
Popular Matchings with Multiple Partners∗

Florian Brandl Telikepalli Kavitha
Technical University of Munich, Tata Institute of Fundamental

Germany Research, India
brandlfl@in.tum.de kavitha@tcs.tifr.res.in

Our input is a bipartite graph G = (A∪B,E) where each vertex in A∪B has
a preference list strictly ranking its neighbors. The vertices in A and in B are
called students and courses, respectively. Each student a seeks to be matched
to cap(a) ≥ 1 many courses while each course b seeks cap(b) ≥ 1 many students
to be matched to it. The Gale-Shapley algorithm computes a pairwise-stable
matching (one with no blocking edge) in G in linear time. We consider the
problem of computing a popular matching in G — a matching M is popular if
M cannot lose an election to any matching where vertices cast votes for one
matching versus another. Our main contribution is to show that a max-size
popular matching in G can be computed by the 2-level Gale-Shapley algorithm
in linear time. This is an extension of the classical Gale-Shapley algorithm and
we prove its correctness via linear programming.

1 Introduction

We study the many-to-many matching problem in bipartite graphs: formally, this is given
by a set A of vertices (these vertices are called students) and a set B of vertices (these are
called courses), where every vertex u has a capacity cap(u) ≥ 1. Every student a seeks to
be matched to cap(a) many courses and every course b seeks cap(b) many students to be
matched to it. Moreover, every student a ∈ A has a strict ranking �a over courses that are
acceptable to a and every course b has a strict ranking �b over students that are acceptable
to b. The set of mutually acceptable pairs is given by E ⊆ A × B. Thus our input is a
bipartite graph G = (A∪B,E) and the preferences of a vertex are expressed as an ordered
list of its neighbors, e.g., u : v, v′ denotes the preference v �u v′, i.e., u prefers v to v′.

∗The full version of this paper is available at http://arxiv.org/abs/1609.07531.

1

http://arxiv.org/abs/1609.07531

Definition 1. A matchingM in G = (A∪B,E) is a subset of E such that |M(u)| ≤ cap(u)
for each u ∈ A ∪B, where M(u) = {v : (u, v) ∈M}.

The goal is to compute an optimal matching in G. The usual definition of optimality
in this setting has been pairwise-stability (Roth, 1984b). A matching M in G is said to
be pairwise-stable if there is no student-course pair (a, b) that “blocks” M . We say a pair
(a, b) ∈ E \M blocks M if (1) either a has less than cap(a) partners in M or a prefers b to
its least preferred neighbor inM(a) and (2) either b has less than cap(b) partners inM or b
prefers a to its least preferred neighbor inM(b). It is known that pairwise-stable matchings
always exist (cf. Roth, 1984b) and the Gale-Shapley algorithm (Gale and Shapley, 1962)
can be easily generalized to find such a matching in G = (A ∪ B,E). The many-to-one
variant of this problem, also called the hospitals/residents problem, where cap(a) = 1 for
every a ∈ A, was studied by Gale and Shapley (1962) who showed that their algorithm for
the marriage problem (where cap(u) = 1 for all u ∈ A ∪B) can be easily extended to find
a stable matching in the hospitals/residents problem as well.
Since a (pairwise) stable matching is a maximal matching in G, its size is at least
|Mmax|/2, where Mmax is a max-size matching in G. This bound can be tight as shown
by the following simple example: let A = {a, a′} and B = {b, b′} where each vertex has
capacity 1 and the edge set is E = {(a, b), (a, b′), (a′, b)}. The preferences are shown in the
table below. Here the only stable matching (red line) is S = {(a, b)}, which is of size 1.
However, the max-size matching (dashed lines) Mmax = {(a′, b), (a, b′)} is of size 2.

a : b, b′ b : a, a′

a′ : b b′ : a

a

a′

b

b′

It can be shown that all pairwise-stable matchings have to match the same set of vertices
and every vertex gets matched to the same capacity in every pairwise-stable matching. In
the hospitals/residents setting, this is popularly called the “Rural Hospitals Theorem” (Gale
and Sotomayor, 1985; Roth, 1986). More precisely, Roth (1986) showed that not only is
every hospital matched to the same number of residents in every stable matching, but
moreover, every hospital that is not matched up to its capacity in some stable matching is
actually matched to the same set of residents in any stable matching. Thus the notion of
stability is very restrictive.
From a social point of view, it seems desirable to have a high number of students reg-

istered for courses to make effective use of available resources. Similarly, in the hospi-
tals/residents setting, it seems desirable to have a higher number of residents matched to
hospitals in order to keep few residents unemployed and guarantee sufficient staffing for
hospitals. The latter point particularly applies to rural hospitals that oftentimes face the
problem of being understaffed with residents by the National Resident Matching Program
in the USA (cf. Roth, 1984a, 1986). This motivates relaxing the notion of “absence of block-
ing edges” to a weaker notion of stability so as to obtain matchings that are guaranteed to

2

be significantly larger than |Mmax|/2. Note that we do not wish to ignore the preferences
of vertices and impose a max-size matching on them as such a way of assignment may be
highly undesirable from a social viewpoint. Instead our approach is to replace the local
stability notion of “no blocking edges” with a weaker notion of global stability that achieves
more “global good” in the sense that its size is always at least γ · |Mmax| for some γ > 1/2.

Popularity To this end, we consider the notion of popularity, which was introduced by
Gärdenfors (1975) for the stable marriage problem: the input here consists of a set of men
and a set of women, where each person seeks to get matched to at most one person from the
opposite sex. Hence the marriage or the one-to-one matching setting, where every vertex
has capacity 1, is a special case of the many-to-many matching setting considered here.
Popularity is based on voting by vertices on the set of feasible matchings. In the one-to-
one setting, the preferences of a vertex over its neighbors are extended to preferences over
matchings by postulating that every vertex orders matchings in the order of its partners in
these matchings. This postulates that vertices do not care which other pairs are formed.
A matching is popular if it never loses a head-to-head election against any matching

where each vertex casts a vote. Thus popular matchings are (weak) Condorcet winners
(Condorcet, 1785) in the corresponding voting instance. The Condorcet paradox shows
that collective preferences can be cyclic and so there need not be a Condorcet winner;
this is the source of many impossibility results in social choice theory such as Arrow’s
impossibility theorem.
However, in the context of matchings in the one-to-one setting, Gärdenfors (1975) showed

that every stable matching is popular. Hence the fact that stable matchings always exist
here (cf. Gale and Shapley, 1962) implies that popular matchings always exist. This is
quite remarkable given that popular matchings correspond to (weak) Condorcet winners.
In the one-to-one setting, there is a vast literature on popular matchings (see, e.g., Biró
et al., 2010; Huang and Kavitha, 2013; Kavitha, 2014; Hirakawa et al., 2015; Cseh and
Kavitha, 2016; Kavitha, 2016; Huang and Kavitha, 2017).
Here we generalize the notion of popularity to the many-to-many matching setting.

