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Abstract An important subclass of social choice functions, so-called majori-
tarian (or C1) functions, only take into account the pairwise majority rela-
tion between alternatives. In the absence of majority ties—e.g., when there
is an odd number of agents with linear preferences—the majority relation is
antisymmetric and complete and can thus conveniently be represented by a
tournament. Tournaments have a rich mathematical theory and many formal
results for majoritarian functions assume that the majority relation constitutes
a tournament. Moreover, most majoritarian functions have only been defined
for tournaments and allow for a variety of generalizations to unrestricted pref-
erence profiles, none of which can be seen as the unequivocal extension of the
original function. In this paper, we argue that restricting attention to tourna-
ments is justified by the existence of a conservative extension, which inherits
most of the commonly considered properties from its underlying tournament
solution.
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1 Introduction

Perhaps one of the most natural ways to aggregate binary preferences from in-
dividual agents to a group of agents is simple majority rule, which prescribes
that one alternative is socially preferred to another whenever a majority of
agents prefers the former to the latter. Majority rule intuitively appeals to
democratic principles, is easy to understand and—most importantly—satisfies
some attractive formal properties (May 1952). Moreover, almost all common
voting rules coincide with majority rule in the two-alternative case. It would
therefore seem that the existence of a majority of individuals preferring alter-
native a to alternative b signifies something fundamental and generic about
the group’s preferences over a and b.

A majoritarian (or C1) social choice function is a function that maps a
vector of individual preference relations to a nonempty set of socially preferred
alternatives while only taking into account the pairwise majority relation.
When dealing with majoritarian functions, it is often assumed that there are
no majority ties. This can, for example, be guaranteed by insisting on an odd
number of agents with linear preferences. Under this assumption, a preference
profile gives rise to a tournament and a majoritarian function is equivalent to
a tournament solution, i.e., a function that associates with every complete and
antisymmetric directed graph a subset of the vertices of the graph. Examples
of well-studied tournament solutions are the Copeland set, the top cycle, the
uncovered set, and the Slater set (see, e.g., Laslier 1997; Brandt et al. 2016).

While technically convenient, the assumption that preferences do not admit
majority ties is rather artificial. Particularly if the number of agents is small,
majority ties cannot be ignored. It is therefore natural to ask how a given
majoritarian function can be generalized to the class of preference profiles that
may admit majority ties. Mathematically speaking, we are looking for ways to
apply a tournament solution to a complete, but not necessarily antisymmetric,
directed graph—a so-called weak tournament. For many tournament solutions,
generalizations or extensions to weak tournaments have been proposed (see,
e.g., Peris and Subiza 1999). Often, it turns out that there are several sensible
ways to generalize a tournament solution and it is unclear whether there exists
a unique “correct” generalization. Even for something as elementary as the
Copeland set or the top cycle, there is a variety of extensions that are regularly
considered in the literature. A natural criterion for evaluating the different
proposals is whether the extension satisfies appropriate generalizations of the
axiomatic properties that the original tournament solution satisfies.

In this paper, we propose a generic way to extend any tournament solution
to the class of weak tournaments. This so-called conservative extension of a
tournament solution S returns all alternatives that are chosen by S in some
orientation of the weak tournament at hand. We show that many of the most
common axiomatic properties of tournament solutions are “inherited” from S
to its conservative extension (see Table 1 for an overview). We argue that
these results provide a justification for restricting attention to tournaments
when studying majoritarian social choice functions.
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Table 1 Properties that the conservative extension [S] inherits from S.

Property inherited by [S] Result

Condorcet-consistency Proposition 1
monotonicity Proposition 2
independence of unchosen alternatives Proposition 3
set-monotonicity Proposition 4
α̂ Proposition 5
stability (α̂ ∧ γ̂) Proposition 6
composition-consistency Proposition 7
weak composition-consistency Proposition 8
weak regularity Proposition 9

The conservative extension also leads to interesting computational prob-
lems that have been studied as possible winner problems for incompletely spec-
ified tournaments (Lang et al. 2012; Aziz et al. 2015). In fact, computing the
conservative extension of a tournament solution is equivalent to solving its
possible winner problem when pairwise comparisons are only partially spec-
ified. Of course, there is an exponential number of orientations of a weak
tournament in general. However, for many well-known tournament solutions,
the corresponding conservative extensions can be computed efficiently by ex-
ploiting individual peculiarities of these concepts.

The pairwise comparisons represented by tournaments need not originate
from simple majority rule. In fact, tournament solutions and variants thereof
can be applied to numerous other settings such as multi-criteria decision anal-
ysis (Arrow and Raynaud 1986; Bouyssou et al. 2006), zero-sum games (Fisher
and Ryan 1995; Laffond et al. 1993; Duggan and Le Breton 1996), and coali-
tional games (Brandt and Harrenstein 2010). The results in this paper are
equally relevant for these settings than they are for social choice theory.

The paper is organized as follows. After introducing the necessary notation
in Section 2, we define the conservative extension in Section 3 and show that
it inherits many desirable properties in Section 4. Furthermore, we compare
the conservative extension to other generalizations that have been proposed in
the literature (Section 5) and study its computational complexity (Section 6)
for a number of common tournament solutions.

2 Preliminaries

Let U be a universe of alternatives. For notational convenience we assume that
N ⊆ U . Every nonempty finite subset of U is called a feasible set. For a binary
relation % on U and alternatives a, b ∈ U , we usually write a % b instead of
the more cumbersome (a, b) ∈ %. A weak tournament is a pair W = (A,%),
where A is a feasible set and % is a complete binary relation on U , i.e., for
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all a, b ∈ U , we have a % b or b % a (or both).1 Intuitively, a % b signifies
that alternative a is (weakly) preferred to b. Note that completeness implies
reflexivity, i.e., a % a for all a ∈ U . We write a � b if a % b and not b % a,
and a ∼ b if both a % b and b % a. If a ∼ b, we say that there is indifference
between the two alternatives. We denote the class of all weak tournaments
by W.

The relation % is often referred to as the dominance relation. One of the
best-known concepts defined in terms of the dominance relation is that of a
Condorcet winner. Alternative a is a Condorcet winner in a weak tournament
W = (A,%) if a � b for all alternatives b ∈ A \ {a}.

A tournament is a weak tournament (A,%) whose dominance relation % is
antisymmetric, i.e., for all distinct a, b ∈ U , we have either a % b or b % a (but
not both).2 For a tournament T = (A,%) and distinct alternatives a, b ∈ A,
a % b if and only if a � b. We therefore often write T = (A,�) instead of
T = (A,%). We denote the class of all tournaments by T . Obviously, T ⊆ W.

For a pair of weak tournaments W = (A,%) and W ′ = (A′,%′), we say
that W is contained in W ′, and write W ⊆ W ′, if A = A′ and a % b implies
a %′ b for all a, b ∈ A. We will often deal with the set of all tournaments that
are contained in a given weak tournament W .

Definition 1 For a weak tournament W ∈ W, the set of orientations of W
is given by [W ] = {T ∈ T : T ⊆W}.

For example, the weak tournament in Figure 1 has four orientations, which
are depicted in Figure 2.

Every orientation of a weak tournament W = (A,%) can be obtained
from W by eliminating, for all distinct alternatives a and b such that a ∼ b,
one of (a, b) and (b, a) from %.

The relation % can be raised to sets of alternatives and we write A % B
to signify that a % b for all a ∈ A and all b ∈ B. For a weak tournament W =
(A,%) and a feasible set B ⊆ A, we will sometimes consider the restriction
W |B = (B,%) of W to B.

A tournament solution is a function S that maps each tournament T =
(A,�) to a nonempty subset S(T ) of its alternatives A called the choice set. It
is generally assumed that choice sets only depend on �|A and that tournament
solutions cannot distinguish between isomorphic tournaments. A tournament
solution that uniquely selects the Condorcet winner whenever there is one, is
said to be Condorcet-consistent.

Two examples of well-known tournament solutions are the top cycle and
the Copeland set. The top cycle TC (T ) of a tournament T = (A,�) is defined

1 This definition slightly diverges from the common graph-theoretic definition where % is
defined on A rather than on U . However, it facilitates the definition of tournament solutions
and their properties.

2 Defining tournaments with a reflexive dominance relation is non-standard. The reason
we define tournaments in such a way is to ensure that every tournament is a weak tourna-
ment. Whether the dominance relation of a tournament is reflexive or not does not make a
difference for any of our results.
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a b

dc

Fig. 1 Graphical representation of a weak tournament W = (A,%) with A = {a, b, c, d}.
An edge from vertex x to vertex y represents x % y.

as the smallest set B ⊆ A such that B � A \ B. The Copeland set CO(T )
consists of all alternatives whose dominion is of maximal size, i.e., CO(T ) =
arg maxa∈A |{b ∈ A : a � b}|.

