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Abstract. Fictitious play is a simple learning algorithm for strategic
games that proceeds in rounds. In each round, the players play a best
response to a mixed strategy that is given by the empirical frequencies of
actions played in previous rounds. There is a close relationship between
fictitious play and the Nash equilibria of a game: if the empirical frequen-
cies of fictitious play converge to a strategy profile, this strategy profile is
a Nash equilibrium. While fictitious play does not converge in general, it
is known to do so for certain restricted classes of games, such as constant-
sum games, non-degenerate 2×n games, and potential games. We study
the rate of convergence of fictitious play and show that, in all the classes
of games mentioned above, fictitious play may require an exponential
number of rounds (in the size of the representation of the game) before
some equilibrium action is eventually played. In particular, we show the
above statement for symmetric constant-sum win-lose-tie games.

1 Introduction

A common criticism of Nash equilibrium, the most prominent solution concept of
the theory of strategic games, is that it fails to capture how players’ deliberation
processes actually reach a steady state. When considering a set of agents, human
or artificial, engaged in a parlor game or a more austere decision-making situ-
ation, it is somewhat hard to imagine that they would after some deliberation
arrive at a Nash equilibrium, a carefully chosen probability distribution over all
possible courses of action. One reason why this behavior is so hard to imagine is
that Nash equilibrium rests on rather strong assumptions concerning the ratio-
nality of players and the ability to reliably carry out randomizations. Another
concern is that in many settings finding a Nash equilibrium is computationally
intractable.

A more reasonable scenario would be that agents face a strategic situation by
playing the game in their heads, going through several rounds of speculation and
counterspeculation as to how their opponents might react and how they would
react in turn. This is the idea underlying fictitious play (FP). FP proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions. In
subsequent rounds, each player looks at the empirical frequency of play of their
respective opponents in previous rounds, interprets it as a probability distribu-
tion, and myopically plays a pure best response against this distribution. FP



can also be seen as a learning algorithm for games that are played repeatedly,
such that the intermediate best responses are actually played. This interpreta-
tion rests on the simplifying assumption that the other players follow a fixed
strategy.

FP was originally introduced by Brown [7] as an algorithm to approximate the
value of constant-sum games, or equivalently compute approximate solutions to
linear programs [10]. Shortly after, it was shown that FP does indeed converge to
the desired solution [24]. While convergence does not extend to arbitrary games,
as illustrated by Shapley [25], it does so for quite a few interesting classes of
games, and much research has focussed—and still focusses—on identifying such
classes ([3], and the references therein). Both as a linear program solver and as a
learning algorithm, FP is easily outperformed by more sophisticated algorithms.
However, FP is of captivating simplicity and therefore is considered as one of
the most convincing explanations of Nash equilibrium play. As Luce and Raiffa
put it: “Brown’s results are not only computationally valuable but also quite
illuminating from a substantive point of view. Imagine a pair of players repeating
a game over and over again. It is plausible that at every stage a player attempts
to exploit his knowledge of his opponent’s past moves. Even though the game
may be too complicated or too nebulous to be subjected to an adequate analysis,
experience in repeated plays may tend to a statistical equilibrium whose (time)
average return is approximately equal to the value of the game” [16, p. 443].

In this paper, we show that in virtually all classes of games where FP is
known to converge to a Nash equilibrium, it may take an exponential number
of rounds (in the representation of the game) before any equilibrium action is
played at all. While it was widely known that FP does not converge rapidly, the
strength of our results is still somewhat surprising. They do not depend on the
choice of a metric for comparing probability distributions. Rather, we show that
the empirical frequency of FP after an exponential number of rounds can be
arbitrarily far from any Nash equilibrium for any reasonable metric. This casts
doubt on the plausibility of FP as an explanation of Nash equilibrium play.

