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ABSTRACT
Many voting rules—including single-valued, set-valued, and
probabilistic rules—only take into account the majority di-
graph. The contribution of this paper is twofold. First, we
provide a surprisingly efficient implementation for comput-
ing the minimal number of voters that is required to induce
a given digraph. This implementation relies on an encoding
of the problem as a Boolean satisfiability (SAT) problem
which is then solved by a SAT solver. Secondly, we exper-
imentally evaluate how many voters are required to induce
the majority digraphs of real-world and generated prefer-
ence profiles. Our results are based on datasets from the
PrefLib library and preferences generated using stochastic
models such as impartial culture, impartial anonymous cul-
ture, Mallows mixtures, and spatial models. It turns out
that all tournaments checked in these experiments can be
induced by at most five voters whereas all other digraphs
can be induced by at most eight voters. We also confirm
a conjecture by Shepardson and Tovey by verifying that all
tournaments with less than eight vertices can be induced by
three voters.

1. INTRODUCTION
Perhaps one of the most natural ways to aggregate bi-

nary preferences from individual voters to a group of voters
is simple majority rule, which prescribes that one alterna-
tive is socially preferred to another whenever a majority of
voters prefers the former to the latter. Majority rule has
an intuitive appeal to democratic principles, is easy to un-
derstand and—most importantly—satisfies some attractive
formal properties [25]. Moreover, almost all common voting
rules coincide with majority rule in the two-alternative case.
It would therefore seem that the existence of a majority of
individuals preferring alternative x to alternative y signifies
something fundamental and generic about the group’s pref-
erences over x and y. Indeed, many voting rules—including
single-valued, set-valued, and probabilistic rules—only take
into account the majority digraph.

The central role of majority rule establishes an interest-
ing connection between voting theory and graph theory. The
earliest (and most fundamental) result in this context is Mc-
Garvey’s theorem, which states that, given sufficiently many
voters with linear preferences, every digraph may be induced
by the majority rule [26]. In this paper, we will be concerned

Appears at: 1st Workshop on Exploring Beyond the Worst Case in
Computational Social Choice. Held as part of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems. May 6th, 2014.
Paris, France.

with the minimal number of voters v(G) required to induce
a given digraph G.

McGarvey’s original construction requires two voters for
each edge of the digraph, thus showing that v(G) ≤ 2

(
n
2

)
where n is the number of vertices of G. Consequently, this
implied that the minimal number of voters v(n) required to
induce any digraph on n vertices is in O(n2). This bound
was subsequently improved by Stearns [32], who showed that
v(n) = Ω(n/logn). Erdős and Moser [11] non-constructively
provided a matching upper bound by proving that v(n) =
Θ(n/logn). More recently, Fiol [13] showed that v(G) ≤ n−
logn+ 1.

A digraph is a k-majority digraph if it can be induced by
k voters. Interestingly, surprisingly little is known about
the structure of k-majority digraphs. Dushnik and Miller
[10] gave a complete characterization of 2-majority digraphs
and Yannakakis [34] showed that the characterizing prop-
erties can be verified in polynomial time. Brandt et al. [8]
provided a similar characterization for 3-majority digraphs.
However, the computational complexity of checking whether
a given digraph is a 3-majority digraph remains open. For
the special case of tournaments, i.e., asymmetric and com-
plete digraphs, Alon et al. [1] showed that the domination
number of k-majority tournaments is bounded whereas Mi-
lans et al. [27] showed that every k-majority tournament
contains a transitive subtournament whose size is at least
polynomial in n.

The contribution of this paper is twofold. First, we pro-
vide a practical implementation for computing v(G) for a
given digraph G by encoding the problem as a Boolean sat-
isfiability (SAT) problem which is then solved by a SAT
solver. This technique turns out to be surprisingly efficient
and easily outperforms an implementation for 3-majority
digraphs based on the graph-theoretic characterization by
Brandt et al. [8]. Secondly, we experimentally evaluate how
many voters are required to induce the majority relations of
real-world and generated preference profiles. Our results are
based on datasets from the PrefLib library and preferences
generated using stochastic models such as impartial culture,
impartial anonymous culture, Mallows-φ, and spatial mod-
els. It turns out that all tournaments checked in these exper-
iments are 5-majority tournaments whereas all other checked
digraphs are 8-majority digraphs. Among other things, this
shows that perhaps v(G) itself may be used as a parameter
to govern the generation of realistic preference profiles. We
also confirm a conjecture by Shepardson and Tovey [31] by
verifying that all tournaments with less than eight vertices
are 3-majority digraphs.
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Figure 1: A smallest 6-majority digraph with a minimal
inducing preference profile.

