u � u′ whenever j < j′. It can thus easily be appreciated

that Xu has to be transitive.
Let B be a minimal extending set of Tϕ. We first show by induction on i that for all i

with 4m− 3 ≥ i ≥ 1 we have
C≥i ∪ U

+
≥i ⊆ B.

For the basis, i.e., if i = 4m− 3, we show that c4m−3 ∈ B as well as that U4m−3 ⊆ B.
To prove the former, first assume for a contradiction that B ∩ C = ∅. Then, B ⊆ U
and B 6= ∅. Observe, however, that c0 � U . Accordingly, there is some u ∈ U ∩B with
c0 � u but no u′ ∈ U with u′ � c0 and u′ � u. Having assumed that B is an extending
set, it follows that c0 ∈ B, a contradiction. We may conclude that there is some c ∈ C

16



with c ∈ B. If c = c4m−3, we are done. Otherwise, c4m−3 � c. Observe that there is no
alternative a ∈ C ∪ U with both a � c4m−3 and a � c. It follows that c4m−3 ∈ B.

Second, we show that for each u ∈ U4m−3 we have u ∈ B. Consider an arbitrary
u ∈ U4m−3. Without loss of generality we may assume that u = u14m−3 and, for a
contradiction, that u14m−3 /∈ B. Also consider u24m−3 and observe that u24m−3 � c4m−3.
If u24m−3 /∈ B, then u14m−3 is the only alternative a in C ∪ U with both a � u24m−3 and
a � c4m−3. As c4m−3 ∈ B by the previous argument and B is an extending set, it then
follows that u14m−3 ∈ B. If, on the other hand, u24m−3 ∈ B, then {u24m−3, c4m−3} ⊆ B.
Now, observe that both u14m−3 � u24m−3 and u14m−3 � c4m−3. Moreover, there is no
alternative a ∈ C ∪ U with a � {u14m−3, u24m−3, c4m−3}. As B is an extending set, it
again follows that u14m−3 ∈ B.

For the induction step, we may assume that C≥i ∪ U
+
≥i ⊆ B (induction hypothesis)

and it suffices to show that {ci−1} ∪ U+
i−1 ⊆ B.

To see that ci−1 ∈ B recall that U+ is i-leveled and, hence, there is some u ∈ U+
i .

Consider this u along with the set Xu ⊆ U+
≥i. By the induction hypothesis, we have

that Xu ⊆ B. We first show that there is some c ∈ {ci−1, . . . , c0} with c ∈ B. To
see this, assume for contradiction that B ∩ {ci−1, . . . , c0} = ∅. Then, in particular,
c0 /∈ B. Moreover, c0 � Xu. Observe that c0 � u′ for every u′ ∈ U and, therefore, no
alternative in U extends {c0}∪Xu. As Xu is i-leveled, moreover, there is no c ∈ C≥i that
extends {c0} ∪Xu. Having assumed that B ∩ {ci−1, . . . , c0} = ∅, it follows that B is not
extending, a contradiction. Accordingly, there is some c ∈ B∩{ci−1, . . . , c0}. If c = ci−1
we are done. Otherwise, note that ci−1 � {c} ∪Xu. Observe, however, that there is no
alternative a ∈ C ∪ U with a � {ci−1, c} ∪Xu. As {c} ∪Xu ⊆ B and B is extending, it
follows that ci−1 ∈ B as well.

Now, consider arbitrary U+
i−1 and let ui−1 be an arbitrary alternative in U+

i−1. It
remains to be proved that ui−1 ∈ B. One of the following holds:

(i) Ui−1 = {ui−1}, where ui−1 is a separating alternative.

(ii) Ui−1 is a set of clause alternatives.

(iii) Ui−1 is a set of channeling alternatives.

If (i), observe that ui−1 is the maximal element of the transitive set {ci−1} ∪Xui−1 .
As Xui−1 \ {ui−1} ⊆ U+

≥i, by the induction hypothesis and the previous argument, we
have that {ci−1} ∪ (Xui−1 \ {ui−1}) ⊆ B. Observe, however, that in this case, there is
no alternative a ∈ C ∪U that extends {ci−1}∪Xui−1 , i.e., such that a � {ci−1}∪Xui−1 .
As B is an extending set, it follows that ui−1 ∈ B.

If (ii), let Ui−1 = {u1i−1, u2i−1, u3i−1}. Without loss of generality we may assume that
ui−1 = u1i−1 and observe that ui−1 is the maximal element of the transitive set {ci−1} ∪
Xui−1 . By the induction hypothesis and the first part of the induction step, {ci−1} ∪
(Xui−1 \{ui−1}) ⊆ B. As Xui−1 is i-leveled and Ui−1 is a set of clause alternatives, there
is some u′′ ∈ Xui−1 ∩ Ui+1. By construction, moreover, u′′ = u1i+1. Again, there is no
alternative a ∈ C ∪ U that extends {ci−1} ∪Xui−1 . In particular, u3i−1 does not extend
{ci−1}∪Xui−1 . To see this, recall that u1i+1 ∈ Xi+1 and that u1i+1 � u3i−1 by construction
of Tϕ. As B is an extending set, it follows that ui−1 ∈ B.
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Finally, if (iii), we have Ui−1 = U+
i−1 = {u1i−1, u2i−1, u3i−1}. Without loss of generality,

we may again assume that ui−1 = u1i−1 and consider u2i−1. Observe that u2i−1 is the
maximal element of the transitive set {ci−1} ∪ Xu2

i−1
. Moreover, by the induction hy-

pothesis and the first part of the induction step, we have {ci−1} ∪ (Xu2
i−1
\ {u2i−1}) ⊆ B.