2 Related Work

As mentioned above, FP does not converge in general. Shapley [25, p. 24] showed
this using a variant of Rock-Paper-Scissors and argued further that “if fictitious
play is to fail, the game must contain elements of both coordination and competi-
tion.” This statement is perfectly consistent with the fact that FP is guaranteed
to converge for both constant sum games [24] and identical interest games, i.e.,
games that are best-response equivalent (in mixed strategies) to a common pay-
off game [20]. Other classes of games where FP is known to converge include
two-player games solvable by iterated elimination of strictly dominated strate-
gies [21] and non-degenerate 2× 2 games [17]. While the proof of Miyasawa was
initially thought to apply to the class of all 2× 2 games, this was later shown to
be false [18]. The result was recently extended to non-degenerate 2×n games [2].
Since every non-degenerate 2 × 2 game is best-response equivalent to either a



constant-sum game or a common payoff game [20], the result of Miyasawa follows
more easily by combining those of Robinson [24] and Monderer and Shapley [20].

To our knowledge, the rate of convergence of FP has so far only been studied
in 2×2 games. For this class of games, FP converges at a rate of O(T−1), where T
is the number of rounds, as soon as both players have played an equilibrium
action at least once [13]. We will see, however, that even in 2 × 2 games the
latter may only happen after an exponential number of rounds.

Von Neumann [27] proposed a variant of FP and compared it to Dantzig’s
Simplex method. Indeed, there are some interesting similarities between the two.
Conitzer [8] recently studied the ability of FP to find approximate Nash equi-
libria. In addition to worst-case guarantees on the approximation ratio—which
are rather weak—Conitzer showed that in random games a good approximation
is typically achieved after a relatively small number of rounds. Similarly, the
Simplex method is known to work very well in practice. As we show in this pa-
per, FP also shares one of the major shortcomings of the Simplex method—its
exponential worst-case running time.

Since FP is one of the earliest and simplest algorithms for learning in games, it
inspired many of the algorithms that followed: the variant due to von Neumann,
a similar procedure suggested by Bellman [1], improvements like smooth FP [11],
the regret minimization paradigm [15], and a large number of specialized algo-
rithms put forward by the artificial intelligence community (e.g., [22, 9]).

Despite its conceptual simplicity and the existence of much more sophis-
ticated learning algorithms, FP continues to be employed successfully in the
area of artificial intelligence. Recent examples include equilibrium computation
in Poker [12] and in anonymous games with continuous player types [23], and
learning in sequential auctions [28].

3 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game (see, e.g., [16]). We will focus on games with two players.

A two-player game Γ = (P,Q) is given by two matrices P,Q ∈ Rm×n for pos-
itive integers m and n. Player 1, or the row player, has a set A = {1, . . . ,m} of
actions corresponding to the rows of these matrices, player 2, the column player,
a set B = {1, . . . , n} of actions corresponding to the columns. To distinguish
between them, we usually denote actions of the row player by a1, . . . , am and
actions of the column player by b1, . . . , bn. Both players are assumed to simulta-
neously choose one of their actions. For the resulting action profile (i, j) ∈ A×B,
they respectively obtain payoffs pij and qij .

A strategy of a player is a probability distribution s ∈ ∆(A) or t ∈ ∆(B) over
his actions, i.e., a nonnegative vector s ∈ Rm or t ∈ Rn such that

∑
i si = 1 or∑

j tj = 1, respectively. In a slight abuse of notation, we write pst and qst for the
expected payoff of players 1 and 2 given a strategy profile (s, t) ∈ ∆(A)×∆(B).
A strategy is called pure if it chooses some action with probability one, and the
set of pure strategies can be identified in a natural way with the set of actions.



A two-player game is called a constant-sum game if pij + qij = pi′j′ + qi′j′

for all i, i′ ∈ A and j, j′ ∈ B. Since all results in this paper hold invariably under
positive affine transformations of the payoffs, such games can conveniently be
represented by a single matrix P containing the payoffs of player 1; player 2
is then assumed to minimize the values in P . A constant-sum game is further
called symmetric if P is a skew-symmetric matrix. In symmetric games, both
players have the same set of actions, and we usually denote these actions by
a1, a2, . . . , am. A game is a common payoff game if pij = qij for all i ∈ A and
j ∈ B. Finally, a game is non-degenerate if for each strategy, the number of best
responses of the other player is at most the support size of that strategy, i.e.,
the number of actions played with positive probability.

An action i ∈ A of player 1 is said to strictly dominate another action i′ ∈ A
if it provides a higher payoff for every action of player 2, i.e., if for all j ∈ B,
pij > pi′j . Dominance among actions of player 2 is defined analogously. A game
is then called solvable via iterated strict dominance if strictly dominated actions
can be removed iteratively such that exactly one action remains for each player.