2. PRELIMINARIES
Let A be a set of n alternatives and K = {1, . . . , k} a set of

voters. The preferences of voter i ∈ K are represented by a
linear (i.e., reflexive, complete, transitive, and antisymmet-
ric) preference relation Ri ⊆ A × A. The interpretation of
(a, b) ∈ Ri, usually denoted by a Ri b, is that voter i values
alternative a at least as much as alternative b. A preference
profile R = (R1, . . . , Rk) is a k-tuple containing a preference
relation Ri for each agent i ∈ K. For a preference profile R
and two alternatives a, b ∈ A, the majority margin gR(a, b)
is defined as the difference between the number of voters
who prefer a to b and the number of voters who prefer b
to a, i.e.,

gR(a, b) = |{i ∈ K | a Ri b}| − |{i ∈ K | b Ri a}|.

Thus, gR(b, a) = −gR(a, b) for all a, b ∈ A.
The majority relation �R of a given preference profile is

defined as

a �R b iff gR(a, b) > 0.

Every majority relation �R is fully represented by a digraph
G and we say that R induces G. If R has k voters, we say
that G is k-inducible, or, equivalently, that G is a k-majority
digraph.

If a digraph is complete, which is always the case if the
number of voters is odd, we speak of a tournament T =
(A,�).

For any digraph G, by v(G) we denote the minimal num-
ber of voters k such that G is a k-majority digraph. Oc-
casionally, we will call this number the voter complexity of
G.1

Example 1. Consider the digraph G depicted on the left
of Figure 1. We found that G is not 4-inducible. It cannot
be 5-inducible either, because it is not a tournament as there
is no strict relation between a and c. The profile R on the
right of Figure 1, however, induces G and therefore G is a
6-majority digraph (or, equivalently, v(G) = 6). It turns
out that G is a smallest digraph (in terms of the number of
nodes) with voter complexity larger than 5.

In this work, we address the computational problem of
computing the voter complexity. To this end, we define the
problem of checking whether for a given digraph G there
exists a preference profile with k voters that induces G, i.e.,
whether G is a k-majority digraph.

1This complexity measure of digraphs can also be inter-
preted as a complexity measure for preference profiles. The
voter complexity of a given preference profile is then sim-
ply defined as the voter complexity of the induced majority
graph.

Name: Check-k-Majority
Instance: A digraph G and a positive integer k.
Question: Is G a k-majority digraph?

Note that the following two simple observations reduce the
candidates for v(G) to odd and even numbers, respectively,
depending on whether G is a complete digraph or not.

Observation 1. For all tournaments T , the voter com-
plexity v(T ) is odd.

Proof. Assume v(T ) = k was even. Then there exists
a preference profile R with k voters that induces T . Since
k is even, the majority margin must be even for every pair
of alternatives and can furthermore never be 0 as T is a
tournament. Therefore, removing any single voter from R
gives a profile R′ with just k− 1 voters that still induces T ,
a contradiction.

Observation 2. For all incomplete digraphs G, the voter
complexity v(G) is even. It even holds that G is no k-
majority digraph for k odd.

Proof. This follows directly from the fact that for all
preference profiles R with an odd number of voters k, the
majority relation �R is complete and anti-symmetric (as no
majority ties can occur).

3. METHODOLOGY
The number of objects potentially involved in the Check-

k-Majority problem are given in Table 1. It is immediately
clear that a näıve algorithm will not solve the problem in a
satisfactory manner. This section describes our algorithmic
efforts to solve this problem for reasonably large instances.