3 The Conservative Extension

In order to render tournament solutions applicable to unrestricted preference
profiles, we need to generalize them to weak tournaments. A generalized tour-
nament solution is a function S that maps each weak tournament W = (A,%)
to a nonempty subset S(W ) of its alternatives A. A generalized tournament
solution S is called an extension of tournament solution S′ if S(W ) = S′(W )
whenever W ∈ T . For several tournament solutions, extensions have been
proposed in the literature (see Section 5). Of course, there are many ways to
extend any given tournament solution, and there is no definite obvious way of
judging whether one proposal is better than another one.

We are interested in a generic way to extend any tournament solution to
the class of weak tournaments. In particular, our goal is to extend tournament
solutions in such a way that common axiomatic properties are “inherited” from
a tournament solution to its extension. This task is not trivial, as even the ar-
guably most cautious approach has its problems. Let the trivial extension of
a tournament solution S be defined as the generalized tournament solution
that always selects the whole feasible set A whenever the weak tournament
W = (A,%) 6∈ T . It is easy to see that the trivial extension does not sat-
isfy Condorcet-consistency, which also in the case of weak tournaments is the
requirement that a Condorcet winner should be uniquely selected whenever
it exists. The trivial extension also fails to inherit composition-consistency,
which will be defined in Section 4.4.

We therefore propose to extend tournament solutions in a slightly more
sophisticated way. The conservative extension of a tournament solution S re-
turns all alternatives that are chosen by S in some orientation of the weak
tournament at hand.3

3 Similarly, one could define a generic extension that returns all alternatives that are cho-
sen in all orientations of the weak tournament. However, this extension would not constitute
a generalized tournament solution because it may return the empty set.
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a b

dc

orientation T1

a b

dc

orientation T2

a b

dc

orientation T3

a b

dc

orientation T4

Fig. 2 The four orientations of the weak tournament W in Figure 1.

Definition 2 Let S be a tournament solution. The conservative extension [S]
of S is the generalized tournament solution that maps a weak tournament
W ∈ W to

[S](W ) =
⋃

T∈[W ]

S(T ).

This definition is reminiscent of the parallel-universes tie-breaking ap-
proach in voting theory (Conitzer et al. 2009; Brill and Fischer 2012; Freeman
et al. 2015) and corresponds to selecting the set of all possible winners of W
when indifferences are interpreted as missing edges (Lang et al. 2012; Aziz
et al. 2015).

For example, consider the weak tournament W in Figure 1. Consulting
Figure 2, it can be checked that:

CO(T1) = {a} CO(T2) = {a} CO(T3) = {a, b} CO(T4) = {a, c}
TC (T1) = {a} TC (T2) = {a} TC (T3) = {a, b, c} TC (T4) = {a, b, c, d}

Therefore, [CO ](W ) = {a, b, c} and [TC ](W ) = {a, b, c, d}.

4 Inheritance of Properties

The literature on (generalized) tournament solutions has identified a number
of desirable properties (often called axioms) for these concepts. In this sec-
tion, we study which properties are inherited when a tournament solution is
generalized via the conservative extension. We say that a property is inherited
by the conservative extension if, for any tournament solution S, [S] satisfies
the property on W whenever S satisfies the property on T .

We remark that inclusion relationships between tournament solutions are
inherited to their conservative extensions: It is not hard to see that, for any
two tournament solutions S and S′, if S(T ) ⊆ S′(T ) for all tournaments T ,
then [S](W ) ⊆ [S′](W ) for all weak tournaments W as well. A similar obser-
vation concerns Condorcet-consistency, which we find is also inherited by the
conservative extension.

Proposition 1 Condorcet-consistency is inherited by the conservative exten-
sion.
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Proof. Assume that S is Condorcet-consistent and consider an arbitrary weak
tournament W with Condorcet winner a. Then, a will be a Condorcet winner
in every T ∈ [W ]. Accordingly, by Condorcet-consistency, S(T ) = {a} for
every T ∈ [W ]. Hence, [S](W ) = {a} as well, proving the result.

The rest of this section is structured as follows. After stating a useful lemma
(Section 4.1), we consider four classes of axiomatic properties: dominance-based
properties that deal with changes in the dominance relation (Section 4.2),
choice-theoretic properties that deal with varying feasible sets (Section 4.3),
composition-consistency (Section 4.4), and regularity (Section 4.5).

4.1 A General Lemma

Many properties express the invariance of alternatives being chosen (or alter-
natives not being chosen) under a certain type of transformation of the weak
tournament. That is, they have the form that if an alternative a is chosen (not
chosen) from some weak tournament W , then a is also chosen (not chosen)
from f (W ), where f is an operation that transforms weak tournaments in a
particular way.4 Formally, a tournament operation is a mapping f : W → W
from the class of all weak tournaments to itself. A tournament operation f is
orientation-consistent if applying the operation to all orientations of a weak
tournament W results in the set of orientations of f (W ).

Definition 3 A tournament operation f is orientation-consistent if for all
weak tournaments W ,

f ([W ]) = [f (W )],

where f([W ]) = {f(T ) : T ∈ [W ]}. Furthermore, a class F of tournament oper-
ations is orientation-consistent if each operation in F is orientation-consistent.

In other words, f is orientation-consistent if the diagram in Figure 3 com-
mutes. Recalling that T denotes the class of all tournaments, we note that a
necessary condition for f to be orientation-consistent is that f(T ) ⊆ T .

Let F be a class of tournament operations, W a weak tournament, and a
an alternative in U . We then say that a generalized tournament solution S is
a-inclusion invariant under F on W if,

a ∈ S(W ) implies a ∈ S(f (W )) for all f ∈ F .

Similarly, we say that S is a-exclusion invariant under F on W if,

a /∈ S(W ) implies a /∈ S(f (W )) for all f ∈ F .

4 For instance, the property monotonicity requires that a chosen alternative is still chosen
if it is strengthened. In this case, the operation f would map a weak tournament W to a
weak tournament W ′ that is identical to W except that some alternative in S(W ) has been
strengthened with respect to another alternative. See Section 4.2 for details.
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W f(W )

[W ] f([W ]) = [f(W )]

Fig. 3 Orientation-consistency.

We will see that some important tournament properties can be ex-
pressed in terms of a-inclusion invariance and a-exclusion invariance under
an orientation-consistent class of tournament operations. The following useful
lemma then specifies sufficient conditions for such properties to inherit from
tournaments to weak tournaments.

Lemma 1 Let S be a tournament solution, W a weak tournament, a an al-
ternative, and F an orientation-consistent class of tournament operations.

(i) If S is a-inclusion invariant under F on all T ∈ [W ], so is [S] on W .
(ii) If S is a-exclusion invariant under F on all T ∈ [W ], so is [S] on W .

Proof. For (i), assume that S is a-inclusion invariant under F on all T ∈ [W ].
To prove that [S] is also a-inclusion invariant under F on W , assume a ∈
[S](W ). By definition of [S], we then have that a ∈ S(T ) for some T ∈ [W ].
Consider this T and along with an arbitrary f ∈ F . Observe that, since T ∈
[W ], S is a-inclusion invariant under F on T . Hence, a ∈ S(f(T )). Recall
that f([W ]) = {f(T ) : T ∈ [W ]} and hence f(T ) ∈ f([W ]). By orientation-
consistency of f , we have f ([W ]) = [f (W )] and thus f(T ) ∈ [f(W )]. Thus,
a ∈ S(T ′) for some T ′ ∈ [f(W )] and we may conclude that a ∈ [S](f(W )), as
desired.

For (ii) the argument runs along analogous lines. Assume that S is a-
exclusion invariant under F on all T ∈ [W ]. We show that [S] is also a-
exclusion invariant under F on W and to this end assume a /∈ [S](W ). Then,
a /∈ S(T ) for all T ∈ [W ]. Now consider an arbitrary f ∈ F . To show that
a /∈ [S](f(W )), also consider an arbitrary T ∈ [f(W )]. Then, by orientation-
consistency of f , we obtain T ∈ f([W ]). Accordingly, T = f(T ′) for some
T ′ ∈ [W ]. As T ′ ∈ [W ], we know that a /∈ S(T ′) and, by the same token, that S
is a-exclusion invariant under F on T ′. It then follows that a /∈ S(f(T ′)),
that is, a /∈ S(T ). Having chosen T arbitrarily from [f(W )], it follows that
a /∈ [S](f(W )), which concludes the proof.

4.2 Dominance-Based Properties

We first look at three properties that deal with changes in the dominance rela-
tion, namely monotonicity, independence of unchosen alternatives (IUA), and
set-monotonicity. Each of these concepts convey an invariance of the choice set
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when some alternatives are strengthened with respect to some other alterna-
tives. For two alternatives a and b, strengthening a against b refers to replacing
b � a or b ∼ a with a � b.5 Formally, for a weak tournament W = (A,%)
define Wa�b = (A,%′), where

%′ = % \{(b, a)} ∪ {(a, b)}.