A pair (s, t) of strategies is called a Nash equilibrium if the two strategies are
best responses to each other, i.e., if pst ≥ pit for every i ∈ A and qst ≥ qsj for
every j ∈ B. A Nash equilibrium is quasi-strict if actions played with positive
probability yield strictly more payoff than actions played with probability zero.
By the minimax theorem [26], every Nash equilibrium (s, t) of a constant-sum
game satisfies minj

∑
i pijsi = maxi

∑
j pijtj = ω for some ω ∈ R, also called

the value of the game.
Fictitious play (FP) was originally introduced to approximate the value of

constant-sum games, and has subsequently been studied in terms of its con-
vergence to Nash equilibrium in more general classes of games. It proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions.
In subsequent rounds, each player looks at the empirical frequency of play of
his respective opponents in previous rounds, interprets it as a probability dis-
tribution, and myopically plays a pure best response against this distribution.
Fix a game Γ = (P,Q) with P,Q ∈ Rm×n. Denote by ui and vi the ith unit
vector in Rm and Rn, respectively. Then, a learning sequence of Γ is a sequence
(x0, y0), (x1, y1), (x2, y2), . . . of pairs of non-negative vectors (xi, yi) ∈ Rm ×Rn

such that x0 = 0, y0 = 0, and for all k ≥ 0,

xk+1 = xk + ui where i is the index of a maximum component of Pyk and

yk+1 = yk + vj where j is the index of a maximum component of xkQ.

A learning sequence (x0, y0), (x1, y1), (x2, y2), . . . of a game Γ is said to con-
verge if for some Nash equilibrium s of Γ ,

lim
k→∞

(
xk

k
,
yk

k

)
= s,

where both division and limit are to be interpreted component-wise. We then
say that FP converges for Γ if every learning sequence of Γ converges to a Nash
equilibrium.



An alternative definition of a learning sequence, in which players update
their beliefs alternatingly instead of simultaneously, can be obtained by replacing
xkQ by xk+1Q in the last condition above. Berger [3] distinguishes between
simultaneous and alternating FP, and points out that Brown actually introduced
the latter variant, while almost all subsequent work routinely uses the former.
We henceforth concentrate on simultaneous FP, or simply FP, but note that
with some additional work all of our results can be shown to hold for alternating
FP as well.

4 Results

We now present several results concerning the convergence rate of FP. Taken
together, they cover virtually all classes of games for which FP is known to
converge.

4.1 Symmetric Constant-Sum Games and Games Solvable by
Iterated Strict Dominance

Let us first consider games with arbitrary payoffs. Our first result concerns two
large classes of games where FP is guaranteed to converge: constant-sum games
and games solvable by iterated strict dominance.

Theorem 1. In symmetric two-player constant-sum games, FP may require ex-
ponentially many rounds (in the size of the representation of the game) before
an equilibrium action is eventually played. This holds even for games solvable
via iterated strict dominance.

Proof. Consider the symmetric two-player constant-sum game Γ = (P,Q) with
payoff matrix P for player 1 as shown in Figure 1, where 0 < ε < 1. It is readily
appreciated that (a3, a3) is the only Nash equilibrium of this game, as it is the
only action profile that remains after iterated elimination of strictly dominated
actions. Consider an arbitrary integer k > 1. We show that for ε = 2−k, FP may
take 2k rounds before either player plays action a3. Since the game can clearly
be encoded using O(k) bits in this case, the theorem follows.

Let FP start with both players choosing action a1. Since the game is sym-
metric, we can assume the actions for each step of the learning sequence to be
identical for both players. After the first round Py1 = (0, 1, 2−k), and both play-
ers will play a2 in round 2. We claim that they will continue to do so at least
until round 2k. Too see this, observe that for all i with 1 ≤ i < 2k, we have
Pyi = (−i + 1, 1, 2−ki). As 2−ki < 1, both players will choose a2 round i + 1.
Table 1 summarizes this development. It follows that the action sequence

(a1, a1) (a2, a2), . . . , (a2, a2)︸ ︷︷ ︸
2k − 1 times

gives rise to a learning sequence that is exponentially long in k and in which no
equilibrium action is played. ut



a1 a2 a3

a1 0 −1 −ε

a2 1 0 −ε

a3 ε ε 0

Fig. 1. Symmetric constant-sum game used in the proof of Theorem 1. Player 1 chooses
rows, player 2 chooses columns. Outcomes are denoted by the payoff of player 1.