3.1 Translation to propositional logic (SAT)
In order to answer Check-k-Majority, we follow a sim-

ilar approach as Tang and Lin [33], Geist and Endriss [16],
and Brandt and Geist [4]: we translate the problem to
propositional logic (on a computer) and use state-of-the-art
SAT solvers to find a solution. At a glance, the overall solv-
ing steps are shown in Algorithm 1.

Generally speaking, the problem at hand can be under-
stood as the problem of finding a preference profile that
satisfies certain conditions—here: inducing a given digraph.
Thus, a satisfying instance of the propositional formula to
be designed should represent a preference profile. To cap-
ture this, a surprisingly simple formalization involving just
one type of variable suffices: in our encoding the boolean
variable ri,a,b represents a Ri b, i.e., voter i ranking alterna-
tive a at least as high as alternative b. As it turns out, this
one variable type also suffices for the additional condition of
inducing the given digraph.

In more detail, the following three conditions/axioms need
to be formalized:

1. All k voters have linear orders over the n alternatives
as their preferences (short: linear preferences)

2. For each majority edge x � y in the digraph, a major-
ity of voters needs to prefer x over y (short: majority
implications)



Preference profiles n = 4 n = 5 n = 10 n = 25 n = 50

k = 1 24 120 ∼ 3.6 · 106 ∼ 1.6 · 1025 ∼ 3.0 · 1064

k = 3 13,824 ∼ 1.7 · 106 ∼ 4.8 · 1019 ∼ 3.7 · 1075 ∼ 2.8 · 10193

k = 5 ∼ 8.0 · 106 ∼ 2.5 · 1010 ∼ 6.3 · 1032 ∼ 9.0 · 10125 ∼ 2.6 · 10322

Tournaments (unlabeled) 4 12 ∼ 9.7 · 106 ∼ 1.3 · 1065 ∼ 1.9 · 10305

Table 1: Number of objects involved in the Check-k-Majority problem for one, three, and five voters.

Input: digraph (A,�), positive integer k
Output: whether (A,�) is a k-majority digraph
/* Encoding of problem in CNF */

File cnfFile;
foreach voter i do

cnfFile += Encoder.reflexivePreferences(i);
cnfFile += Encoder.completePreferences(i);
cnfFile += Encoder.transitivePreferences(i);
cnfFile += Encoder.antisymmetricPreferences(i);

cnfFile += Encoder.majorityImplications((A,�));
if � is not complete then

cnfFile +=
Encoder.indifferenceImplications((A,�));

/* SAT solving */

satisfiable = SATsolver.solve(cnfFile);
if instance is satisfiable then

return true;

else
return false

Algorithm 1: SAT-Check-k-Majority

3. For each missing edge (x � y and y � x) in the di-
graph, exactly half the voters need to prefer x over y
(short: indifference implications)2

For the first axiom, we encode reflexivity, completeness,
transitivity, and anti-symmetry of the relation Ri for all vot-
ers i. The complete translation to CNF (conjunctive normal
form, the established standard input format for SAT solvers)
is given exemplarily for the case of transitivity; the other ax-
ioms are converted analogously.

In formal terms transitivity can be written as

(∀i)(∀x, y, z) (x Ri y ∧ y Ri z → x Ri z)

≡ (∀i)(∀x, y, z) (ri,x,y ∧ ri,y,z → ri,x,z)

≡
∧
i

∧
x,y,z

(¬ (ri,x,y ∧ ri,y,z) ∨ ri,x,z)

≡
∧
i

∧
x,y,z

(¬ri,x,y ∨ ¬ri,y,z ∨ ri,x,z) ,

which then translates to the pseudo code in Algorithm 2 for
generating the CNF file. The key in the translation of the
inherently higher order axioms to propositional logic is (as
pointed out by Geist and Endriss [16] already) that because
of finite domains, all quantifiers can be replaced by finite
conjunctions or disjunctions, respectively.