Thus, Wa�b is the weak tournament that is like W but with a strengthened
with respect to b (unless a � b in W , in which case Wa�b is identical to W ).
For two alternatives a and b in U , let fa�b then be the tournament operation
that maps each weak tournament W to Wa�b. These tournament operations
are orientation-consistent, as the following lemma shows.

Lemma 2 For all a, b ∈ U , the tournament operation fa�b is orientation-
consistent.

Proof. Let a, b ∈ U and consider an arbitrary weak tournament W = (A,�).
If a = b, then trivially fa�b(W ) = W . Hence,

fa�b([W ]) = {fa�b(T ) : T ∈ [W ]} = {T : T ∈ [W ]} = [W ] = [fa�b(W )],

and for the remainder of the proof we may assume that a 6= b.
First consider an arbitrary tournament T ∈ fa�b([W ]). Then, T = fa�b(T

′)
for some T ′ ∈ [W ]. Observe that then fa�b(T

′) ∈ [fa�b(W )], that is, T ∈
[fa�b(W )].

For the opposite direction, let T be an arbitrary tournament such that T ∈
[fa�b(W )]. Either a � b or b % a in W . If the former, then both fa�b(W ) = W
and fa�b(T ) = T . Hence, fa�b(T ) ∈ [W ] and, thus, T ∈ fa�b([W ]). If the
latter, let T ′ = fb�a(T ′). Observe that then both T ′ ∈ [W ] and fa�b(T

′) = T .
It follows that T ∈ fa�b([W ]), which concludes the proof.

A tournament solution is monotonic if a chosen alternative remains in the
choice set when it is strengthened against some other alternative, while leaving
everything else unchanged.

Definition 4 A generalized tournament solution S is monotonic if for all
W = (A,%) and a, b ∈ U ,

a ∈ S(W ) implies a ∈ S(Wa�b).

It is easy to see that monotonicity can be phrased as an inclusion invariance
condition. Invoking Lemma 1, we then obtain the following result.

5 There is another way of strengthening a against b that is not captured by this defi-
nition, namely, replacing b � a with a ∼ b. Let us refer to this additional operation as a
∼-strengthening. The properties monotonicity, IUA, and set-monotonicity are usually de-
fined in such a way that ∼-strengthenings are also taken into account. While we do not
consider ∼-strengthenings, it can easily be shown that the conservative extension [S] satis-
fies monotonicity, IUA, or set-monotonicity with respect to ∼-strengthenings whenever [S]
satisfies the respective property with respect to strengthenings as defined here.
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Proposition 2 Monotonicity is inherited by the conservative extension.

Proof. Define, for each alternative a ∈ U ,

FMON
a = {fa�b : b ∈ U}.

It can then easily be appreciated that a generalized tournament solution S
is monotonic if and only if, for every alternative a, S is a-inclusion invariant
under FMON

a on every weak tournament W . By Lemma 2, we find that for
every alternative a ∈ U , FMON

a is a class of orientation-consistent tournament
operations.

Now let S be a tournament solution that is monotonic on T . Thus, for
every weak tournament W and every alternative a, S is a-inclusion invariant
under FMON

a on every T ∈ [W ]. By Lemma 1 it then follows that for ev-
ery weak tournament W and every alternative a, [S] is a-inclusion invariant
under FMON

a on W . We may conclude that [S] is monotonic on W.

Independence of unchosen alternatives (IUA) prescribes that the choice
set is invariant under any changes in the dominance relation among unchosen
alternatives.

Definition 5 A generalized tournament solution S is independent of unchosen
alternatives if for all W = (A,%) and a, b ∈ U \ S(A),

S(W ) = S(Wa�b).

Reasoning along similar lines as for monotonicity, we find that IUA is
inherited from S to [S].

Proposition 3 Independence of unchosen alternatives is inherited by the con-
servative extension.

Proof. For each X ⊆ U , let F IUA
X = {fa�b : a, b ∈ U \ X}. Observe that a

generalized tournament solution S satisfies IUA if and only if, for every weak
tournament W and every alternative a, S is both a-inclusion invariant and
a-exclusion invariant under F IUA

S(W ) on W . By virtue of Lemma 2, we find that

F IUA
X is a set of orientation-consistent tournament operations for each X ⊆ U .

Now let S be a tournament solution that satisfies IUA on T . Consider
a weak tournament W along with an arbitrary alternative a in U , and let
T ∈ [W ]. Consider arbitrary b, c ∈ U \ [S](W ). Since S(T ) ⊆ [S](W ), we also
have b, c ∈ U \ S(T ). And since S satisfies IUA, we get S(T ) = S(fb�c(T )). It
follows that, for every a ∈ U , S is both a-inclusion and a-exclusion invariant
under F IUA

[S](W ) on every T ∈ [W ]. Applying Lemma 1, we obtain that, for

every a ∈ U , [S] is also both a-inclusion and a-exclusion invariant under
F IUA
[S](W ) on W . We may therefore conclude that [S] satisfies IUA on W as

well.
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Set-monotonicity is a strengthening of both monotonicity and IUA and is
the defining property in a characterization of Kelly-strategyproof tournament
solutions (Brandt 2015). A tournament solution is set-monotonic if the choice
set remains the same whenever some alternative is strengthened against some
unchosen alternative.

Definition 6 A generalized tournament solution S is set-monotonic if for all
W = (A,%), a ∈ U , and b ∈ U \ S(A),

S(W ) = S(Wa�b).

Analogously to Lemma 3, we can prove that set-monotonicity inherits from
tournament solutions to their conservative extensions.

Proposition 4 Set-monotonicity is inherited by the conservative extension.

Proof. For each X ⊆ U , let FSMON
X = {fa�b : a ∈ U and b ∈ U \X}. By

virtue of Lemma 2, for every X, FSMON
X is a class of orientation-consistent

tournament operations. Also observe that a generalized tournament solution S
is set-monotonic if and only if, for every weak tournament W in W and every
alternative a, S is both a-inclusion invariant and a-exclusion invariant under
FSMON
S(W ) on W .

Let S be a set-monotonic tournament solution. Consider a weak tourna-
ment W along with an arbitrary alternative a ∈ U and let T ∈ [W ]. Fur-
thermore, let b ∈ U and c ∈ U \ [S](W ). As S(T ) ⊆ [S](W ), we also have
c ∈ U \ S(T ). By set-monotonicity of S on T , then S(T ) = S(fb�c(T )).
Therefore, S is both a-inclusion and a-exclusion invariant under FSMON

[S](W ) on

all T ∈ [W ]. By Lemma 1 it then follows that [S] is both a-inclusion invariant
and a-exclusion invariant under FSMON

[S](W ) as well.

4.3 Choice-Theoretic Properties

We now turn to a class of properties that relate choices from different feasible
sets to each other. For all of these properties, the dominance relation % is
fixed. We therefore write S(A) for S((A,%)) in order to simplify notation.

The central property in this section is stability (or self-stability) (Brandt
and Harrenstein 2011), which requires that a set is chosen from two different
sets of alternatives if and only if it is chosen from the union of these sets (see
Figure 4).

Definition 7 A generalized tournament solution S is stable if for all weak
tournaments (A,�) and for all non-empty subsets B,C,X ⊆ A with X ⊆
B ∩ C,

X = S(B) = S(C) if and only if X = S(B ∪ C).
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B C

S(B)

B C

S(C)

B ∪ C

S(B ∪ C)

Fig. 4 A stable generalized tournament solution S chooses a set from B ∪C (right) if and
only if it chooses the same set from both B (left) and C (middle).

Stability is a rather demanding property that is only satisfied by few tour-
nament solutions including the top cycle, the minimal covering set, and the
bipartisan set. Stability is closely connected to rationalizability (Brandt and
Harrenstein 2011) and together with monotonicity implies set-monotonicity
and thereby Kelly-strategyproofness (Brandt 2015).

Stability can be factorized into conditions α̂ and γ̂ by considering each
implication in the above equivalence separately. The former is also known as
Chernoff’s postulate 5∗ (Chernoff 1954), the strong superset property (Bordes
1979), outcast (Aizerman and Aleskerov 1995), and the attention filter axiom
(Masatlioglu et al. 2012).6 A generalized tournament solution S satisfies α̂, if
for all non-empty sets of alternatives B and C,

S(B ∪ C) ⊆ B ∩ C implies S(B ∪ C) = S(B) = S(C).

Equivalently, S satisfies α̂ if for all sets of alternatives B and C,

S(B) ⊆ C ⊆ B implies S(B) = S(C).

A generalized tournament solution S satisfies γ̂, if for all sets of alterna-
tives B and C,

S(B) = S(C) implies S(B ∪ C) = S(B) = S(C).

For a finer analysis, we split α̂ and γ̂ into two conditions (see Brandt and
Harrenstein 2011, Remark 1).