This requires us to specify how vertices vote over different subsets of their neighbors. In
particular, one may want to allow a single vertex to cast multiple votes if its capacity is
greater than 1. Our definition of voting by a vertex between two subsets of its neighbors is
the following: first remove all vertices that are contained in both sets; then find a bijection
from the first set to the second set and compare every vertex with its image under this
bijection (if the sets are not of equal size, we add dummy vertices that are less preferred
to all non-dummy vertices); the number of wins minus the number of losses is cast as the
vote of the vertex. The vote may depend on the bijection that is chosen, however.
Our definition is based on the bijection that minimizes the vote, which results in a rather

restrictive notion of popularity. We show however that even for this notion of popularity,
every stable matching is popular. In particular, popular matchings always exist. As a
consequence, popular matchings always exist for every notion of popularity that is less

3

restrictive than our notion of popularity. Our goal is to find a max-size popular matching
and crucially, it turns out that the size of a max-size popular matching is independent of
the bijection that is chosen for the definition of popularity. We formalize these notions
below.
In the one-to-one setting, given any two matchings M0,M1 and a vertex u, we say u

prefers M0 to M1 if u prefers M0(u) to M1(u), where Mi(u) is u’s partner in Mi, for
i = 0, 1, and we say “Mi(u) = null” if u is left unmatched in matching Mi — note that
the null option is the least preferred state for any vertex. Define the function voteu(v, v′)
for any vertex u and neighbors v, v′ of u as follows: voteu(v, v′) is 1 if u prefers v to v′, it
is −1 if u prefers v′ to v, and it is 0 otherwise (i.e., if v = v′). In the one-to-one setting,
∆u(M0,M1), which is u’s vote for M0 versus M1, is defined to be voteu(M0(u),M1(u)).
In the many-to-many setting, while comparing one matching with another, we allow a

vertex to cast more than one vote. For instance, when we compare the preference of vertex u
with cap(u) = 3 for S0 = {v1, v2, v3} versus S1 = {v4, v5, v6} (where v1 �u v2 �u · · · �u v6),
we would like u’s vote to capture the fact that u is better-off by 3 partners in S0 when
compared to S1. So we define u’s vote for S0 versus S1 as follows. Let S0, S1 be any two
subsets of the set of u’s neighbors where we add some occurrences of “null” to the smaller
of S0, S1 to make the two sets of the same size. We will view the sets S′0 = S0 \S1 and S′1 =
S1 \S0 as arrays 〈S′i[1], . . . , S′i[k]〉 (for i = 0, 1) where k = |S0|− |S0∩S1| = |S1|− |S0∩S1|.
The preference of vertex u for S0 versus S1, denoted by δu(S0, S1), is defined as follows:

δu(S0, S1) = min
σ∈Π[k]

k∑
i=1

voteu(S′0[i], S′1[σ(i)]), (1)

where Π[k] is the set of permutations on {1, . . . , k}. Let ∆u(M0,M1) = δu(S0, S1), where
S0 = M0(u) and S1 = M1(u). So ∆u(M0,M1) counts the number of votes by u for M0(u)
versus M1(u) when the sets S′0 = M0(u) \ M1(u) and S′1 = M1(u) \ M0(u) are being
compared in the order that is most adversarial or negative for M0. That is, this order
σ ∈ Π[k] of comparison between elements of S′0 and S′1 gives the least value for n+ − n−,
where n+ is the number of indices i such that S′0[i] �u S′1[σ(i)] and n− is the number of
indices i such that S′0[i] ≺u S′1[σ(i)]. Note that ∆u(M0,M1) + ∆u(M1,M0) ≤ 0 and it can
be strictly negative.
For instance, when a vertex u with cap(u) = 3 compares two subsets S0 = {v1, v3, v5}

and S1 = {v2, v4, v6} (where v1 �u v2 �u · · · �u v6), we have δu(S0, S1) = −1 since
comparing the following pairs results in the least value of δu(S0, S1): this pairing is (v1

with v6), (v3 with v2), (v5 with v4). This makes δu(S0, S1) = 1 − 1 − 1 = −1. While
computing δu(S1, S0), the pairing would be (v2 with v1), (v4 with v3), (v6 with v5): then
δu(S1, S0) = −1− 1− 1 = −3.
For any two matchingsM0 andM1 in G, we compare them using the function ∆(M0,M1)

defined as follows:
∆(M0,M1) =

∑
u∈A∪B

∆u(M0,M1). (2)

4

We sayM0 is at least as popular asM1 if ∆(M0,M1) ≥ 0 andM0 is more popular thanM1

if ∆(M0,M1) > 0. If ∆(M0,M1) ≥ 0 then for every vertex u in A∪B: no matter in which
order the elements of S′0 = M0(u) \M1(u) and S′1 = M1(u) \M0(u) are compared against
each other by u in the evaluation of ∆u(M0,M1), when we sum up the total number of
votes cast by all vertices, the votes for M1 can never outnumber the votes for M0.

Definition 2. M0 is a popular matching in G = (A ∪ B,E) if ∆(M0,M1) ≥ 0 for all
matchings M1 in G.

Thus for a matching M0 to be popular, it means that M0 is at least as popular as
every matching in G, i.e., there is no matching M1 with ∆(M0,M1) < 0. If there exists a
matching M1 such that ∆(M0,M1) < 0 then this is taken as a certificate of unpopularity of
M0. Note that it is possible that both ∆(M0,M1) and ∆(M1,M0) are negative, i.e., for each
vertex u there is some order of comparison between the elements of S′0 = M0(u) \M1(u)
with those in S′1 = M1(u) \M0(u) so that when we sum up the total number of votes cast
by all the vertices, the number for M1 is more than the number for M0; similarly for each
u there is another order of comparison between the elements of S′0 with those in S′1 so that
when we sum up the total number of votes cast by all the vertices, the number for M0 is
more than the number forM1. In this case neitherM0 norM1 is popular. It is not obvious
whether popular matchings always exist in G.
Our definition of popularity may seem too strict and restrictive since for each vertex u,

we choose the most negative or adversarial ordering forM0(u)\M1(u) versusM1(u)\M0(u)
while calculating ∆u(M0,M1). A more relaxed definition may be to order the sets S′0 =
M0(u) \M1(u) and S′1 = M1(u) \M0(u) in increasing order of preference of u and take∑

i voteu(S′0[i], S′1[i]) as u’s vote. An even more relaxed definition may be to choose the
most favorable or positive ordering for S′0 versus S′1 while calculating ∆u(M0,M1). Note
that as per (1) we have:

−∆u(M0,M1) = − min
σ∈Π[k]

k∑
i=1

voteu(S′0[i], S′1[σ(i)]) = max
π∈Π[k]

k∑
i=1

voteu(S′1[i], S′0[π(i)]). (3)

Definition 3. Call a matchingM1 weakly popular if ∆(M0,M1) ≤ 0, i.e., −∆(M0,M1) ≥ 0,
for all matchings M0 in G.