In all algorithms, a subroutine r(i, x, y) takes care of the
compact enumeration of variables.3

2Note that this axiom is only required for incomplete di-
graphs.
3The DIMACS CNF format only allows for integer names of

foreach Voter i do
foreach Alternative x do

foreach Alternative y do
foreach Alternative z do

variable not(r(i, x, y));
variable not(r(i, y, z));
variable(r(i, x, z));
newClause;

Algorithm 2: Encoding of transitivity of individual pref-
erences

The axioms of majority and indifference implications can
be formalized in a similar fashion. We describe the transla-
tion for the majority implications here; the procedure for the
indifference implications (needed for incomplete digraphs)
is analogous again. In the following, we denote the small-
est number of voters required for a positive majority margin
by m(k) := bk · 1

2
c + 1. Note that then, because of anti-

symmetry of the individual preferences, for x � y it suffices
that there exists a set of m(k) many voters who prefer x to
y. In formal terms:

(∀x, y) (x � y → |{i | x Ri y}| > |{i | y Ri x}|)
≡ (∀x, y) (x � y → |{i | x Ri y}| ≥ s(n))

≡ (∀x, y) (x � y →
(∃M ⊆ K)|M | = m(k) ∧ (∀i ∈M)x Ri y)

≡
∧
x�y

∨
|M|=m(k)

∧
i∈M

ri,x,y.

In order to avoid an exponential blow-up when convert-
ing this formula to CNF, variable replacement (a standard
procedure also known as Tseitin transformation) is applied.
In our case, we replaced

∧
i∈M ri,x,y by new variables of the

form hM,x,y and introduced the following defining clauses:

∧
M

∧
x,y

(
hM,x,y →

∧
i∈M

ri,x,y

)

≡
∧
M

∧
x,y

(
¬hM,x,y ∨

∧
i∈M

ri,x,y

)
≡

∧
M

∧
x,y

∧
i∈M

(¬hM,x,y ∨ ri,x,y) .

In this case, the helper variables even have an intuitive
meaning as hM,x,y enforces that all the voters i ∈M prefer
alternative x over alternative y.

variables. But since we know in advance how many voters
and alternatives there are, we can simply use a standard
enumeration method for tuples of objects.



Note that the conditions like |M | = m(k) can easily be
fulfilled during generation of the corresponding CNF formula
on a computer. For enumerating all subsets of voters of a
given size we, for instance, used Gosper’s Hack [18]. The
corresponding pseudo code for majority implications can be
found in Algorithm 3.

foreach Pair of alternatives x � y do
foreach M ⊆ K, |M | = m(k) do

variable(h(M,x, y));

newClause;

/* start of helper variable definition */

foreach Pair of alternatives x � y do
foreach M ⊆ K, |M | = m(k) do

foreach i ∈M do
variable not(h(M,x, y));
variable(r(i, x, y));
newClause;

Algorithm 3: Encoding of majority implications

This encoding leads to a total of k · n2 +
(

k
m(k)

)
· n2 =

n2 ·
(
k +

(
k

m(k)

))
variables for the case of tournaments

and n2 ·
(
k +

(
k

m(k)

)
+
(
k
k/2

))
variables for incomplete di-

graphs.The number of clauses is equal to k · (n3 + n2) +
n2−n

2
·
(

1 +
(

k
m(k)

)
·m(k)

)
and at most k · (n3 +n2) + (n2−

n)·
(

1 +
(
k
k/2

)
· k

2

)
for tournaments and incomplete digraphs,

respectively.
With all axioms formalized in propositional logic, we are

now ready to analyze arbitrary digraphs G for their voter
complexity v(G). Before we do so, however, we describe an
optimization technique for tournament graphs, which, for
certain instances, speeds up the computation significantly.

3.2 Optimized computation for tournaments
via components

An important structural property in the context of tour-
naments is whether a tournament admits a non-trivial de-
composition. Brandt et al. [7] show that this decomposition
allows for a recursive computation of certain concepts, which
is particularly helpful if the original computation is costly
for large instances.4 We are now going to prove that a sim-
ilar optimization can be carried out for the computation of
the voter complexity v(T ) of a given tournament T . In par-
ticular, we show that the voter complexity of a tournament
is equal to the maximum of the voter complexities of its
components and the corresponding summary.

