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ABSTRACT
We propose a novel mechanism design setting in which each agent

contributes some amount of a divisible resource (such as money or

time) to a common pool. The agents then collectively decide how

to efficiently distribute the resources over a fixed number of public

goods called projects. An important application of this setting is

donor coordination, which allows philanthropists with different

goals to find mutually accepted causes. In general, we find that

no efficient mechanism can guarantee that each agent only needs

to distribute her individual contribution over her most-preferred

projects and that no efficient mechanism can incentivize agents to

actually participate in the mechanism. On the other hand, for the

important case of dichotomous preferences, these impossibilities

disappear, and we show that the Nash product rule satisfies all of
the above-mentioned properties. However, the Nash product can

be strategically manipulated, and we settle a long-standing open

question of Bogomolnaia, Moulin, and Stong (2005) by proving that

no strategyproof and efficient mechanism can guarantee that at

least one approved project of each agent receives a positive amount

of the resource. An interesting alternative to the Nash product rule

is the conditional utilitarian rule, which satisfies strategyproofness

and a natural weakening of efficiency.

1 INTRODUCTION
Philanthropists have different aims and values that determine how

they would like to spend their money. As a consequence, the deci-

sions about what to do with their money are usually made indepen-

dently of each other, even though there may be opportunities for

efficiency improvements through coordination and compromise. In

the simplest example, there are two donors: one likes charities a
and b and one likes charities b and c . Without coordination, their

mutual interest in charity b goes unnoticed and there can be sig-

nificant efficiency losses by spending money on charities a and c
rather than on b.

Donor coordination could improve donation decisions on small

scales (such as by those involved in effective altruism) or on large

scales (such as foundations). The Open Philanthropy Project, which

distributes the multi-billion dollar endowment of the foundation

Good Ventures, has written extensively about the need for methods

to coordinate granting decisions, and has called on academics to

study this problem [23]. In their particular case, several teams are

working on identifying promising recipients in several focus areas

(such as global health, scientific research, U.S. policy), and they

require methods to apportion their annual spending (of about 100

million U.S. dollars) among recipients while identifying synergies

between the causes. These opportunities also exist for individual

donors, who usually do not explicitly look for compromise potential

with other donors’ plans.

We propose studying the problem of donor coordination from

a mechanism design perspective. We envision a central board to

which donors submit information about their philanthropic goals

and the size of their planned donation. The board then recommends

to each donor a specific apportionment of her donation to charities,

which takes into account others’ inputs. In another interpretation

of our formal model, agents transfer their resources to a common

pool, and then “vote” over the division of the total resources in the

pool among different projects.
1

The proposed mechanism design setting could be applied on

different scales and in a variety of situations. In the most basic

terms, our model describes the collective distribution of individual

contributions: each individual owns some amount of a divisible

resource (such as money or time) which can be used for several

purposes. The individuals also have preferences over how their

and others’ resources should be used. Thus, there may be benefits

from aggregating those preferences. Apart from donor coordination,

this model could, for example, be used to allocate time to research

projects in academia or help a group of investors to coordinate the

allocation of their capital.

In our formal model, there arem projects which may be char-

ities, cause areas, or joint activities. Each of n individual agents

contributes an amountCi of resources to be spent on these projects,

giving rise to a total endowmentC =
∑n
i=1

Ci . The mechanism then

returns how the total endowment should be divided among them
projects based on the agents’ preferences. In principle, the agents’

preferences over all possible distributions could account for vari-

ous effects such as complementarities, substitutabilities, decreasing

marginal returns, and budget caps. However, we find that, even for

the relatively simple case of linear utility functions, basic desirable

properties are already incompatible with each other.

Since we assume that agents own the resources, they cannot be

forced to participate in themechanism. Thus, we need to ensure that

it is weakly better for individuals to contribute their resources (and

preferences) to the mechanism, rather than spending them inde-

pendently. Mechanisms guaranteeing this are individually rational.
Further, we assume that agents are not bound to the recommenda-

tions of the mechanism, and hence the outcome of the mechanism

needs to be implementable: the mechanism cannot force agents to

spend their money on projects that they think are suboptimal. The

main goal of these mechanisms as coordination devices is to exploit

1AmazonSmile, for example, allows customers to let Amazon donate 0.5% of the price

of the customer’s purchases to a charitable organization of their choice (from a list

of charities provided by Amazon). If customers were allowed to approve more than a

single charity (as in the example above), efficiency could easily be increased.
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efficiency gains. Hence, the output of a mechanism should be Pareto

efficient, i.e., no other distribution should be preferred by all agents.

Unfortunately, we show that efficiency is incompatible with either

individual rationality or implementability, even for linear utilities.

We therefore focus on the important special case of dichoto-
mous utility functions, where agents either approve or disapprove a
project. The utility gained from a distribution is equal to the amount

of resource spent on approved projects. Approval ballots of this

form are a popular input format in many settings. For dichotomous

preferences, we find that the impossibilities vanish. In particular,

the rule that maximizes Nash welfare (the product of agents’ utili-
ties) satisfies efficiency, individual rationality, and implementability.

One can establish implementability by analyzing the first-order

conditions of maximizing Nash welfare. In contrast, the proof that

Nash satisfies individual rationality is difficult, and is based on a

careful estimate of the derivative of an agent’s utility at the opti-

mum solution, depending on the amount of their contribution Ci .
We also analyze four other mechanisms based on varying notions

of maximizing utilitarian and egalitarian welfare. None of them

satisfies our three desiderata. However, the conditional utilitarian
rule (which maximizes utilitarian welfare subject to the constraint

that the returned distribution be implementable) satisfies imple-

mentability, individual rationality, and a weaker form of efficiency,

which only requires that the returned distribution should not be

Pareto dominated by a distribution which itself is implementable.