Thus it follows from (3) thatM1 is a weakly popular matching if the sum of votes forM1

is at least the sum of votes for any matchingM0 when each vertex u comparesM1(u)\M0(u)
versus M0(u) \M1(u) in the ordering (as given by π) that is most favorable for M1. In the
one-to-one setting, we have ∆(M0,M1)+∆(M1,M0) = 0 for any pair of matchingsM0,M1

since ∆u(M0,M1) = voteu(M0(u),M1(u)) = −voteu(M1(u),M0(u)) = −∆u(M1,M0) for
each u; thus the notions of “popularity” and “weak popularity” coincide here. In the many-
to-many setting, weak popularity is a more relaxed notion than popularity.
We choose a strong definition of popularity so that a matching that is popular according

to our notion will also be popular according to any notion “in between” between popularity

5

and weak popularity. However this breadth may come at a price as it could be the case
that a max-size weakly popular matching is larger than a max-size popular matching.

Our results and techniques We will show that every pairwise-stable matching in G =
(A∪B,E) is popular, thus our (seemingly strong) definition of popularity is a relaxation of
pairwise-stability. We will present a simple linear time algorithm for computing a max-size
popular matching M0 in G and show that |M0| ≥ 2

3 · |Mmax|.
We also show that M0 is more popular than every larger matching, i.e., ∆(M0,M1) > 0

(refer to (2)) for any matching M1 that is larger than M0. Thus M0 is also a max-size
weakly popular matching in G as no matching M1 larger than M0 can be weakly popular
due to the fact that ∆(M0,M1) > 0. Thus surprisingly, we lose nothing in terms of the
size of our matching by sticking to a strong notion of popularity.
Akin to the rural hospitals theorem, we show that all max-size popular matchings have to

match the same set of vertices and every vertex gets matched to the same capacity in every
max-size popular matching. However, even in the hospitals/residents setting, hospitals
that are not matched up to their capacity in some max-size popular matching do not need
to be matched to the same sets of residents in any max-size popular matching, which is in
contrast to stable matchings (Roth, 1986).
Our algorithm is an extension of the 2-level Gale-Shapley algorithm by Kavitha (2014) to

find a max-size popular matching in a stable marriage instance. While the analysis of the
2-level Gale-Shapley algorithm by Kavitha (2014) is based on a structural characterization
of popular matchings by Huang and Kavitha (2013) on forbidden alternating paths and
alternating cycles, we use linear programming here to show a simple and self-contained
proof of correctness of our algorithm. We would like to remark that the structural char-
acterization from Huang and Kavitha (2013) and the proof of correctness from Kavitha
(2014) can be extended (in a rather laborious manner) to show the correctness of the gen-
eralized algorithm in our more general setting as well, however our proof of correctness
is much simpler and this yields a much easier proof of correctness of the algorithm by
Kavitha (2014). Our linear programming techniques are based on a linear program used
by Kavitha et al. (2011) to find a popular fractional matching in a bipartite graph with
1-sided preference lists.

Background and related work The first algorithmic question studied for popular match-
ings was in the domain of 1-sided preference lists (Abraham et al., 2007) where it is only
vertices on the left, who are agents, that have preferences; the vertices on the right are ob-
jects and they have no preferences. Popular matchings need not always exist here, however
fractional matchings that are popular always exist and can be computed in polynomial
time via linear programming (Kavitha et al., 2011). Popular matchings always exist in
any instance of the stable marriage problem with strict preference lists since every stable
matching is popular (Gärdenfors, 1975).
Efficient algorithms to find a max-size popular matching in a stable marriage instance

6

are known (Huang and Kavitha, 2013; Kavitha, 2014) and a subclass of max-size popular
matchings called dominant matchings was studied by Cseh and Kavitha (2016) and it
was shown that these matchings coincide with stable matchings in a larger graph. A
polynomial time algorithm was shown by Kavitha (2016) to find a min-cost popular half-
integral matching when there is a cost function on the edge set and it was shown by Huang
and Kavitha (2017) that the popular fractional matching polytope here is half-integral.
When preference lists admit ties, the problem of determining if a stable marriage instance
(A ∪ B,E) admits a popular matching or not is NP-hard (Biró et al., 2010) and the NP-
hardness of this problem holds even when ties are allowed on only one side (say, in the
preference lists of vertices in A) (Cseh et al., 2015).
Very recently and independent of our work, the problem of computing a max-size pop-

ular matching in an extension of the hospitals/residents problem, i.e., in the many-to-
one setting, was considered by Nasre and Rawat (2017). The notion of “more popular
than” by Nasre and Rawat (2017) is weaker than ours: in order to compare matchings
M0 and M1, by Nasre and Rawat (2017) every hospital h orders S′0 = M0(h) \M1(h) and
S′1 = M1(h) \M0(h) in increasing order of preference of h and

∑
i voteh(S′0[i], S′1[i]) is h’s

vote for M0 versus M1. An efficient algorithm was shown for their problem by reducing
it to a stable matching problem in a larger graph — this closely follows the method and
techniques by Huang and Kavitha (2013), Kavitha (2014), and Cseh and Kavitha (2016)
for the max-size popular matching problem in the one-to-one setting. Note that popularity
as per their definition is “in between” our notions of popularity and weak popularity.
The stable matching problem in a marriage instance has been extensively studied (cf.

Gusfield and Irving, 1989; Manlove, 2013) on this topic. The problem of computing stable
matchings or its variants in the hospitals/residents setting is also well-studied (Huang,
2010; Askalidis et al., 2013; Hamada et al., 2016; Irving et al., 2000, 2003). The stable
matching algorithm in the hospitals/residents problem has several real-world applications:
it is used to match residents to hospitals in Canada (Service) and in the USA (Program).
The many-to-many stable matching problem has also received considerable attention (see,
e.g., Roth, 1984b; Blair, 1988; Sotomayor, 1999).