In formal terms, a non-empty subset B of A is a compo-
nent of a tournament T = (A,�) if for all a ∈ A \ B either
B � a or a � B, where B � a stands for (∀b ∈ B)b � a. A
decomposition of T is a set of pairwise disjoint components
{B1, . . . , Bp} of T such that A =

⋃p
j=1Bj . The decom-

position is proper if p > 1 and not all Bj are singletons.
Every tournament admits a decomposition that is minimal
in a well-defined sense [20]. Given a particular decomposi-

tion B̃ = {B1, . . . , Bp}, the summary of T with respect to

4As Brandt et al. [7] point out, the decomposition of a tour-
nament can be computed in linear time.

B̃ is defined as the tournament TB = ({1, . . . , p}, �̃) on the
individual components rather than the alternatives, i.e.,

q �̃ r if and only if Bq � Br.

Each component Bj (including A) naturally induces a sub-
tournament TBj which is the summary of T |Bj with respect
to its minimal decomposition.

The following lemma then enables the recursive computa-
tion of v(T ) along the component structure of T :

Lemma 1. Let T be a tournament and B̃ = {B1, . . . , Bp}
a decomposition of T . Then

v(T ) = max
j
{v(TBj ), v(TB)}.

Proof. Let R be a minimal profile inducing T . Then,
R|Bj induces TBj for every Bj establishing v(T ) ≥ v(TBj ).
That v(T ) ≥ v(TB) holds is also easy to see by consider-
ing a variant of R in which from each component all but
one node are arbitrarily chosen and removed. The remain-
ing profile then induces TB . For the other direction, let
v′(T ) = maxj{v(TBj ), v(TB)}. We know, by Observation 1,
that v(T ′) and every v(TBj ) is odd, as these are all tourna-

ments. Each TBj (and TB) has a minimal profile Rj (and
R, respectively). We can add pairs of voters with oppos-
ing preferences to each profile without changing its major-
ity relation. This way, we get profiles R′j (and R′) that
still induce TBj (or TB) but now all have the same num-

ber of voters v′(T ). Now, create a new profile R̂ from R′

in which Rji replaced alternative j as a segment in R′i for
each voter i and every alternative j as in [19]. It is easy

to check that R̂ has v′(T ) voters and still induces T , i.e.,
v(T ) ≥ v′(T ) = v(TBj ).

We have implemented this optimization and found that
many real-world majority digraphs exhibit proper decom-
positions, speeding up the computation of SAT-Check-k-
Majority.

3.3 Data sources and method of analysis
In the preference library PrefLib [23], scholars have con-

tributed data sets from real world scenarios ranging from
preferences over movies or sushi via Formula 1 championship
results to real election data. Accordingly, the number of
voters whose preferences originally induced these data sets
vary heavily between 4 and 44000. At the time of writing,
PrefLib contained 354 tournaments induced from pairwise
majority comparisons as well as 185 incomplete majority di-
graphs.

Additionally, we consider stochastic models to generate
tournaments of a given size n. Many different models for
linear preferences (or orderings) have been considered in the
literature. We refer the interested reader to [9, 22, 24, 6].
In this work, we decided to examine tournaments generated
with five different stochastic models.

In the uniform random tournament model, the same prob-
ability is assigned to each labeled tournament of size n, i.e.,

Pr(T ) =
1

2(n2)
for each T with |T | = n.

In all of the remaining models, we sample preference profiles
and work with the tournament induced by the majority re-
lation. In accordance with [6], we generated profiles with 51
voters.



The impartial culture model (IC) is the most widely-
studied model for individual preferences in social choice. It
assumes that every possible preference ordering has the same
probability of 1

n!
. If we add anonymity by having indistin-

guishable voters, the set of profiles is partitioned into equiv-
alence classes. In the impartial anonymous culture (IAC),
each of these equivalence classes is chosen with equal prob-
ability.

In Mallows-φ model [21], the distance to a reference rank-
ing is measured by means of the Kendall-tau distance which
counts the number of pairwise disagreements. Let R0 be
the reference ranking. Then, the Kendall-tau distance of a
preference ranking R to R0 is

τ(R,R0) =

(
n

2

)
− |R ∩R0| .