Now, u1i−1 is the only alternative in C ∪ U extending {ci−1} ∪Xu2
i−1

. Either u2i−1 ∈ B
or u2i−1 /∈ B. As B is an extending set, in either case it follows that u1u−1 ∈ B.

If u2i−1 /∈ B, then With B being an extending set, it then follows that u1i−1 ∈ B. If, on
the other hand, u2i−1 ∈ B, then {ci−1}∪Xu2

i−1
⊆ B and u1i−1 is the only alternative that

extends {ci−1} ∪Xu2
i−1

. Again, by B being an extending set, it follows that u1i−1 ∈ B.

To conclude the proof, let u ∈ U+
1 and consider also Xu. Observe that c0 � Xu. As

we have seen above, Xu ⊆ B. Recall that Xu is 1-leveled and observe that there is no
alternative a ∈ C ∪U that extends {c0}∪Xu. As B is extending, it follows that c0 ∈ B,
as desired.

We do not expect the problem to be in NP. The best known upper bound is the
complexity class ΣP

3 .14

The proof of Theorem 6 effectively shows the NP-hardness of computing any tourna-
ment solution that is sandwiched between BA and ME and therefore, by Theorem 4,
also the NP-hardness of computing BA∞.

5 Conclusion and Discussion

We have analyzed the axiomatic as well as computational properties of the tournament
solution ME . Results were mixed. In conclusion, ME

(i) is not monotonic,

(ii) is not independent of unchosen alternatives,

(iii) satisfies α̂⊇ and idempotency,

(iv) does not satisfy α̂⊆ and γ̂⊇ and is not stable,

(v) satisfies irregularity,

(vi) is contained in the (iterated) Banks set,

(vii) is NP-hard to compute, and

(viii) satisfies composition-consistency.

14This follows from the definition. An alternative x is in ME(T ) if and only if there is an extending
set X that contains x and does not contain a smaller extending subset. Verifying whether a set is an
extending set is in coNP, verifying whether it is a minimal extending set is in ΠP

2 .
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property BA ⊇ BA∞ ⊇ ME ⊇ minimal
extending sets

monotonicity 3 – – 3

independence of
– – – 3

unchosen alternatives

stability (α̂ and γ̂) – – – 3

idempotency – 3 3 3

inclusion in the Banks set 3 3 3 3

irregularity 3 3 3 3

composition-consistency 3 3 3 3

efficient computability – – – ?

Table 1: Comparison of BA, BA∞, ME , and minimal extending sets as tournament
correspondences. For the latter, we considered local variants of the properties
as defined in Section 4. It is open whether some minimal extending set can be
found efficiently. The problem is NP-hard if the tournaments used in the proof
of Theorem 6 contain unique minimal extending sets, which we believe to be
the case.

Statement (viii) was shown by Brandt (2011), the others were shown in this paper.
Two relationships of ME with other tournament solutions are still open: it is unknown
whether the tournament equilibrium set (Schwartz, 1990) is always contained in ME
and whether ME is always contained in the minimal covering set (Dutta, 1988).

These results, together with recent results about the tournament equilibrium set—
which satisfies irregularity but also fails stability—, suggest that stability and irregularity
may be incompatible to some extent. Only few tournament solutions are known to be
stable and all of them are regular. We intend to further pursue this question in future
work.

We observed that many of the properties that are violated by ME are nevertheless
satisfied by individual minimal extending sets (see Table 1). It is an interesting question
whether extending sets could perhaps still be used as the basis for choice in tournaments.
Selecting one of the extending sets in a way such that the axioms considered in this
paper are still satisfied appears to be problematic because the proofs for ME ’s violation
of monotonicity and independence of unchosen alternatives could easily be adapted.

Alternatively, one could consider tournament correspondences, i.e., functions that as-
sociate with each tournament a set of sets of alternatives. One can straightforwardly
extend the definitions of dominance-based and choice-theoretic properties to the class
of tournament correspondences. Then, the tournament correspondence that returns
all minimal extending sets would indeed constitute a very attractive solution concept.
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Moreover, this correspondence would essentially be single-valued because tournaments
with multiple minimal extending sets seem to be extremely rare.

As a matter of fact, ME ’s violation of monotonicity, stability, and independence of
unchosen alternatives crucially depends on the existence of tournaments with more than
one minimal extending set. This existence was only settled recently and the size of known
tournaments of this type is enormous. Through exhaustive search, we have found that
in all tournaments of order 12 or less, minimal extending sets are unique, implying that
for up to 12 alternatives, ME satisfies virtually all desirable properties and is a strict
refinement of both the Banks set and the minimal covering set. We have also searched
billions of random tournaments with up to 30 alternatives and never encountered a
tournament with multiple extending sets.

Hence, it is fair to say that ME satisfies the considered properties for all practical
purposes. This, in turn, may be interpreted as a criticism of the axiomatic method in
general: For what does it mean if a tournament solution (or any other mathematical
object) in principle violates some desirable properties, but no concrete example of a
violation is known and will perhaps ever be known?
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