2 Our algorithm

A first attempt to solve the max-size popular matching problem in a many-to-many instance
G = (A ∪ B,E) may be to define an equivalent one-to-one instance G′ = (A′ ∪ B′, E′) by
making cap(u) copies of each u ∈ A∪B and cap(a) · cap(b) many copies of each edge (a, b);
the max-size popular matching problem in G′ can be solved using the algorithm by Kavitha
(2014) and the obtained matching M̃ in G′ can be mapped to a matching M in G. In the
first place, one should ensure that there are no multi-edges in M . The matching M will be
popular, however it is not obvious that M is a max-size popular matching in G as every
popular matching in G need not be realized as some popular matching in G′: we show such
an example in the Appendix. Thus one needs to show that there is at least one max-size

7

popular matching in G that can be realized as a popular matching in G′; we do not pursue
this approach here as the running time of the max-size popular matching algorithm in G′

is linear in the size of G′, which is O(mn), where |E| = m and |A|+ |B| = n.
In this section we describe a simple O(m + n) algorithm called the generalized 2-level

Gale-Shapley algorithm to compute a max-size popular matching in G = (A ∪B,E). This
algorithm works on the graph H = (A′′ ∪ B,E′′) defined as follows: A′′ consists of two
copies a0 and a1 of every student a in A, i.e., A′′ = {a0, a1 : a ∈ A}. The set B of courses
in H is the same as in G and the edge set here is E′′ = {(a0, b), (a1, b) : (a, b) ∈ E}.
The preference list of ai (for i = 0, 1) is exactly the same as the preference list of a. The

elements in the set {ai : a ∈ A} will be called level i students, for i = 0, 1. Every b ∈ B
prefers any level 1 neighbor to any level 0 neighbor: within the set of level i neighbors (for
i = 0, 1), b’s preference order is the same as its original preference order. For instance, if
a course b has only 2 neighbors a and v in G where a �b v, the preference order of b in
G′ is: a1, v1, a0, v0. The sum of capacities of a0 and a1 will be cap(a) and we will use
residual(a) to denote the cap(a)− |M(a)|, where M is the current matching. At any point
in time, only one of a0 and a1 will be active in our algorithm.
A description of our algorithm is given as Algorithm 1. To begin with, all level 0 students

are active in our algorithm and all level 1 students are inactive. We keep a queue Q of all
the active students and they propose as follows:

• every active student ai, where a is not fully matched, proposes to its most preferred
neighbor in H that it has not yet proposed to (lines 4-5 of Algorithm 1)

• if a0 has already proposed to all its neighbors in H and a is not fully matched, then
a0 becomes inactive and a1 becomes active and it joins the queue Q (lines 20-21).

When a course b receives a proposal from ai, the vertex b accepts this offer (in line 6).
In case b is already matched to a0 and it now received a proposal from a1, the edge (a0, b)
in M is replaced by the edge (a1, b) (otherwise b would end up being matched to a with
multiplicity 2 which is not allowed) — this is done in lines 7-8 of Algorithm 1.
If b is now matched to more than cap(b) partners then b rejects its worst partner vj in

the current matching and so residual(v) increases by 1 and vj joins Q if it is not already
in Q (in lines 11-13). If b is now matched to cap(b) partners then we delete all edges (u, b)
from H where u is a neighbor of b in H that is ranked worse than b’s worst partner in
the current matching — so no such resident u can propose to b later on in the algorithm
(lines 16-17). Once Q becomes empty, the algorithm terminates.
LetM be the matching returned by this algorithm and letM0 be the matching in G that

is obtained by projecting M to the edge set of G, i.e., (a, b) ∈M0 if and only if (ai, b) ∈M
for some i ∈ {0, 1}. We will prove that M0 is a max-size popular matching in Section 3.

8

Algorithm 1 Input: H = (A′′ ∪B,E′′); Output: A matching M in H
1. Initialize Q = {a0 : a ∈ A} and M = ∅. Set residual(a) = cap(a) for all a ∈ A.
2. while Q 6= ∅ do
3. delete the first vertex from Q: call this vertex ai.
4. while ai has one or more neighbors in H to propose to and residual(a) > 0

do
5. – let b be the most preferred neighbor of ai inH that ai has not yet proposed

to.
{So every neighbor of ai in the current graph H that is ranked better than
b is already matched to ai in M .}

6. – add the edge (ai, b) to M .
7. if i = 1 and b is already matched to a0 then
8. – delete the edge (a0, b) fromM . {So (a0, b) inM gets replaced by (a1, b).}
9. else
10. – set residual(a) = residual(a)− 1. {since |M(a)| has increased by 1}
11. if b is matched to more than cap(b) partners in M then
12. – let vj be b’s worst partner in M . Delete the edge (vj , b) from M .

{Note that “worst” is as per preferences in H.}
13. – set residual(v) = residual(v) + 1 and if vj /∈ Q then add vj to Q.
14. end if
15. end if
16. if b is matched to cap(b) many partners in M then
17. – delete all edges (u, b) from H where u is a neighbor of b in H that is

ranked worse than b’s worst partner inM . {“Worse” is as per preferences
in H.}

18. end if
19. end while
20. if residual(a) > 0 and i = 0 then
21. – add a1 to Q. {Though residual(a) > 0, the condition in the above while-

loop does not hold, i.e., a0 has no neighbors in H to propose to; hence a1

gets activated.}
22. end if
23. end while
24. Return the matching M .

9

3 The correctness of our algorithm

In this section we show a sufficient condition for a matching N in G to be popular. This
is shown via a graph called G′N : this is a bipartite graph constructed using N such that N
gets mapped to a simple matching N ′ in G′N , i.e., |N ′(v)| ≤ 1 for all vertices v in G′N .
The vertex set of G′N includes A′ ∪ B′ where A′ = {ai : a ∈ A and 1 ≤ i ≤ cap(a)} and

B′ = {bj : b ∈ B and 1 ≤ j ≤ cap(b)}. That is, for each vertex u ∈ A∪B, there are cap(u)
many copies of u in G′N . For each edge (a, b) in G such that (a, b) ∈ N , we will arbitrarily
choose a distinct i ∈ {1, . . . , cap(a)} and a distinct j ∈ {1, . . . , cap(b)} and include (ai, bj)
in N ′. If u ∈ A∪B was not fully matched in N , i.e., it has less than cap(u) many partners
in N , then some uk’s will be left unmatched in N ′.