According to the model, this induces the probability of a
voter having R as his preferences to be

Pr(R) =
φτ(R,R0)

C

where C is a normalization constant and φ ∈ (0, 1] is a
dispersion parameter. Small values for φ put most of the
probability on rankings very close to R0 whereas for φ = 1
the model coincides with IC.

A very different kind of model is the spatial model. Here,
alternatives and voters are uniformly at random placed in a
multi-dimensional space and the voters’ preferences are de-
termined by the (Euclidian) distanced to the alternatives.
The spatial model has played an important role in politi-
cal and social choice theory where the dimensions are inter-
preted as different aspects or properties of the alternatives
(see, e.g., [28, 2]).

4. RESULTS
All experiments were run on a Intel Core i5, 2.66GHz

(quad-core) machine with 12 GB RAM using the SAT solver
plingeling [3].

4.1 Exhaustive analysis
We generated all tournaments with up to 10 alternatives

and found that all of these are 5-inducible. In fact, all tour-
naments of size up to seven are even 3-inducible, confirm-
ing a conjecture by Shepardson and Tovey [31]. They also
showed that there exist tournaments of size 8 that are not
3-inducible. We find that the exact number of such tourna-
ments is 96 (out of 6880).

Brandt and Seedig [5] presented a highly structured tour-
nament on 24 alternatives that serves as the current minimal
counterexample to a now disproved conjecture by Schwartz
[30] in social choice theory. We found it to be a 5-majority
tournament, implying that the negative theoretical conse-
quences of the counterexample already hold for scenarios
with only 5 voters (and at least 24 alternatives).

4.2 Empirical analysis
Among the tournaments in PrefLib, 58 are 3-inducible.

Out of the two largest tournaments in the data set with 240
and 242 alternatives, respectively, the first is a 5-majority
tournament while on the second the SAT solver did not ter-
minate within one day. The remaining tournaments are

n uniform IC IAC
Mallows-φ
(φ = 0.95)

spatial
(dim = 2)

3 1.40 1.13 1.13 1.13 1.00
5 3.00 1.67 2.13 1.33 1.13
7 3.00 2.67 2.67 2.47 1.33
9 3.13 3.00 3.00 2.67 1.60
11 3.93 3.07 3.00 2.87 2.33
13 4.80 3.07 3.20 2.93 2.53
15 5.00 3.27 3.40 3.00 2.67
17 5.00 3.40 3.80 2.93 2.80
19 5.00 4.27 4.20 3.00 2.80
21 5.00 4.47 4.33 3.00 2.87

Table 2: Average voter complexity in tournaments gener-
ated by stochastic (preference) models. The given values
are averaged over 30 samples each.

transitive and thus 1-inducible. Therefore, all checkable
tournaments in PrefLib are inducible by only 5 voters.

For the non-complete majority digraphs in PrefLib, we
found that the indifference constraints which are imposed
on missing edges change the picture. Not only does it nega-
tively affect the running time of SAT-Check-k-Majority
in comparison to tournaments which made us restrict our
attention to instances with at most 40 alternatives, but it
also seems to result in higher voter complexities of up to
8 among the 85 feasible instances. However, given that the
number of voters in the profiles that originally induced these
majority digraphs are often in the hundreds or thousands,
we still consider these low voter complexities.

4.3 Stochastic analysis
For up to 21 alternatives, we sampled preference pro-

files (each consisting of 51 voters5) from the aforementioned
stochastic models and examined the corresponding major-
ity graphs for their voter complexity using SAT-Check-k-
Majority. The average complexities over 30 instances of
each size are shown in Table 2. We see that the unbiased
models (IC, IAC, uniform) tend to induce digraphs with
higher voter complexity. We encountered no tournament
that was not a 5-majority tournament.6

4.4 Runtime analysis
A characterization by Brandt et al. [8] of 3-majority di-

graphs allows for a straightforward algorithm, which is ex-
pected to have a much better running time than any näıve
implementation enumerating all preference profiles (also
compare Table 1). The characterization is given in Lemma 2
below, as is the corresponding algorithm 2-Partition-
Check-3-Majority (Algorithm 4). Besides enumerating
all 2-partitions of the majority relations, the only non-trivial
part is to check whether a relation has a transitive reorien-
tation. This can be done efficiently using an algorithm by
Pnueli et al. [29].