Definition 8 A generalized tournament solution S satisfies

– α̂⊆ if for all B,C, it holds that S(B) ⊆ C ⊆ B implies S(C) ⊆ S(B),
– α̂⊇ if for all B,C, it holds that S(B) ⊆ C ⊆ B implies S(C) ⊇ S(B),
– γ̂⊆ if for all B,C, it holds that S(B) = S(C) implies S(B) ⊆ S(B ∪ C),

and
– γ̂⊇ if for all B,C, it holds that S(B) = S(C) implies S(B) ⊇ S(B ∪ C).

6 We refer to Monjardet (2008) for a more thorough discussion of the origins of this
condition.
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stability

α̂

α̂⊆ α̂⊇

γ̂

γ̂⊆ γ̂⊇

idempotency

Fig. 5 Logical relationships between choice-theoretic properties.

Perhaps the most prominent among these four properties is α̂⊆ , which has
also been called the weak superset property or the Aı̈zerman property (e.g.,
Laslier 1997; Brandt 2009). It requires that the removal of losing alternatives
cannot lead to new winning alternatives.

Obviously, for any generalized tournament solution S we have

S satisfies stability if and only if S satisfies α̂ and γ̂,

S satisfies α̂ if and only if S satisfies α̂⊆ and α̂⊇ , and

S satisfies γ̂ if and only if S satisfies γ̂⊆ and γ̂⊇ .

A generalized tournament solution is idempotent if the choice set is invariant
under repeated application of the solution concept, i.e., S(S(A)) = S(A) for
all weak tournaments W = (A,�). It is easily seen that α̂⊇ is stronger than
idempotency since S(W |S(W )) ⊇ S(W ) implies S(W |S(W )) = S(W ). Figure 5
shows the logical relationships between stability and its weakenings.

For a feasible set B, we let fB denote the tournament operation that maps
a weak tournament W = (A,%) with B ⊆ A to its restriction to B, i.e.,
fB(W ) = W |B . Furthermore, define, for each X ⊆ U , the class F α̂X = {fB :
X ⊆ B ⊆ U} of tournament operations.

It is then easily seen that for every generalized tournament solution S,

(i) S satisfies α̂⊆ if and only if, for every W and every a, S is a-inclusion

invariant under F α̂S(W ) on W ,

(ii) S satisfies α̂⊇ if and only if, for every W and every a, S is a-exclusion

invariant under F α̂S(W ) on W , and

(iii) S satisfies α̂ if and only if, for every W and every a, S is both a-inclusion
and a-exclusion invariant under F α̂S(W ) on W .

Since for every X ⊆ U , the class F α̂X is orientation-consistent, we can apply
Lemma 1 and obtain the following result.

Proposition 5 α̂, α̂⊆ , and α̂⊇ are inherited by the conservative extension.
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Proof. We give the proof for φ = α̂⊆. The argument for φ = α̂⊇ runs along
analogous lines. The case for φ = α̂ then follows as an immediate consequence.

Consider an arbitrary tournament solution S. By the above equivalences,
we have that [S] satisfies α̂⊆ if and only if, for all alternatives a ∈ U and all
weak tournaments W , [S] is a-inclusion invariant under F[S](W ) on W . Now
assume that S satisfies α̂ on T . Also consider an arbitrary alternative a ∈
U , an arbitrary weak tournament W = (A,%), and an arbitrary T ∈ [W ].
Furthermore, let f ∈ F α̂[S](W ). Then, f = fB for some S(W ) ⊆ B ⊆ U . As

S(T ) ⊆ [S](W ), also S(T ) ⊆ B ⊆ U . Having assumed that S satisfies α̂⊆
on T , we find that a ∈ S(T ) implies a ∈ T |B , that is a ∈ fB(W ). It follows
that S is a-inclusion invariant under F α̂[S](W ) on every T ∈ [W ]. By Lemma 1,

it follows that [S] is also a-inclusion invariant under F α̂[S](W ) on W . Having

chosen W arbitrarily, we may conclude that [S] satisfies α̂⊆ on W as well.

For γ̂ and its descendants γ̂⊆ and γ̂⊇ , no characterization similar in spirit
to that of α̂ is known. In fact, we were not able to prove that γ̂⊆ , γ̂⊇ , or γ̂
is inherited from a tournament solution S to its conservative extension [S].7

However, all three properties are inherited if S also satisfies α̂.

Proposition 6 Let S be a tournament solution that satisfies α̂ and let φ ∈
{γ̂, γ̂⊆ , γ̂⊇}. If S satisfies property φ on T , so does [S] on W.

Proof. We give the proof for φ = γ̂. The proofs for the other cases are analo-
gous. Let S be a tournament solution satisfying α̂ and γ̂ and letW = (A∪B,%)
be a weak tournament such that [S](A) = [S](B) = X ⊆ A ∩ B. We need to
show that [S](A ∪B) = X. By definition of [S], we have

[S](A) =
⋃

TA∈[W |A]

S(TA), [S](B) =
⋃

TB∈[W |B ]

S(TB), and [S](A ∪B) =
⋃

T∈[W ]

S(T ).

We will show that for all T ∈ [W ], S(T |A) = S(T |B) = S(T ). The state-
ment then follows from the trivial observation that every orientation of W |A
can be obtained as a restriction of an orientation of W , i.e., for all TA ∈ [W |A]
there is a T ∈ [W ] such that T |A = TA.

Now consider an arbitrary T ∈ [W ]. Obviously, T |A ∈ [W |A] and T |B ∈
[W |B ]. By assumption, we have S(T |A) ⊆ A∩B and S(T |B) ⊆ A∩B. Applying
α̂ to A and A ∩B yields

S(T |A) = S(T |A∩B),

and applying α̂ to B and A ∩B yields

S(T |B) = S(T |A∩B).

Therefore, S(T |A) = S(T |B). Since S satisfies γ̂ on T , this yields S(T ) =
S(T |A) = S(T |B).

7 The same is true for Sen’s original γ (e.g., Moulin 1986).
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Since stability is equivalent to the conjunction of α̂ and γ̂, the following
statement follows as an immediate consequence of Propositions 5 and 6.

Corollary 1 Stability is inherited by the conservative extension.

Interestingly, requiring α̂ so that γ̂ is inherited is less restrictive than it
might seem because all common tournament solutions satisfy α̂ if and only if
they satisfy γ̂.8 In general, however, it is the case that α̂ and γ̂ are independent
from each other, even though this requires the construction of rather artificial
tournament solutions (see Brandt et al. 2017).

4.4 Composition-Consistency

We now consider a structural property that deals with sets of similar alterna-
tives. A component of a tournament is a subset of alternatives that bear the
same dominance relationship to all alternatives not in the set. A decomposition
is a (not necessarily unique) partition of the alternatives into components. A
decomposition induces a summary tournament with the components as alter-
natives. A tournament solution is then said to be composition-consistent if it
selects the best alternatives from the components it selects from the summary
tournament.

In order to extend the definition of composition-consistency to weak tour-
naments, we need to generalize the concept of a component.9

Definition 9 Let W = (A,%) be a weak tournament. A component of W is
a feasible set X ⊆ A such that X is a singleton or for all y ∈ A \ X, either
X � {y} or {y} � X.

The separate condition for singletons ensures that each alternative on its
own constitutes a component in weak tournaments, as it is the case in tourna-
ments as well. The following lemma establishes that components are preserved
under orientation.

Lemma 3 Let W = (A,%) be a weak tournament and X ⊆ A. Then, X is a
component of W if and only if X is a component of every orientation T ∈ [W ].

Proof. For the “only if”-direction, assume that X is a component of W and,
for contradiction, that there is some orientation T = (A,�′) of W for which X
is not a component. Then, there are x, x′ ∈ X and y ∈ A \X such that x �′ y
and y �′ x′. With X being a component of W , both x � y and x′ � y or both
y � x and y � x′. Moreover, this has to hold in every orientation of W and a
contradiction follows.

8 For example, this statement holds for all tournament solutions considered in Section 5:
TC , BP , and MC satisfy both α̂ and γ̂, and CO , UC , BA, and TEQ satisfy neither α̂ nor γ̂.

9 We note that alternative definitions, such as the one discussed after Proposition 8, are
conceivable.
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Fig. 6 Composition-consistency. The choice set of a composition-consistent tournament
selects those alternatives—indicated by dark gray—that are best alternatives from the com-
ponents it selects from the summary tournament—indicated by light gray.

For the “if”-direction, let X be a subset of A that is not a component of W .
Then, in particular, X is not a singleton. Moreover, there are x, x′ ∈ X and
y ∈ A \X such that one of the following cases obtains: both x � y and y � x,
both x � y and x′ ∼ y, or both x ∼ y and x′ ∼ y. In each of these cases there
is an orientation T = (A,�′) of W such that both x �′ y and y �′ x′.

Given the definition of a component, decompositions and summaries of
weak tournaments, as well as composition-consistency of generalized tourna-
ment solutions, are then defined analogously to the case of tournaments.