1. For each edge (a, b) in G such that (a, b) /∈ N , we will have edges (ai, bj) in G′N , for
all 1 ≤ i ≤ cap(a) and 1 ≤ j ≤ cap(b).

2. For each edge (a, b) ∈ N , we will have the edge (ai, bj) in G′N where (ai, bj) ∈ N ′.

Thus for any edge e = (a, b) /∈ N , there are cap(a) · cap(b) many copies of e in G′: these
are (ai, bj) for all (i, j) ∈ {1, . . . , cap(a)}×{1, . . . , cap(b)}. However for any edge (a, b) ∈ N ,
there is only one edge (ai, bj) in G′N where (ai, bj) ∈ N ′, in other words, the student ai
is not adjacent in G′N to course bj′ for j′ 6= j and similarly, the course bj is not adjacent
in G′N to student ai′ for i′ 6= i. The Appendix has an example of G′N corresponding to a
matching N in a many-to-one instance G (see Fig. 2).
There are also some new vertices called “last resort neighbors” inG′N : for any uk ∈ A′∪B′,

we introduce a new vertex `(uk); the vertex uk ranks `(uk) at the bottom of its preference
list.

3. The edge set of G′N also contains the edges (uk, `(uk)) for each uk ∈ A′ ∪B′.

The purpose of the vertex `(uk) is to capture the state of uk ∈ A′ ∪ B′ being left
unmatched in any matching so that every matching in G gets mapped to an (A′ ∪ B′)-
complete matching in G′N , i.e., one that matches all vertices in A′ ∪ B′. We will use these
last resort neighbors to obtain an (A′ ∪B′)-complete matching N∗ from N ′.

N∗ = N ′ ∪ {(uk, `(uk)) : uk ∈ A′ ∪B′ and uk is unmatched in N ′}.

Thus if a vertex u ∈ A∪B was not fully matched in N , then some ui’s will be matched to
their last resort neighbors in N∗. We now define edge weights in G′N .

• For any edge e = (ai, bj) ∈ A′×B′: the weight of edge e is wtN (e) = votea(b,N
∗(ai))+

voteb(a,N
∗(bj)), where N∗(uk) is uk’s partner in the (A′ ∪ B′)-complete matching

N∗. Thus wtN (ai, bj) is the sum of votes of a and b for each other versus N∗(ai)
and N∗(bj), respectively. We have wtN (e) ∈ {±2, 0} and wtN (e) = 2 if and only if e
blocks N .

10

• For any edge e = (uk, `(uk)) where uk ∈ A′ ∪ B′: the weight of edge e is wtN (e) =
voteu(`(uk), N

∗(uk)). Thus wtN (uk, `(uk)) = −1 if the vertex uk was matched in N ′

and wtN (uk, `(uk)) = 0 otherwise (in which case N∗(uk) = `(uk)).

Observe that every edge e ∈ N∗ satisfies wtN (e) = 0. Thus the weight of the matching
N∗ in G′N is 0. Theorem 1 below states that if every (A′ ∪ B′)-complete matching in the
graph G′N has weight at most 0, then N is a popular matching in G.
The proof of Theorem 1 (given in the full version of the paper) shows that for any

matching T in G, we can construct a realization T ∗ of T in G′N such that T ∗ is an (A′∪B′)-
complete matching and wtN (T ∗) = −∆(N,T). Thus if every (A′ ∪B′)-complete matching
in G′N has weight at most 0, then wtN (T ∗) ≤ 0, in other words, ∆(N,T) ≥ 0. Since
∆(N,T) ≥ 0 for all matchings T in G, the matching N is popular.

Theorem 1. Let N be a matching in G such that every (A′ ∪ B′)-complete matching in
G′N has weight at most 0. Then N is popular.

Corollary 1. Every pairwise-stable matching in G is popular.

Proof. Let S be any pairwise-stable matching in G. Consider the graph G′S : since S has
no blocking edge in G, every edge e in G′S satisfies wtS(e) ≤ 0. Thus every matching in
G′S has weight at most 0 and so by Theorem 1, we can conclude that S is popular.

3.1 The popularity of M0

We will now use Theorem 1 to prove the popularity of the matching M0 computed in
Section 2. We will construct the matchings M ′0,M

∗
0 and the graph G′M0

corresponding to
the matchingM0 as described at the beginning of Section 3. Our goal is to show that every
(A′ ∪ B′)-complete matching in G′M0

has weight at most 0. Note that the matching M∗0
has weight 0 in G′M0

.
We partition the set A′ into A′0 ∪ A′1 and the set B′ into B′0 ∪ B′1 as follows. Initialize

A′0 = A′1 = B′0 = B′1 = ∅. For each edge (ai, bj) ∈M ′0 do:

• if (a0, b) ∈M then add ai to A′0 and bj to B′0;

• else (i.e., (a1, b) ∈M) add ai to A′1 and bj to B′1.

Recall that M ⊆ A′′×B is the matching in the graph H obtained at the end of the 2-level
Gale-Shapley algorithm (see Algorithm 1) and the projection of M on to A×B is M0.
The definition of the sets A′0, A

′
1, B

′
0, B

′
1 implies that M ′0 ⊆ (A′0 ×B′0)∪ (A′1 ×B′1). Also

add students unmatched in M ′0 to A′1 and courses unmatched in M ′0 to B′0. Thus we have
A′ = A′0 ∪A′1 and B′ = B′0 ∪B′1 (see Fig. 1).
Theorem 2 will show that the matching M0 satisfies the condition of Theorem 1, this

will prove that M0 is a popular matching in G. This proof is inspired by the proof by
Kavitha (2016) that shows the membership of certain half-integral matchings in the popular
fractional matching polytope of a stable marriage instance.

11

A′1

A′0

B′1

B′0

Figure 1: A′ = A′0 ∪ A′1 and B′ = B′0 ∪ B′1: all courses bj left unmatched in M ′0 are
in B′0 and all students ai left unmatched in M ′0 are in A′1. Note that M ′0 ⊆
(A′0 ×B′0) ∪ (A′1 ×B′1).

In order to show that every (A′ ∪ B′)-complete matching in G′M0
has weight at most 0,

we consider the max-weight (A′ ∪ B′)-complete matching problem in G′M0
as our primal

LP. We show a dual feasible solution ~α that makes the dual objective function 0. This
means the primal optimal value is at most 0 and this is what we set out to prove.

Theorem 2. Every (A′ ∪B′)-complete matching in G′M0
has weight at most 0.

Proof. Let our primal LP be the max-weight (A′∪B′)-complete matching problem in G′M0
.