Round i (ai, ai) Pyi

0 − (0, 0, 0)

1 (a1, a1) (0, 1, 2−k)

2 (a2, a2) (−1, 1, 2−k2)

3 (a2, a2) (−2, 1, 2−k3)
...

...

2k (a2, a2) (−2k + 1, 1, 1)

Table 1. A learning sequence of the game depicted in Figure 1, where ε = 2−k

This result is tight in the sense that FP converges very quickly in symmetric
2× 2 games. Up to renaming of actions, every such game can be described by a
matrix a1 a2

a1 0 −α

a2 α 0

for some α ≥ 0. If α = 0, every strategy profile is a Nash equilibrium. Otherwise,
action a1 is strictly dominated for both players, and both players will play the
equilibrium action a2 from round 2 onwards.

4.2 Non-Degenerate 2 × n Games and Identical Interest Games

Another class of games where FP is guaranteed to converge are non-degenerate
2×n games. We again obtain a strong negative result concerning the convergence
rate of FP, which also applies to games with identical interests.

Theorem 2. In non-degenerate 2×3 games, FP may require exponentially many
rounds (in the size of the representation of the game) before an equilibrium action
is eventually played. This holds even for games with identical interests.

Proof. Consider the 2× 3 game Γ = (P,Q) shown in Figure 2, where 0 < ε < 1.
It is easily verified that Γ is non-degenerate and that the players have identi-
cal interests. The action profile (a2, b3) is the only action profile that remains
after iterated elimination of strictly dominated actions, and thus the only Nash
equilibrium of the game.



b1 b2 b3

a1 (1, 1) (2, 2) (0, 0)

a2 (0, 0) (2 + ε, 2 + ε) (3, 3)

Fig. 2. Non-degenerate two-player game with identical interests used in the proof of
Theorem 2. Outcomes are denoted by a pair of payoffs for the two players.

Round i (ai, bi) Pyi xiQ

0 − (0, 0) (0, 0, 0)
1 (a1, b1) (1, 0) (1, 2, 0)

2 (a1, b2) (3, 2 + 2−k) (2, 4, 0)

3 (a1, b2) (5, 4 + 2−k2) (3, 6, 0)
...

...
...

2k (a1, b2) (2k+1 − 1, 2k+1 − 1− 2−k) (2k, 2k+1, 0)

Table 2. A learning sequence of the game shown in Figure 2, where ε = 2−k

Now consider an integer k > 1. We show that for ε = 2−k, FP may take 2k

rounds before actions a2 or b3 are played. Since in this case the game can clearly
be encoded using O(k) bits, the theorem follows.

Let FP start with both players choosing action a1. Then, Py1 = (1, 0) and
x1Q = (1, 2, 0). Accordingly, in the second round, the row player will choose a1,
and the column player b2. Hence, Py2 = (3, 2 + 2−k) and x2Q = (2, 4, 0). Here-
after, for at least another 2k − 1 rounds, the players will choose the same
actions as in round 2, because for all i with 2 ≤ i ≤ 2k, xiQ = (i, 2i, 0),
Pyi = (2i− 1, 2i− 1 + 2−k(i− 1)), and 2i− 1 > 2i− 1 + 2−k(i− 1). Accordingly,
the sequence of pairs of actions

(a1, b1) (a1, b2), . . . , (a1, b2)︸ ︷︷ ︸
2k times

,

which contains no equilibrium actions, gives rise to a learning sequence that is
exponentially long in k. Figure 2 illustrates both sequences. ut

This result is again tight: in any 2× 2 game, one of the players must always
play an equilibrium action almost immediately. Indeed, given that the initial
action profile is not itself an equilibrium, one of the players plays his second
action in the following round. But what about the other player? By looking at
the subgame of the game in Figure 2 induced by actions {a1, a2} and {b1, b2},
and at the learning sequence used to obtain Theorem 2, we find that it might
still take exponentially many rounds for one of the two players until he plays an
equilibrium action for the first time.