A decomposition of a weak tournament W = (A,%) we define as a partition
{X1, . . . , Xk} of A such that each Xi is a component of W . Moreover, let W1 =

(B1,%1), . . . , Wk = (Bk,%k), and W̃ = ({1, . . . , k}, %̃) be weak tournaments
with B1, . . . , Bk pairwise disjoint. Then, define the product

∏
(W̃ ,W1, . . . ,Wk)

of W1, . . . ,Wk with respect to W̃ as the weak tournament (A,%′) such that

A =
⋃k
i=1Bi and, for all 1 ≤ i, j ≤ k, all b ∈ Bi, and all b′ ∈ Bj ,

b %′ b′ if and only if i = j and b %i b
′, or i 6= j and i %̃ j.

Definition 10 A generalized tournament solution S is composition-consistent
(on W) if for all weak tournaments W , decompositions {X1, . . . , Xk} of W ,

and W̃ = ({1, . . . , k}, %̃) such that W =
∏

(W̃ ,W |X1
, . . . ,W |Xk

),

S(T ) =
⋃

i∈S(W̃ )

S(W |Xi).

Also see Figure 6 for an illustration of this concept.
Let W =

∏
(W̃ ,W1, . . . ,Wk) where Wi = (Bi,%i) for all i with 1 ≤ i ≤ k.

Observe that then {B1, . . . , Bk} is a decomposition of W whenever W̃ ∈ T .
If, moreover, no Bi is a singleton, the implication also holds in the opposite
direction.

We find that composition-consistency is inherited to the conservative ex-
tension.
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⇒

Fig. 7 Weak composition-consistency. If two tournaments only differ as to the dominance
relation on some component X, then a weakly composition-consistent tournament solution
selects in both tournaments the same alternatives from all components other than X and if
it selects some alternative from X in one tournament, then it also selects some alternative
from X in the other tournament.

Proposition 7 Composition-consistency is inherited by the conservative ex-
tension.

Proof. Assume S is composition-consistent. Consider an arbitrary weak tour-
nament W = (A,%) along with a decomposition {X1, . . . , Xk} of W . Let W̃ be
such that W =

∏
(W̃ ,W |X1

, . . . ,W |Xk
). We have to show that, for all a ∈ A,

a ∈ [S](W ) if and only if a ∈ [S](W |Xi
) for some i ∈ [S](W̃ ).

First, assume that a ∈ [S](W ). Then, there is some orientation T ∈ [W ] such
that a ∈ S(T ). By virtue of Lemma 3, {X1, . . . , Xk} is also a decomposition
of T . Therefore, T =

∏
(T̃ , T |X1

, . . . , T |Xk
), where T̃ ∈ [W̃ ] and T |Xi

∈ [W |Xi
]

for all i with 1 ≤ i ≤ k. Having assumed that S is composition-consistent,
a ∈ S(T |Xi) for some i ∈ S(T̃ ). As T̃ ∈ [W̃ ], it follows that a ∈ [S](W |Xi) for
some i ∈ [S](W̃ ).

For the opposite direction, assume a ∈ [S](W |Xi
) for some i ∈ [S](W̃ ).

Then there are orientations T̃ ∈ [W̃ ] and T |Xi
∈ [W |Xi

] such that i ∈ S(T̃ )
and a ∈ S(T |Xi). Let T ′|Xj ∈ [W |Xj ] for all j distinct from i and define

T ′′ =
∏

(T̃ , T ′X1
, . . . , TXi

, . . . , T ′Xk
). Observe that T ′′ is an orientation of W .

By Lemma 3, moreover, {X1, . . . , Xk} is also a decomposition of T ′ and by
composition-consistency of S we obtain a ∈ S[T ′′]. Finally, with T ′′ being an
orientation of W , we may conclude that a ∈ [S](W ).

The literature on tournaments also distinguishes the concept of weak
composition-consistency (see, e.g., Moulin 1986; Laslier 1997). To show the
inheritance of weak composition-consistency we first need the following defi-
nitions and notations.

For a feasible set A, we denote byW(A) the set of weak tournaments with A
as the set of alternatives. For Y a component of a weak tournament W =
(A,%) and W ′ ∈ W(Y ) a weak tournament on Y , let WY

W ′ = (A,%′′) denote
the weak tournament that is like W except that the subtournament W |Y
induced by component Y is replaced by W ′.
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Formally, for weak tournaments W =
∏

(W̃ ,W |X1 , . . . ,W |Xk
,W |Y )

with components X1, . . . , Xk, Y and W ′ ∈ W(Y ), we have WY
W ′ de-

note
∏

(W̃ ,W |X1
, . . . ,W |Xk

,W ′).
We are now in a position to give the definition of weak composition-

consistency for weak tournaments. The definition extends the standard defini-
tion of weak composition-consistency for tournament solutions (Laslier 1997),
which we will refer to as weak composition-consistency on T . Also see Figure 7
for an illustration of this concept.

Definition 11 A generalized tournament solution S is weakly composition-
consistent (on W) if for all weak tournaments W , component Y of W , and
W ′ ∈ W(Y ),

(i) S(W ) \ Y = S(WY
W ′) \ Y , and

(ii) S(W ) ∩ Y 6= ∅ implies S(WY
W ′) ∩ Y 6= ∅.

Proposition 8 Weak composition-consistency is inherited by the conservative
extension.

Proof. Let S be a tournament solution that is weakly composition-consistent
on T and W = (A,%) a weak tournament with components X1, . . . , Xk, Y
such that W =

∏
(W̃ ,W |X1 , . . . ,W |Xk

,W |Y ). Furthermore, let W ′ ∈ W(Y ).
We prove that

(i) [S](W ) \ Y = [S](WY
W ′) \ Y , and

(ii) [S](W ) ∩ Y 6= ∅ implies [S](WY
W ′) ∩ Y 6= ∅.

First observe that, by virtue of Lemma 3, for every orientation T ∈ [W ]
we have that {X1, . . . , Xk, Y } is a decomposition of T as well, i.e., T =∏

(T̃ , T |X1
, . . . , T |Xk

, T |Y ) for some T̃ ∈ T ({1, . . . , k+ 1}). Moreover, it holds
that T̃ ∈ [W̃ ], T |X1

∈ [W |X1
], . . . , T |Xk

∈ [W |Xk
], and T |Y ∈ [W |Y ].

Also observe that, for each T ′ ∈ [W ′], we may assume that T ′ ∈ T (Y ) and
TYT ′ ∈ [WY

W ′ ].
For (i), having assumed S to be weakly composition-consistent on T , the

following equivalences hold.

a ∈ [S](W ) \ Y
iff a ∈ S(T ) \ Y for some T ∈ [W ]

iff a ∈ S(TYT ′) \ Y for some T ∈ [W ] and some T ′ ∈ [W ′]

iff a ∈ [S](WY
W ′) \ Y .

For (ii), assume [S](W ) ∩ Y 6= ∅. Then, there is some orientation T ∈ [W ]
such that S(T ) ∩ Y 6= ∅. Let T ∈ [W ′]. Then also T ∈ T (Y ). Having assumed
that S satisfies weak composition-consistency on T , we obtain S(TYT ′)∩Y 6= ∅.
As TYT ′ ∈ [WY

W ′ ], we conclude that [S](WY
W ′) ∩ Y 6= ∅.

The notion of a component of a weak tournament defined here is rather
strong and the associated concept of composition-consistency correspondingly
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weak. A natural stronger notion of composition-consistency could be based on
a weaker concept of component. Thus, for weak tournaments W = (A,%), a
component could be defined as a subset X ⊆ A such that for all y ∈ A \ X,
either X � y, y � X, or X ∼ y. Observe that for such components Lemma 3
does no longer hold. Moreover, it can easily be seen that the conservative
extension [S] of no Condorcet-consistent tournament solution S satisfies the
associated concept of composition-consistency. To appreciate this, let S be
Condorcet-consistent and consider the weak tournament W = (A,%) with
A = {a, b, c} and a � b, a ∼ c, and b ∼ c (see Figure 8). Observe that W can
be oriented such that b � c and c � a, resulting in a cyclical tournament from
which every tournament solution chooses {a, b, c}. Hence, [S](W ) = {a, b, c}.
However, {{a, b}, {c}} would be a decomposition under the alternate def-
inition and, by Condorcet-consistency, alternative b would not be chosen
by S from T |{a,b} for any orientation T ∈ [W ]. Accordingly, if [S] had been
composition-consistent in the new sense, b /∈ [S](W ), a contradiction.

a

b c

Fig. 8 Weak tournament W = ({a, b, c},%) showing that stronger concepts of composition-
consistency are not inherited by [S] if S is Condorcet-consistent.

4.5 Regularity

A tournament solution is regular if it selects all alternatives from regular tour-
naments, i.e., tournaments in which the indegree and outdegree of every alter-
native are equal. Regularity extends naturally to weak tournaments.