We want to show that the primal optimal value is at most 0. The primal LP is the following:

max
∑

e∈G′M0

wtM0(e) · xe

subject to
∑

e∈E′(uk)

xe = 1 for all uk ∈ A′ ∪B′,

xe ≥ 0 for all edges e ∈ G′M0
,

where E′(uk) is the set of edges incident on uk in G′M0
.

The dual LP is the following: we associate a variable αuk to each vertex uk ∈ A′ ∪B′.

min
∑

uk∈A′∪B′
αuk

subject to αai + αbj ≥ wtM0(ai, bj) for all edges (ai, bj) ∈ G′M0
, (4)

αuk ≥ wtM0(uk, `(uk)) for all uk ∈ A′ ∪B′. (5)

Consider the following assignment of α-values for all uk ∈ A′ ∪B′: set αuk = 0 for all uk
unmatched in M ′0 (each such vertex is in A′1 ∪B′0) and for the matched vertices uk in M ′0,
we set α-values as follows: αuk = 1 if uk ∈ A′0 ∪B′1 and αuk = −1 if uk ∈ A′1 ∪B′0.
Observe that Inequality (5) holds for all vertices uk ∈ A′ ∪ B′. This is because αuk =

0 = wtM0(uk, `(uk)) for all uk unmatched in M ′0; similarly, for all uk matched in M ′0 we
have αuk ≥ −1 = wtM0(uk, `(uk)). In order to show Inequality (4), we will use Claim 1
stated below — its proof follows from our algorithm and is included in the full version.

12

Claim 1. Let e = (ai, bj) be any edge in G′M0
.

(i) If e ∈ A′1 ×B′0, then wtM0(e) = −2.

(ii) If e ∈ (A′0 ×B′0) ∪ (A′1 ×B′1), then wtM0(e) ≤ 0.

• Claim 1 (i) says that for every edge (ai, bj) ∈ A′1×B′0 in G′M0
, we have wtM0(ai, bj) =

−2. Since αuk ≥ −1 for all uk ∈ A′1 ∪B′0, Inequality (4) holds for all edges of G′M0
in

A′1 ×B′0.

• Claim 1 (ii) says that for every edge (ai, bj) in (A′0 × B′0) ∪ (A′1 × B′1), we have
wtM0(ai, bj) ≤ 0. Since αai + αbj ≥ 0 for all (ai, bj) ∈ A′t × B′t (for t = 0, 1),
Inequality (4) holds for all edges of G′M0

in (A′0 ×B′0) ∪ (A′1 ×B′1).

Since wtM0(e) ≤ 2 for all edges e in G′M0
and we set αuk = 1 for all vertices uk ∈ A′0∪B′1,

Inequality (4) is satisfied for all edges of G′M0
in A′0×B′1. Thus Inequality (4) holds for all

edges (ai, bj) in G′M0
and so these α-values are dual feasible.

For every edge (ai, bj) ∈M ′0, we have αai+αbj = 0 and αuk = 0 for vertices uk unmatched
in M ′0. Hence it follows that

∑
uk∈A′∪B′ αuk = 0. So by weak duality, the optimal value

of the primal LP is at most 0. In other words, every matching in G′M0
that matches all

vertices in A′ ∪B′ has weight at most 0.

3.2 Maximality of the popular matching M0

We need to show that M0 is a max-size popular matching in G and we now show that this
follows quite easily from the proof of Theorem 2. Let T be any matching in G. We can
obtain a realization T ∗ of the matching T in G′M0

that is absolutely analogous to how it
was done to prove Theorem 1. Thus T ∗ is an (A′ ∪ B′)-complete matching in G′M0

and
wtM0(T ∗) = −∆(M0, T).
We know from Theorem 2 that wtM0(T ∗) ≤ 0. Suppose T is a popular matching in G.

Then wtM0(T ∗) has to be 0, otherwise the popularity of T is contradicted since wtM0(T ∗) <
0 implies that ∆(M0, T) > 0 (because wtM0(T ∗) = −∆(M0, T)).
So if T is a popular matching in G, then T ∗ is an optimal solution to the maximum

weight (A′ ∪B′)-complete matching problem in G′M0
. Recall that this is the primal LP in

the proof of Theorem 2. We will use the dual feasible solution ~α that we constructed in the
proof of Theorem 2 and apply complementary slackness to show that if (uk, `(uk)) ∈ M∗0 ,
i.e., if uk is left unmatched in M ′0, then T

∗ also has to contain the edge (uk, `(uk)). This
will imply that |T | ≤ |M0|, i.e., every popular matching in G has size at most |M0|.

Lemma 1. Let T be a popular matching in G and let T ∗ be the realization of T in G′M0
.

Then for any vertex uk ∈ A′ ∪B′ we have: (uk, `(uk)) ∈M∗0 implies (uk, `(uk)) ∈ T ∗.

Proof. Consider the α-values assigned to vertices in A′ ∪ B′ in the proof of Theorem 2.
This is an optimal dual solution since its value is 0 which is the value of the optimal

13

primal solution. Thus complementary slackness conditions have to hold for each edge in
the optimal solution (T ∗e)e∈G′M0

to the primal LP. That is, for each edge (uk, vt) ∈ G′M0
,

we have:
either αuk + αvt = wtM0(uk, vt) or T ∗(uk,vt) = 0. (6)

Let uk ∈ A′ ∪ B′ be a vertex such that (uk, `(uk)) ∈ M∗0 , so αuk = 0. If u ∈ A, then
uk ∈ A′1. Observe that all of uk’s neighbors in G′M0

are in B′1 — this is because for any
neighbor vt 6= `(uk) of uk, we have voteu(v, `(uk)) = 1 and so wtM0(uk, vt) ≥ 0. Claim 1 (i)
says that wtM0(uk, vt) = −2 for all edges (uk, vt) ∈ A′1 × B′0. Thus uk has no neighbor in
B′0. Similarly, if u ∈ B, then uk ∈ B′0 and all its neighbors in G′M0

are in A′0; otherwise uk
has a neighbor vt in A′1 and Claim 1 (i) would get contradicted since wtM0(uk, vt) ≥ 0.
In both cases, every edge (uk, vt) ∈ A′ × B′ that is incident on uk in G′M0

is slack
because (uk, vt) ∈ (A′0 × B′0) ∪ (A′1 × B′1): thus αuk = 0 and αvt = 1 while wtM0(uk, vt) =
voteu(v, `(uk)) + votev(u,M

′
0(vt)) = 1 − 1 = 0. Thus it follows from Equation (6) that

T ∗(uk,vt) = 0 for vt 6= `(uk). Since T ∗ is (A′ ∪B′)-complete, we have (uk, `(uk)) ∈ T ∗.