Theorem 2 also applies to potential games [19], which form a superclass of
games with identical interests. For the given ordering of its actions, the game of



Figure 2 further has strategic complementarities and diminishing returns,3 which
implies results analogous to Theorem 2 for classes of games in which convergence
of FP was respectively claimed by Hahn [14]4 and shown by Berger [4].

4.3 Games with Constant Payoffs

The proofs of the previous two theorems crucially rely on exponentially small
payoffs, so one may wonder if similar results can still be obtained if additional
constraints are imposed on the payoffs. While this is certainly not the case for
games where both the payoffs and the number of actions are constant, we find
that a somewhat weaker version of Theorem 1 holds for games with constant
payoffs, and in particular for symmetric constant-sum win-lose-tie games, i.e.,
symmetric constant-sum games with payoffs in {−1, 0, 1}.

For each integer k we define a symmetric constant-sum game Γ k with a
unique (mixed) Nash equilibrium and show that FP may take a number of
rounds exponential in k before an equilibrium action is played. In contrast to the
previous result, however, this result not only assumes a worst-case initial action
profile, but also a worst-case learning sequence.

Theorem 3. In symmetric constant-sum win-lose-tie games, FP may require
exponentially many rounds (in the size of the game) before an equilibrium action
is eventually played.

Proof. Fix an integer k > 1. We construct a symmetric constant-sum win-lose-
tie game Γ k = (P k, Qk) with a (2k + 1)× (2k + 1) payoff matrix P k = (pk

ij) for
player 1 such that for all i, j with 1 ≤ j ≤ i ≤ 2k + 1,

pk
ij =



1 if j = 1 and 2 ≤ i ≤ k + 1, or
if j = 1 and i = 2k + 1, or
if j 6= 1 and i = j + k,

−1 if j 6= 1 and i > j + k,
0 otherwise.

For i < j, let pk
ij = −pk

ji. Thus Γ k clearly is a symmetric constant-sum game.
To illustrate the definition, Γ 4 is shown in Figure 3.

Further define, for each k, a strategy profile (sk, sk) of Γ k such that for all i
with 1 ≤ i ≤ 2k + 1,

sk
i =

{
22k+1−i/(2k − 1) if i > k + 1,
0 otherwise.

3 A two-player game with totally ordered sets of actions is said to have strategic
complementarities if the advantage of switching to a higher action, according to
the ordering, increases when the opponent chooses a higher action, and diminishing
returns if the advantage of increasing one’s action is decreasing.

4 The proof of this claim later turned out to be flawed [5].



a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 0 −1 −1 −1 −1 0 0 0 −1

a2 1 0 0 0 0 −1 1 1 1

a3 1 0 0 0 0 0 −1 1 1

a4 1 0 0 0 0 0 0 −1 1

a5 1 0 0 0 0 0 0 0 −1

a6 0 1 0 0 0 0 0 0 0

a7 0 −1 1 0 0 0 0 0 0

a8 0 −1 −1 1 0 0 0 0 0

a9 1 −1 −1 −1 1 0 0 0 0

Fig. 3. Symmetric constant-sum game Γ 4 used in the proof of Theorem 3. The game
possesses a quasi-strict equilibrium (s4, s4) with s4 = (0, 0, 0, 0, 0, 8

15
, 4

15
, 2

15
, 1

15
).

It is not hard to see that (sk, sk) is a quasi-strict equilibrium of Γ k. Moreover,
since Γ k is both a symmetric and a constant-sum game, the support of any
equilibrium strategy of Γ k is contained in that of sk (cf. [6]). We will now show
that, when starting with (a1, a1), FP in Γ k may take at least 2k rounds before
an equilibrium action is played for the first time.

Consider the sequence a1, . . . , a2k with aj = a1+dlog2 je for all j with 1 ≤ j ≤
2k, i.e., the sequence

a1, a2, a3, a3, . . . , ai, . . . , ai︸ ︷︷ ︸
2i−2 times

, . . . , ak+1, . . . , ak+1︸ ︷︷ ︸
2k−1 times

.

The length of this sequence is clearly exponential in k. Further define vectors
x0, . . . , x2k

of dimension 2k+ 1 such that x0 = 0, and for i with 1 ≤ j ≤ 2k+ 1,
xj+1 = xj + ui when aj+1 = i.