For a weak tournament W = (A,%) and alternative a ∈ A, we let d+W (a)
and d−W (a) denote the outdegree of a, i.e., cardinality of the dominion, and the
indegree of a, i.e., the cardinality of the set of dominators of a, i.e.,

d+W (a) = |{x ∈ A : a � x}|, and

d−W (a) = |{x ∈ A : x � a}|.

We omit the subscript when W is clear from the context.
A weak tournament W = (A,�) is regular if d+(a) = d−(a) for all a ∈ A.

It can easily be appreciated that a tournament being regular implies its order
to be odd. This, however, is not generally the case for weak tournaments, i.e.,
regular weak tournaments of even order exist.
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A generalized tournament solution S is said to be regular if S(W ) = A for
every regular weak tournament W = (A,%). The order of regular tournaments
necessarily being odd, regularity of a tournament solution S as such does not
impose any restriction on its behavior on tournaments of even order and,
ipso facto, neither on the orientations of a weak tournament of even order.
From this perspective, an arguably more natural extension of the concept of
regularity for tournaments to weak tournaments takes into account the parity
of weak tournaments. Thus, we say a generalized tournament solution S is
weakly regular if S(W ) = A for every regular weak tournament W = (A,%)
such that |A| is odd. Observe that regularity implies weak regularity and that,
on tournaments, the two notions coincide.

To prove the inheritance of weak regularity by the conservative extension
we first show the following lemma, which says that in a regular weak tour-
nament of odd order all indifferences can be eliminated without impairing
regularity.

Lemma 4 Let W = (A,%) be a regular weak tournament such that |A| is odd.
Then, there is a regular orientation T ∈ [W ].

Proof sketch. Let W = (A,%) be a regular weak tournament such that |A| is
odd. If |A| = 1 the statement is trivial. So assume |A| ≥ 3 and consider the
indifference graph G = (A,E), in which {x, y} ∈ E if and only if x ∼ y and
x 6= y. The degree of a vertex a ∈ A in the graph G is given by (|A| − 1) −
d+W (a)−d−W (a). Since |A|−1 is even and d+W (a) = d−W (a), it follows that every
vertex has an even degree in G. Accordingly, every connected component of G
has an Eulerian cycle. Orienting each such (undirected) Eulerian cycle into a
directed cycle and removing the corresponding pairs of alternatives from %
results in a regular orientation T ∈ [W ].

As an immediate consequence of Lemma 4 we obtain the following result.

Proposition 9 Weak regularity is inherited by the conservative extension.

Proof. Let S be a weakly regular tournament solution and consider an arbi-
trary regular weak tournament W = (A,%) such that |A| is odd. By Lemma 4,
there is a regular orientation T ∈ [W ]. Accordingly, S(T ) = A. It follows that
[S](W ) = A, as desired.

For regularity, the situation is slightly more complicated. Although, the
conservative extensions [TC ] and [UC ] of the regular tournament solutions TC
and UC turn out to be regular, we find that regularity of S on tournaments
does not in general extend to regularity of [S] on weak tournaments.

Proposition 10 There exists a regular tournament solution S such that [S]
is not regular on weak tournaments.
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d e

f

g

a

b
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(a) tournament T

d0 d1 e0 e1

f0 f1

g0 g1

a0 a1

b0 b1

c0 c1

(b) weak tournament W

Fig. 9 The tournament T as depicted in (a) is regular but not vertex-homogeneous. For
instance, there is no automorphism mapping alternative a to alternative b. The weak tour-
nament W depicted in (b), results from T by ‘replacing’ every alternative x by a subtour-
nament X on alternatives x0 and x1 such that x0 ∼ x1.

Proof. A sequence (a1, . . . , ak) of alternatives is a trajectory if i < j implies
ai � aj . Let S be the tournament solution that selects the �-maximal ele-
ments of the trajectories that are of maximal length. Note that S is not reg-
ular: for the regular tournament T depicted in Figure 9(a), S(T ) = {a, c, f}.
Now define S∗ as the tournament solution that is exactly like S apart from
it choosing all alternatives from every regular tournament, i.e., for all tourna-
ments T = (A,�),

S∗(T ) =

{
A if T is regular,

S(T ) otherwise.

By definition, S∗ is regular.
Now consider the weak tournament W = (A′,%) depicted in Figure 9(b).

An easy check reveals that W is regular: observe that W results from the
regular tournament T in Figure 9(a) by ‘replacing’ every alternative x by a
subtournament X on alternatives x0 and x1 such that x0 ∼ x1. It can also
easily be verified that for every orientation T ′ ∈ [W ] we have that S∗(T ′) ⊆
{a0, a1, c0, c1, f0, f1}. (For an example, see the orientation in Figure 10, from
which S∗ selects {a0, c0, f0}.) Accordingly, [S∗](W ) ⊆ {a0, a1, c0, c1, f0, f1}. It
follows that [S∗] is not regular.10

10 A similar argument, involving a more complicated weak tournament can be given for
the tournament solution BAreg defined such that, for all tournaments T = (A,�),

BAreg (T ) =

{
A if T is regular,

BA(T ) otherwise.
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d0 d1 e0 e1

f0 f1

g0 g1

a0 a1

b0 b1

c0 c1

Fig. 10 An orientation of the weak tournament W .

5 Comparison to Other Generalizations

For many concrete tournament solutions, generalizations or extensions to weak
tournaments have been proposed in the literature. In this section, we compare
these extensions to the conservative extension (for definitions of the tourna-
ment solutions, please see Laslier 1997; Brandt et al. 2016). Note that none of
these ad hoc extensions gives a “generic” way to extend tournament solutions
to weak tournaments. For two generalized tournament solutions S and S′, we
write S′ ⊂ S if S 6= S′ and S′(W ) ⊆ S(W ) for all weak tournaments W . In
this case, we say that S′ is a refinement of S.

All proofs and counter-examples are given in Appendix A.

Copeland Set. The Copeland set CO gives rise to a whole class of extensions
that is parameterized by a number α between 0 and 1. The generalized tour-
nament solution COα selects all alternatives that maximize the variant of the
Copeland score in which each indifference contributes α points to an alterna-
tive’s score (see, e.g., Faliszewski et al. 2009)). Henriet (1985) axiomatically

characterized CO
1
2 , arguably the most natural variant in this class. While it

is easy to check that [CO ] 6⊂ COα for all α ∈ [0, 1], the inclusion of COα in
[CO ] turns out to depend on the value of α.

Proposition 11 COα ⊂ [CO ] if and only if 1
2 ≤ α ≤ 1.

Top Cycle. Schwartz (1972, 1986) defined two generalizations of the top cycle
TC (see also Sen 1986; Brandt et al. 2009). GETCHA (or the Smith set) con-
tains the maximal elements of the transitive closure of % whereas GOCHA (or
the Schwartz set) contains the maximal elements of the transitive closure of �.
GOCHA is always contained in GETCHA. A game-theoretical interpretation
of TC gives rise to a further generalization. Duggan and Le Breton (2001) ob-
served that the top cycle of a tournament T coincides with the unique mixed
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saddle MS (T ) of the underlying tournament game, and showed that the mixed
saddle is still unique for games corresponding to weak tournaments. The solu-
tion MS is nested between GOCHA and GETCHA, and GETCHA coincides
with [TC ].

Proposition 12 GOCHA ⊂ MS ⊂ GETCHA = [TC ].

Bipartisan Set. Dutta and Laslier (1999) generalized the bipartisan set BP
to the essential set ES , which is given by the set of all alternatives that are
contained in the support of some Nash equilibrium of the underlying weak
tournament game. It is easy to construct tournaments where ES is strictly
smaller than [BP ], and there are also weak tournaments in which [BP ] is
strictly contained in ES .

Proposition 13 [BP ] 6⊂ ES and ES 6⊂ [BP ].

Uncovered Set. Duggan (2013) surveyed several extensions of the covering re-
lation to weak tournaments. Any such relation induces a generalization of the
uncovered set. The so-called deep covering and McKelvey covering relations
are particularly interesting extensions. Duggan (2013) showed that for all other
generalizations of the covering relation he considered, the corresponding un-
covered set is a refinement of the deep uncovered set UCD . Another interesting
property of UCD is that it coincides with the conservative extension of UC .

Proposition 14 UCD = [UC ].

It follows that all other UC generalizations considered by Duggan (2013)
are refinements of [UC ].

Minimal Covering Set. The generalization of MC is only well-defined for the
McKelvey covering relation and the deep covering relation. The correspond-
ing generalized tournament solutions are known to satisfy stability. We have
constructed a weak tournament in which [MC ] is strictly contained in both
the McKelvey minimal covering set MCM and the deep minimal covering set
MCD . There are also weak tournaments in which MCM is strictly contained
in [MC ].

Proposition 15 [MC ] ⊂ MCD , [MC ] 6⊂ MCM , and MCM 6⊂ [MC ].