Now it immediately follows that M0 is a max-size popular matching in G. Let T be any
popular matching in G. Consider the matching T ′ = T ∗ \ {(uk, `(uk)) : uk ∈ A′ ∪ B′}.
Lemma 1 implies that |T ′| ≤ |M ′0| because every vertex uk left unmatched in M ′0 has to be
left unmatched in T ′ also. Since |T | = |T ′| and |M ′0| = |M0|, we have |T | ≤ |M0|. As this
holds for any popular matching T in G, we can conclude that M0 is a max-size popular
matching in G.
Our algorithm can be easily implemented to run in linear time (the full version has these

details). Hence we can conclude the following theorem.

Theorem 3. A max-size popular matching in a many-to-many instance G = (A ∪ B,E)
can be computed in linear time.

Lemma 2 (proved in the full version of the paper) states that no matching larger than
M0 can be weakly popular (see Definition 3) as ∆(M0, T) > 0 for any such matching T .
This implies that M0 is also a max-size weakly popular matching in G.

Lemma 2. Let T be a matching such that |T | > |M0|. Then ∆(M0, T) > 0, i.e., M0 is
more popular than T .

Interestingly, Lemma 2 implies that for any definition of popularity that is “in between”
popularity and weak popularity, the size of a max-size popular matching is the same. To
formalize the meaning of “in between”, consider the two relations on matchings %p and
%wp , where M0 %p M1 if ∆(M0,M1) ≥ 0 and M0 %wp M1 if ∆(M1,M0) ≤ 0, induced
by popularity and weak popularity, respectively. Clearly, %p ⊆ %wp . Note that popular
matchings and weakly popular matchings correspond to maximal elements of %p and %wp ,
respectively.1 We showed that M0, which is a max-size maximal element of %p , is also

1M0 is a maximal element of a relation % if for all elements M1 we have: M1 % M0 implies M0 ∼ M1.

14

a max-size maximal element of %wp . This implies that if % is a relation on matchings
(induced by an alternative notion of popularity) such that %p ⊆ % ⊆ %wp , then M0 is also
a max-size maximal element of %. This allows us to conclude the following proposition
which even allows for different vertices to compare sets of neighbors in different ways.

Proposition 1. The size of a max-size popular matching in G = (A∪B,E) is invariant to
the way vertices compare sets of neighbors as long as it is in between the most adversarial
and the most favorable comparison.

We now briefly discuss some other results that we show here. The rural hospitals theorem
for stable matchings (Roth, 1986) does not necessarily hold for max-size popular matchings.
That is, a hospital that is not matched up to capacity in some max-size popular matching
is not necessarily matched to the same set of residents in every max-size popular matching.
Consider the instance G = (R ∪H,E) with R = {r, r′} and H = {h, h′} and cap(h) = 1

and cap(h′) = 2. The edge set is R×H. The preferences are shown in the table below. The
(max-size) popular matchings areM = {(r, h), (r′, h′)} (in black) andM ′ = {(r, h′), (r′, h)}
(in red). So h′ is matched to a different resident in the two max-size popular matchings M
and M ′. Note that M ′ is not stable, as (r, h) is a blocking pair.

r : h, h′ h : r, r′

r′ : h, h′ h′ : r, r′

r

r′

h

h′

However Lemma 3 (proved in the full version) holds here. Such a result for max-size
popular matchings in the one-to-one setting (that every max-size popular matching has to
match the same set of vertices) was shown by Hirakawa et al. (2015). Our proof is based
on linear programming and is different from the combinatorial proof by Hirakawa et al.
(2015).

Lemma 3. Let T be a max-size popular matching in G. Then T matches the same vertices
as M0 (the matching computed in Section 2) and moreover, every vertex u is matched in
T to the same capacity as it gets matched to in M0.

The following results are also included in the full version. These proofs are inspired by
analogous proofs in the one-to-one setting shown by Kavitha (2014) and by Huang and
Kavitha (2013), respectively.

Lemma 4. We have |M0| ≥ 2
3 |Mmax|, where M0 is a max-size popular matching in G and

Mmax is a max-size matching in G.

Lemma 5. A pairwise-stable matching S is a min-size weakly popular matching in G.

Acknowledgments. The first author wishes to thank Larry Samuelson for comments on
the motivation for popular matchings. The second author wishes to thank David Manlove
and Bruno Escoffier for asking her about popular matchings in the hospitals/residents
setting.

15

References

D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM
Journal on Computing, 37(4):1030–1045, 2007.

G. Askalidis, N. Immorlica, A. Kwanashie, D. Manlove, and E. Pountourakis. Socially
stable matchings in the hospitals/residents problem. In the 13th International Symposium
on Algorithms and Data Structures (WADS), pages 85–96, 2013.

P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and room-
mates problems. In the 7th International Conference on Algorithms and Complexity
(CIAC), pages 97–108, 2010.

C. Blair. The lattice structure of the set of stable matchings with multiple partners.
Mathematics of Operations Research, 13:619–628, 1988.

M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à
la pluralité des voix. Imprimerie Royale, 1785. Facsimile published in 1972 by Chelsea
Publishing Company, New York.

A. Cseh and T. Kavitha. Popular edges and dominant matchings. In the 18th Conference
on Integer Programming and Combinatorial Optimization (IPCO), pages 138–151, 2016.

A. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences
and one-sided ties. In the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP), pages 367–379, 2015.

D. Gale and L. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9–15, 1962.

D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11(3):223–232, 1985.

P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural
Sciences, 20(3):166–173, 1975.

D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Boston, MA, 1989.

K. Hamada, K. Iwama, and S. Miyazaki. The hospitals/residents problem with lower
quotas. Algorithmica, 74(1):440–465, 2016.

M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita. On the structure of popular
matchings in the stable marriage problem - who can join a popular matching? In the
3rd International Workshop on Matching Under Preferences (MATCH-UP), 2015.

16

C.-C. Huang. Classified stable matching. In the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1235–1253, 2010.

C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Infor-
mation and Computation, 222:180–194, 2013.

C.-C. Huang and T. Kavitha. Popularity, self-duality, and mixed matchings. In the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2294–2310, 2017.

R. W. Irving, D. F. Manlove, and S. Scott. The hospitals/residents problem with ties. In
the 7th Scandinavian Workshop on Algorithm Theory (SWAT), pages 259–271, 2000.