We now claim that (x0, x0), . . . , (x2k

, x2k

) is a learning sequence of Γ k, i.e.,
that j+ 1 is the index of a maximal component of both P kyj and xjQk. Table 3
shows the development of this sequence for k = 4.

By symmetry of Γ k it suffices to prove the claim for P kyj . After the first
round, we have for all i with 1 ≤ i ≤ 2k + 1,

(P ky1)i =

{
1 if 1 < i ≤ k + 1,
0 otherwise.

Furthermore, since {a2, . . . , a2k} ⊆ {a2, . . . , ak+1}, we have that (P kyj)i = 1 for
all i with 1 < i ≤ k + 1 and all j with 1 < j ≤ 2k. It, therefore, suffices to show



Round i (aj , aj) P 4yi

0 − (0, 0, 0, 0, 0, 0, 0, 0, 0)

1 (a1, a1) (0, 1, 1, 1, 1, 0, 0, 0, 1)

2 (a2, a2) (−1, 1, 1, 1, 1, 1,−1,−1, 0)

3 (a3, a3) (−2, 1, 1, 1, 1, 1, 0,−2,−1)
4 (a3, a3) (−3, 1, 1, 1, 1, 1, 1,−3,−2)

5 (a4, a4) (−4, 1, 1, 1, 1, 1, 1,−2,−3)
6 (a4, a4) (−5, 1, 1, 1, 1, 1, 1,−1,−4)
7 (a4, a4) (−6, 1, 1, 1, 1, 1, 1, 0,−5)
8 (a4, a4) (−7, 1, 1, 1, 1, 1, 1, 1,−6)

9 (a5, a5) (−8, 1, 1, 1, 1, 1, 1, 1,−5)
10 (a5, a5) (−9, 1, 1, 1, 1, 1, 1, 1,−4)
11 (a5, a5) (−10, 1, 1, 1, 1, 1, 1, 1,−3)
12 (a5, a5) (−11, 1, 1, 1, 1, 1, 1, 1,−2)
13 (a5, a5) (−12, 1, 1, 1, 1, 1, 1, 1,−1)
14 (a5, a5) (−13, 1, 1, 1, 1, 1, 1, 1, 0)
15 (a5, a5) (−14, 1, 1, 1, 1, 1, 1, 1, 1)
16 (a5, a5) (−15, 1, 1, 1, 1, 1, 1, 1, 2)

Table 3. A learning sequence of the game Γ 4 shown in Figure 3

that (P kyj)i for all i with i = 1 or k+ 1 < i < 2k+ 1 and all j with 1 < j ≤ 2k.
Since, p1i = −1 for all i with 1 < i ≤ k+ 1, the former is obvious. For the latter,
it can be shown by a straightforward if somewhat tedious induction on j that
for all i with 1 ≤ i < k and all j with 1 < j ≤ 2k,

(P kyj)i+k+1 =


1− j if j ≤ 2i−1,
1 + j − 2i if 2i−1 < j ≤ 2i,
1 otherwise, and

(P kyj)2k+1 =

{
2− j if j ≤ 2k−1,
2 + j − 2k otherwise.

It follows that (P kyj)i ≤ 1 for all i with 1 ≤ i ≤ 2k+1 and all j with 1 ≤ j < 2k,
thus proving the claim. ut

5 Conclusion

We have studied the rate of convergence of fictitious play, and obtained mostly
negative results: for almost all of the classes of games where FP is known to
converge, it may take an exponential number of rounds before some equilibrium
action is eventually played. These results hold already for games with very few
actions, given that one of the payoffs is exponentially small compared to the



others. Slightly weaker results can still be salvaged for symmetric constant-sum
games and games solvable by iterated strict dominance, even if payoffs are in the
set {−1, 0, 1}. It is an open question whether this result can be strengthened to
match that for games with arbitrary payoffs, and whether a similar result can
be obtained for the classes of games covered by Theorem 2, i.e., for potential
games and identical interest games.

While it was known that fictitious play does not converge rapidly, the strength
of our results is still somewhat surprising. They do not depend on the choice of a
metric for comparing probability distributions. Rather, the empirical frequency
of FP after an exponential number of rounds can be arbitrarily far from any
Nash equilibrium for any reasonable metric. This casts doubt on the plausibility
of fictitious play as an explanation of Nash equilibrium play.
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