Corollary 1 implies that [MC ] satisfies the very demanding stability prop-
erty. Hence, we have found a new sensible generalization of MC which is a
refinement of MCD and sometimes yields strictly smaller choice sets than
MCM .

Banks Set. Banks and Bordes (1988) discussed four different generalizations of
the Banks set BA to weak tournaments, denoted by BA1, BA2, BA3, and BA4.
Each of those generalizations is a refinement of the conservative extension [BA].

Proposition 16 BAm ⊂ [BA] for all m ∈ {1, 2, 3, 4}.
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Tournament Equilibrium Set. Finally, Schwartz (1990) suggested six ways to
extend the tournament equilibrium set TEQ—and the notion of retentiveness
in general—to weak tournaments. However, all of those variants can easily be
shown to lead to disjoint minimal retentive sets even in very small tourna-
ments, and none of the variants coincides with [TEQ ].

It is noteworthy that, in contrast to the conservative extension, some of the
extensions discussed above fail to inherit properties from their corresponding
tournament solutions. For instance, GOCHA violates α̂ and BA3 and BA4

violate α̂⊆ (Banks and Bordes 1988).
Propositions 13 and 15 are surprising if one expects that every reasonable

extension of a tournament solution is a refinement of its conservative extension.
It is open to debate whether this assumption is unwarranted or whether these
specific extensions are problematic.

6 Computational Complexity

When a tournament solution S is generalized via the conservative extension to
[S], it is natural to ask whether the choice set of [S] can be computed efficiently.
Since the number of orientations of a weak tournament can be exponential
in the size of the weak tournament, tractability of the winner determination
problem of S is a necessary, but not a sufficient, condition for the tractability
of [S]. Computing the choice set of [S] is mathematically equivalent to the
problem of computing the set of possible winners of S for a partially specified
tournament. The latter problem has been studied for the Copeland set CO ,
the top cycle TC , the uncovered set UC , and the bipartisan set BP .

Proposition 17 (Cook et al. 1998) Computing [CO ] is in P.

Proposition 18 (Lang et al. 2012) Computing [TC ] is in P.

Proposition 19 (Aziz et al. 2015) Computing [UC ] is in P.

Proposition 20 (Brill et al. 2016) Computing [BP ] is NP-complete.

Proposition 17 is shown using a polynomial-time reduction to maximum
network flow; [TC ] and [UC ] can be computed by greedy algorithms. Propo-
sition 20, which is much harder to prove, shows that tractability of S does not
imply tractability of [S] (assuming P 6= NP). Note, however, that the essential
set—a natural generalization of BP to weak tournaments (see Section 5)—can
be computed in polynomial time. It is an open problem whether the conser-
vative extension of the minimal covering set can be computed efficiently.

If computing winners is NP-complete for a tournament solution, the same
is true for its conservative extension.

Lemma 5 If winner determination for S is NP-complete, then winner deter-
mination for [S] is NP-complete.
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Proof. Hardness of computing [S] immediately follows from hardness of com-
puting S, because [S] and S agree whenever the weak tournament is in fact a
tournament. For membership in NP, suppose that x ∈ [S](W ). Then we can
guess an orientation T ∈ [W ] and an efficiently verifiable witness of the fact
that x ∈ S(T ).

Since the winner determination problem is NP-complete for the Banks set
BA (Woeginger 2003), we have an immediate corollary.

Corollary 2 Computing [BA] is NP-complete.

7 Conclusion

We have shown that the conservative extension inherits many desirable prop-
erties from its underlying tournament solution (see Table 1). In general, the
conservative extension [S] of tournament solution S is rather large and there
might be more discriminating extensions of S that still satisfy its character-
izing properties. However, the conservative extension may serve as “proof of
concept” to show that generalizing a tournament solution in a meaningful way
is possible in principle. Whether there are more discriminating solutions that
are equally attractive is a different issue that can be settled for each tourna-
ment solution at hand.

Two interesting questions are whether there are other generic extensions
that inherit the considered desirable properties and whether generic extensions
can be characterized in terms of the properties they inherit. A challenging open
computational problem is whether the conservative extension of the minimal
covering set can be computed in polynomial time.
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A Proofs for Section 5

Proposition 11 COα ⊂ [CO ] if and only if 1
2
≤ α ≤ 1.

Proof. For notational convenience, define the indifference graph of a weak tournament
(A,%) as the undirected graph (A,E) with {a, b} ∈ E if and only if a ∼ b and a 6= b. Fur-
thermore, t(a) denotes the degree of alternative a in the indifference graph, i.e., the number
of indifferences involving a. Recall that d+(a) denotes the cardinality of {b ∈ A : a � b}.

Let 0 ≤ α < 1
2

. We will construct a weak tournament Wα such that COα(Wα) *
[CO ](Wα). Define

k =

⌈
2− 2α

1− 2α

⌉
.

The weak tournament Wα = (A,%) has alternatives A = {ai : 1 ≤ i ≤ k} ∪ {x} ∪ {bj : 1 ≤
j ≤ k − 1}. For all i ≤ k, ai � x, and for all j ≤ k − 1, x � bj . Finally, u ∼ v for all pairs
(u, v) ∈ (A \ {x})× (A \ {x}).

Let sα(a) denote COα score of alternative a ∈ A, i.e., sα(a) = d+(a) + t(a) ·α. We have
sα(ai) = 1 + (2k− 2)α for all i ≤ k, sα(x) = k− 1, and sα(bj) = (2k− 2)α for all j ≤ k− 1.
The definition of k yields that sα(x) ≥ sα(ai) > sα(bj). Therefore, x ∈ COα(Wα).

We will now show that x /∈ [CO ](Wα). Since x has no ties, we already know that its
Copeland score is k − 1 in any orientation of Wα. Let T ∈ [Wα] be such an orientation

and let T̂ be the restriction of T to A \ {x}. Since T̂ has 2k − 1 alternatives, the average

Copeland score in T̂ is k − 1. We distinguish two cases. If all alternatives in A \ {x} have

Copeland score k − 1 in T̂ , then the Copeland score of alternative a1 in T is k. If, on the
other hand, not all alternatives in A \ {x} have Copeland score k− 1 in T̂ , then there exists

an alternative c ∈ A \ {x} that has a Copeland score of at least k in T̂ . The Copeland score
of c in tournament T is therefore greater or equal to k. In both cases, we have found an
alternative whose Copeland score in T is strictly greater than the Copeland score of x. It
follows that x /∈ CO(T ) for any orientation T ∈ [Wα] and, consequently, x /∈ [CO ](Wα).

Now let 1
2
≤ α ≤ 1. Consider a weak tournament G and an alternative x ∈ COα(G).

We will show that x ∈ [CO ](G) by constructing an orientation T ∈ [G] with x ∈ CO(T ).
Call an alternative y active if t(y) > 0, and inactive otherwise. As a first step, we make x

inactive by letting x dominate all alternatives to which it was tied. Let s∗ be Copeland score
of x after this step and observe that all other alternatives have a COα score of at most s∗.

We then iteratively eliminate all remaining indifferences via the procedure described
below. Throughout the procedure, the COα score of x will always remain maximal among
the COα scores of all alternatives.

While there are still active alternatives, we iteratively do one of the following two oper-
ations:

(i) if there is an active alternative y whose current COα score is less then or equal to
s∗ − (1− α), choose an arbitrary alternative z with y ∼ z and replace the indifference
with y � z.

(ii) if all active alternatives have a current COα score strictly greater than s∗ − (1 − α),
find a cycle in the indifference graph and orient the cycle in one direction.

It is left to be shown that both operations maintain the invariant that all alternatives have
a COα score of less than or equal to s∗. For the second operation, we also have to argue
that there always exists a cycle in the indifference graph.

As for the first operation, observe that turning an indifference a ∼ b into a � b increases
the COα score of a by 1−α and decreases the score of b by α. The first operation therefore
maintains the invariant.

As for the second operation, the existence of a cycle in the indifference graph is guaran-
teed by the fact that every active alternative has at least two neighbors in the indifference
graph. Indeed, an active alternative y with t(y) = 1 has a COα score of d+(y) + α, and
since d+(y) is a natural number, it is impossible that

s∗ − (1− α) < d+(y) + α ≤ s∗.

Furthermore, orienting the cycle (arbitrarily in one of the two possible directions) decreases
the COα score of all involved alternatives by 2α− 1 ≥ 0.
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a b

c

d

e

f

g

Fig. 11 Weak tournament W2 = (A,%) with A = {a, b, c, d, e, f, g}. There is indifference
between a and b (i.e., a ∼ b). For all pairs for which no edge is depicted, the edge is
pointing downwards. It can be verified that ES(W2) = {a, b, d, e, f, g} and [BP ](W2) =
{a, b, c, d, e, f}. Thus, g ∈ ES(W2) but g 6∈ [BP ](W2).