R. W. Irving, D. F. Manlove, and S. Scott. Strong stability in the hospitals/residents
problem. In the 20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 439–450, 2003.

T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

T. Kavitha. Popular half-integral matchings. In the 43rd International Colloquium on
Automata, Languages, and Programming (ICALP), pages 22.1–22.13, 2016.

T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer
Science, 412(24):2679–2690, 2011.

D. F. Manlove. Algorithmics of Matching Under Preferences. World Scientific Publishing
Company, 2013.

M. Nasre and A. Rawat. Popularity in the generalized hospital residents setting. In the
12th International Computer Science Symposium in Russia (CSR), pages 245–259, 2017.

N. R. M. Program. Why the match? Web document available at http://www.nrmp.org/
whythematch.pdf.

A. E. Roth. The evolution of the labor market for medical interns and resident: a case
study in game theory. The Journal of Political Economy, 92(6):991–1016, 1984a.

A. E. Roth. Stability and polarization of interests in job matching. Econometrica, 52:
47–57, 1984b.

A. E. Roth. On the allocation of residents to rural hospitals: A general property of two-
sided matching markets. Econometrica, 54(2):425–427, 1986.

C. R. M. Service. How the matching algorithm works. Web document available at http:
//carms.ca/algorithm.htm.

M. Sotomayor. Three remarks on the many-to-many stable matching problem. Mathemat-
ical Social Sciences, 38:55–70, 1999.

17

http://www.nrmp.org/whythematch.pdf
http://www.nrmp.org/whythematch.pdf
http://carms.ca/algorithm.htm
http://carms.ca/algorithm.htm

Appendix: A naive approach for finding max-size popular
matchings

Given a many-to-many matching instance G = (A∪B,E), we investigate the possibility of
constructing a corresponding one-to-one matching instance G′ = (A′ ∪B′, E′) (with strict
preference lists) in order to show a reduction from the max-size popular matching problem
in G to one in G′. The vertex set A′ will have cap(a) many copies a1, a2, . . . of every
a ∈ A and B′ will have cap(b) many copies b1, b2, . . . of every b ∈ B; the edge set E′ has
cap(a) · cap(b) many copies of edge (a, b) in E. If v �u v′ in G then we have vi �uk v′j for
each i ∈ {1, . . . , cap(v)}, j ∈ {1, . . . , cap(v′)}, and k ∈ {1, . . . , cap(u)}. Among the copies
v1, . . . , vcap(v) of the same vertex v, we will set v1 �uk · · · �uk vcap(v).
Given any matching M̃ in G′, we define proj(M̃) as the projection of M̃ , which is obtained

by dropping the subscripts of all vertices. We will now consider the many-to-one or the
hospitals/ residents setting: so there are no multi-edges in proj(M̃). As proj(M̃) obeys all
capacity bounds, it is a valid matching in G. It would be interesting to be able to show
that every popular matching M in G has a realization M̃ in G′ (i.e., proj(M̃) = M) such
that M̃ is a popular matching in G′.
However the above statement is not true as shown by the following example. Let G =

(R ∪H,E) where R = {p, q, r, s} and H = {h, h′, h′′} where cap(h) = 2 and cap(u) = 1 for
all other vertices u. The preference lists are as follows:

p : h, h′′ h : p, q, r, s

q : h, h′ h′ : q

r : h h′′ : p

s : h

Consider the matching N = {(p, h), (q, h′), (r, h)}. We show below that N satisfies the
sufficient condition for popularity as given in Theorem 1. The proof of Claim 2 follows the
same approach as used in the proof of Theorem 2.

Claim 2. N is popular in G.

Proof. We have R′ = {p1, q1, r1, s1} and H ′ = {h1, h2, h
′
1, h
′′
1}. Here we use the notation

introduced at the beginning of Section 3: let N ′ = {(p1, h1), (q1, h
′
1), (r1, h2)} (see Fig. 2).

We need to show that every (R′ ∪ H ′)-complete matching in the weighted graph G′N
has weight at most 0. We will show this by constructing a witness or a solution to the
dual LP corresponding to the primal LP which is the (R′ ∪ H ′)-complete max-weight
matching problem in G′N . This solution is the following: αp1 = αh1 = αs1 = αh′′1 = 0
while αq1 = αh2 = 1 and αr1 = αh′1 = −1. The above solution is dual-feasible since every
edge in G′N is covered by the sum of α-values of its endpoints — in particular, note that
αq1 + αh2 = 2 = wtN (q1, h2). The dual optimal solution is at most

∑
u∈R′∪H′ αu = 0. So

18

r1

q1

h2

h′1

s1

p1 h1

h′′1

Figure 2: The edges of the matching N ′ are in red and the non-matching edges in G′N are
dashed. For simplicity, we have not included last resort neighbors here. Note
that the edge (q1, h2) is a blocking edge to N ′ as both q1 and h2 prefer each other
to their respective partners in N ′, i.e., wtN (q1, h2) = 2 and wtN (e) = 0 for all
other edges e in G′N .

the primal optimal solution is also at most 0, in other words, N is a popular matching in
G.

Note that the graph G′ has two extra edges relative to G′N : these are (p1, h2) and
(r1, h1). With respect to realizations of N in G′, there are 2 candidates: these are N1 =
{(p1, h1), (q1, h

′
1), (r1, h2)} and N2 = {(p1, h2), (q1, h

′
1), (r1, h1)}.

Claim 3. Neither N1 nor N2 is popular in G′.

Proof. Consider the matching M1 = {(p1, h
′′
1), (q1, h2), (r1, h1)}. The vertices p1, h1, and

h′1 prefer N1 toM1 while the vertices q1, h2, r1, and h′′1 preferM1 to N1 and s1 is indifferent.
Thus M1 is more popular than N1, i.e., N1 is not a popular matching in G′.
Consider the matching M2 = {(p1, h1), (q1, h

′
1), (s1, h2)}. The vertices r1 and h2 prefer

N2 toM2 while the vertices p1, h1, and s1 preferM2 to N2 and q1, h′1, and h
′′
1 are indifferent.

Thus M2 is more popular than N2, i.e., N2 is not a popular matching in G′.

Summarizing, there may exist popular matchings in G that cannot be realized as popular
matchings in G′. Thus in order to claim that that proj(M̃) is a max-size popular matching
in G when M̃ is a max-size popular matching in G′, it needs to be shown that there is at
least one max-size popular matching in G that can be realized as a popular matching in
G′.

19

	Introduction
	Our algorithm
	The correctness of our algorithm
	The popularity of M0
	Maximality of the popular matching M0