We compared the running times of 2-Partition-Check-
3-Majority with the ones of our implementation via SAT

5In another study [6], this size turned out to be suffi-
ciently large to discriminate the different underlying stochas-
tic models.
6Our efforts also included checking more than 8 million uni-
form random tournaments with 12 alternatives.



as described in Section 3.1 (see also Algorithm 1).7

Surprisingly, it turns out that—even though it is much
more universal—SAT-Check-3-Majority offers signifi-
cantly better running times. Preliminary data is displayed
in Table 3. Note that in addition to being more efficient,
SAT-Check-k-Majority is even able to return a prefer-
ence profile with k voters that induces the given digraph
(without the need for additional computations).

Further runtimes, which exhibit the practical power of our
SAT approach (and its limits), can be obtained from Table 4.

Lemma 2 (Brandt et al.). A digraph (A,�) is a 3-
majority digraph if and only if � is complete and there are
disjoint sets �1,�2 with �= (�1 ∪ �2) such that

• (A,�1) is a 2-majority digraph and

• �2 is acyclic.

Whether (A,�1) is a 2-majority digraph can efficiently be
checked [34] via the following characterization by Dushnik
and Miller [10]:

Lemma 3 (Dushnik and Miller). A digraph (A,�)
is a 2-majority digraph if and only if

• � is transitive and

• there exists a reorientation of
(
(A×A) \

(
� ∪ �−1

))
that is transitive and asymmetric.

Input: digraph (A,�)
Output: whether (A,�) is a 3-majority digraph
if � is complete then

foreach 2-partition {�1,�2} of � do
if �1 is transitive and �2 is acyclic and �2 has
a transitive reorientation then

return true;

else
return false;

else
return false;

Algorithm 4: 2-Partition-Check-3-Majority

5. OUTLOOK AND FUTURE WORK
The following two insights of this work have been most

surprising to us.

• First, our SAT-based implementation significantly out-
performs the best direct algorithm known to us, while
at the same time being much more flexible and pow-
erful.8

• Second, the voter complexity of any majority digraph
we could analyze does not exceed five for tournaments,
and eight for incomplete digraphs, respectively.

7As a programming language Java was used in both cases.
8In the sense that it can also solve instances for k ≥ 3.

Both of these points offer many directions for future work.
Our implementation might be useful to find concrete tour-
naments that are not k-inducible, a problem that has occu-
pied graph theorists. For example, the order of the smallest
tournament that is not 5-inducible is currently unknown.
Analytical results by Alon et al. [1], Graham and Spencer
[17], and Fidler [12] can be used to narrow down the search
for such tournaments. Preliminary results suggest that
quadratic residue tournaments are good candidates for tour-
naments that can only be induced by a large number of vot-
ers. We intend to further pursue this direction in future
work.

As other solving techniques are concerned, a natural
choice for the problem at hand are techniques that can han-
dle cardinality constraints natively (rather than encoding
them in SAT/CNF as we did). ASP (answer set program-
ming, see, e.g., Gebser et al. [15]) is an example of such a
technique. We were able to obtain preliminary results us-
ing an ASP formulation of the problem (see Figure 2) and
a corresponding solver (clasp with grounder Gringo [14]).
While due to its richer problem description language (which
also includes cardinality constraints) the formalization is
much more compact than the corresponding SAT/CNF for-
mulation, interestingly, performance appears to be similar or
even slightly worse compared to current SAT solvers. Other
solvers with cardinality constraints, however, might lead to
different performance results.

Our approach can also be used to treat a range of related
problems and questions. For instance, one could define nat-
ural variants of the notion of k-majority digraphs such as
voters having weak (i.e., ties are allowed) or even incomplete
preferences. Because of the high flexibility of our SAT for-
malization, one can easily apply the same method to analyze
these related concepts and questions.9 Even weighted ma-
jority graphs, i.e., graphs which carry the majority margin
as weights on edges, can be analyzed regarding their voter
complexity by slightly adapting our SAT or ASP encodings.
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