Proposition 12 GOCHA ⊂ MS ⊂ GETCHA = [TC ].

Proof. GOCHA ⊂ GETCHA was shown by Schwartz (1972, 1986) and GOCHA ⊂ MS ⊂
GETCHA was shown by Duggan and Le Breton (2001). We show that GETCHA = [TC ].
For a weak tournament W = (A,%), let D∗%(a) denote the set of alternatives that can be

reached by a via a %-path.
For the inclusion GETCHA ⊆ [TC ], consider a weak tournament W = (A,%) and let

a ∈ GETCHA(W ). By definition of GETCHA, D∗%(a) = A. We can construct an orientation

Ta ∈ [W ] by iteratively substituting indifferences x ∼ y with x ∈ D∗%(a) and y /∈ D∗%(a)

with x � y. In Ta, alternative a can reach every other alternative via a �-path. Thus,
a ∈ TC (Ta) ⊆ [TC ](W ).

For the inclusion [TC ] ⊆ GETCHA, consider a weak tournament W = (A,%) and
an arbitrary orientation T ∈ [W ]. We show that X = TC (T ) ⊆ GETCHA(W ). Assume
for contradiction that there exists x ∈ X \ GETCHA(W ). Minimality of X implies that
GETCHA(W ) cannot be a strict subset of X. Therefore, there exists y ∈ GETCHA(W )\X.
Since X = TC (T ), x � y. But this contradicts the assumption that x /∈ GETCHA(W ).

Proposition 13 [BP ] 6⊂ ES and ES 6⊂ [BP ].

Proof. For [BP ] 6⊂ ES , consider the weak tournament W1 = ({a, b, c},%) with a � b, b � c,
and a ∼ c. It is easily verified that [BP ](W1) = {a, b, c} and ES(W1) = {a, c}.

For ES 6⊂ [BP ], consider the weak tournament W2 = (A,%) depicted in Figure 11.

Proposition 14 UCD = [UC ].

Proof. In a tournament T = (A,�), an alternative y ∈ A is said to be covered in T if there
exists an alternative x ∈ A \ {y} such that (1) x � y and (2) z � x implies z � y for all
z ∈ A \ {x, y}. The uncovered set UC (T ) of T consists of all alternatives in A that are not
covered in T .

In a weak tournament W = (A,%), an alternative y ∈ A is said to be deeply covered in
W if there exists an alternative x ∈ A \ {y} such that (1) x � y and (2) z % x implies z � y
for all z ∈ A \ {x, y}. The deep uncovered set UCD (W ) of W consists of all alternatives in
A that are not deeply covered in W .
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b d f

a c e

Fig. 12 A weak tournament W on A = {a, b, c, d, e, f} with MCM (W )=MCD (W )=A and
[MC ](W )=A \ {f}.

Let W = (A,%) be a weak tournament. The identity of UCD (W ) and [UC ](W ) follows
from the fact that an alternative a ∈ A is deeply covered in W if and only if a is covered in
T for all orientations T ∈ [W ].

Proposition 15 [MC ] ⊂ MCD , [MC ] 6⊂ MCM , and MCM 6⊂ [MC ].

Proof. In a tournament T = (A,�) the minimal covering set MC (T ) is defined as the unique
smallest set B ⊆ A such that x /∈ UC (T |B∪{x}) for all x ∈ A \ B. Moreover, in a weak
tournament W = (A,%), an alternative y ∈ A is said to be McKelvey-covered in W if there
exists an alternative x ∈ A \ {y} such that (1) x � y, (2) z � x implies z � y for all z ∈ A,
and (3) y � z implies x � z. The McKelvey uncovered set UCM (W ) of W consists of all
alternatives in A that are not McKelvey-covered in W . In a weak tournament W = (A,%),
the minimal deep covering set MCD (W ) and the minimal McKelvey covering set MCM (W )
are then defined as the (unique) smallest sets B ⊆ A such that x /∈ UCD (W |B∪{x}) and
x /∈ UCM (W |B∪{x}) for all x ∈ A \B, respectively.

In tournaments, McKelvey-covering coincides with deep covering and is simply referred
to as covering. Observe that if x deeply covers y in a weak tournament W , then x covers y
in all tournaments T ∈ [W ].

We first show that [MC ] ⊆ MCD . Consider a weak tournament W and let X =
MCD (W ). By definition, X is externally stable w.r.t. deep covering, i.e., for all y ∈ A \X
there exists x ∈ A such that x deeply covers y ∈ X ∪ y. Let T be an orientation of W . The
above observation implies that X is externally stable in T . Since MC (T ) is contained in all
externally stable sets, MC (T ) ⊆ X.

In order to show that [MC ] 6= MCD and MCM 6⊂ [MC ], consider the weak tournament
W in Figure 12. It can be checked that both the McKelvey minimal covering set and the deep
minimal covering set contain all alternatives, i.e., MCM (W ) = MCD (W ) = {a, b, c, d, e, f}.
There are two orientations of W . Let T1 be the orientation with a � c and let T2 be the
orientation with c � a. Since MC (T1) = {a, b, c, d, e} and MC (T2) = {a, b, c}, we have
[MC ](W ) = {a, b, c, d, e}∪ {a, b, c} = {a, b, c, d, e}. In particular, MCD (W ) 6= [MC ](W ) and
MCM (W ) 6⊆ [MC ](W ).

In order to show that [MC ] 6⊂ MCM , consider the tournament W ′ on
{a1, a2, a3, a4, a5, b} such that a1 � a2 � a3 � a4 � a5 � a1, ai � b for i ∈ {1, 2},
b � a3, and x ∼ y for all other pairs. It can be checked that MCM (W ′) = {a1, a2, a3, a4, a5}
and that b ∈ [MC ](W ′).

Proposition 16 BAm ⊂ [BA] for all m ∈ {1, 2, 3, 4}.
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a b c

d e f

Fig. 13 A weak tournament W with BA1(W ) = {a, b, c} and BA2(W ) = {d, e, f}.

Proof. We start by defining the four generalizations of the Banks set that were proposed by
Banks and Bordes (1988). All generalizations are based on an extension of the definition of
a trajectory or maximal transitive subset. Let a = (a1, . . . , ak) be a sequence of alternatives
of some weak tournament W = (A,%). Then, following Banks and Bordes (1988), we say

a is transitive1 if ai � aj for all 1 ≤ i < j ≤ k, and

a is transitive2 if ai % aj for all 1 ≤ i < j ≤ k

Furthermore, a is transitive3 whenever a is transitive2 and ai � aj for some 1 ≤ i < j ≤ k.
Finally, a is transitive4 whenever a is transitive2 and ai � ai+1 for all 1 ≤ i < k. For m ∈
{1, 2, 3, 4}, we say that a is maximal transitivem in W if (a, a1, . . . , ak) is transitivem for no
a ∈ A and define BAm such that, for all weak tournaments W ,

BAm(W ) = {a1 : (a1, . . . , ak) is maximal transitivem}.

Banks and Bordes (1988) showed that each of their generalizations BAm always selects a
nonempty subset of alternatives. Moreover, on tournaments each BAm coincides with the
Banks set BA.

We now show that each of the generalizations BAm is a refinement of [BA].
First, let m ∈ {1, 2, 3, 4} and W = (A,%) a weak tournament. Assume that a ∈

BAm(W ), i.e., a = a1 for some a = (a1, . . . , ak) that is maximal transitivem in W . Observe
that an orientation T = (A,�′) of W exists such that

(i) ai �′ aj , for all ai, aj with 1 ≤ i < j ≤ k, and
(ii) ai ∼ x implies ai �′ x, for all ai with 1 ≤ i ≤ k and x ∈ A \ {a1, . . . , ak}.
Also observe that there is no x ∈ A \ {a1, . . . , ak} with x �′ ai for all 1 ≤ i ≤ k. Otherwise,
also x � ai for all 1 ≤ i ≤ k and a would not be maximal transitivem in W . It thus follows
that a is maximal transitive in T and that a ∈ BA(T ). As T ∈ [W ], we may conclude that
a ∈ [BA](W ).

Second, Banks and Bordes (1988) demonstrate in their paper that for each m ∈ {2, 3, 4},
there is a weak tournament W = (A,%) with BA1(W ) ∩ BAm(W ) = ∅ (see Figure 13 for
the case m = 2). As none of the generalizations of the Banks set ever yields the empty set,
there are a, b ∈ A such that a ∈ BA1(W ) \ BAm(W ) and b ∈ BAm(W ) \ BA1(W ). Since
both BA1(W ) ⊆ [BA](W ) and BAm(W ) ⊆ [BA](W ), it follows that b ∈ [BA](W ) whereas
b /∈ BA1(W ) and a ∈ [BA](W ) although a /∈ BAm(W ). That is, BAm(W ) ⊂ [BA](W ) for
each m ∈ {1, 2, 3, 4}, as desired.