In the appendix, we briefly discuss some monotonicity conditions

and show that under the Nash product rule, a project may receive

less resources if it becomes more popular while this is impossible

under the conditional utilitarian rule.

In our model, agents report two kinds of information to the

mechanism: the size of their contribution, and their preferences.

Individual rationality implies that strategic agents do not have an

incentive to underreport the size of their contribution. However,

there may be incentives to misreport the preferences. While the

conditional utilitarian rule has the attractive feature of being strate-

gyproof, none of the efficient mechanisms avoid incentives for ma-

nipulation. For linear utilities, a classic result by Hylland [19] shows

that only dictatorial mechanisms can be efficient and strategyproof

at the same time. We establish a collection of strong impossibility

theorems that apply even to the case of dichotomous utilities. We

show that any efficient mechanism that assigns a positive amount of

resources to at least one approved project of each agent (a property

much weaker than implementability) can be manipulated. These

manipulations take the form of “free-riding”: agents pretend not to

approve popular projects, which on fairness grounds induces the

mechanism to redirect funds to other projects that they approve.

Our results confirm a long-standing conjecture by Bogomolnaia,

Moulin, and Stong [6]. The proof of the strongest result is extremely

complicated and was constructed with the help of a SAT solver; it

reasons about manipulations between hundreds of type profiles.

2 RELATEDWORK
Our model falls within the area of collective decision making where

the set of alternatives is some subset of the Euclidian space, model-

ing divisible public goods or lotteries over indivisible public goods

[see, e.g., 20]. Two concrete applications that have gained recent

attention from computer scientists are those of participatory bud-
geting [e.g., 4, 15, 16] and probabilistic social choice [e.g., 2, 8, 9].

The former is concerned with a fixed budget that needs to be

allocated to projects and the latter extends the traditional social

choice model by allowing for randomizations between alternatives.

While both models are mathematically equivalent, the literature has

focused on slightly different axioms due to the different interpreta-

tions of the mechanisms’s output (allocations vs. lotteries). The key

difference between both of the above settings and our model is that

in our our model, the individual contributions to the endowment

(or the accumulated probability mass) are owned by the agents. This

enables us to define the axioms of implementability and individual

rationality, which—to the best of our knowledge—have not been

considered in previous work. The Nash product rule has featured

prominently in both streams of research [2, 11, 12, 15, 16]. The

conditional utilitarian rule was first implicitly used by Duddy [14]

and studied in more detail by Aziz, Bogomolnaia, and Moulin [2].

Some of our results can be viewed as results in probabilistic

social choice by letting Ci = 1/n for all i . Seen from this angle,

individual rationality is a strengthening of strict participation (aka

very strong participation) for concrete utility functions [2, 9]. Hence,
Theorem 4 strengthens Aziz, Bogomolnaia, and Moulin [2]’s proof

showing that the Nash product rule satisfies strict participation.

The proof of their result is a simple contradiction argument, while

we need a precise estimate of the change induced by an extra voter.

This is not the first paper to consider donations to charities

from a mechanism design standpoint. Conitzer and Sandholm [13]

have proposed a bidding language to formulate matching offers

over multiple charities and Buterin, Hitzig, and Weyl [10] recently

extended ideas from quadratic voting to allow a large funder to

subsidize donations by others in an efficient way.

3 PRELIMINARIES
Let A be a finite set ofm projects (e.g., charities or joint activities)
and N a finite set of n agents. For each i ∈ N , agent i’s contribu-
tion is Ci ∈ R>0.Contributions may, for example, be time shares

or monetary contributions. When all individual contributions are

equal to 1, we refer to these as uniform contributions.
A distribution δ is a function that says how some value V (e.g.,

an individual contribution or the entire endowment) is distributed

among the projects, i.e., δ : A → R≥0 such that

∑
x ∈A δ (x) = V . For

brevity, we write distributions as linear combinations of projects,

e.g., a + 2b stands for distribution δ with δ (a) = 1 and δ (b) = 2.

The set of all distributions of value V is denoted by ∆(V ). Every

distribution of the endowment δ ∈ ∆(C) can be divided into n
individual distributions δi ∈ ∆(Ci ) such that δ =

∑
i ∈N δi . Clearly,

the division into individual distributions is not unique.

Apart from her contribution, each agent possesses a utility func-

tion ui : ∆(C) → R, which describes how much utility an agent

derives from a distribution. Let agent i’s type be θi = (ui ,Ci ) and
the set of all types Θ. A mechanism f is a function that maps a

profile θ = (θi )i ∈N to a distribution δ ∈ ∆(C).

4 LINEAR UTILITY FUNCTIONS
In general, utility functions can capture many effects such as com-

plementarities, substitutabilities, decreasing marginal returns, and
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budget caps. In this section, we observe that, even for linear utility

functions, basic desirable properties of distribution mechanisms

turn out to be incompatible with each other.

We assume that linear utilities are normalized such that the utility

assigned to most-preferred projects is 1 and that assigned to least-

preferred projects is 0 (unless an agent is completely indifferent, in

which case all utilities are 1). With slight abuse of notation, linear

utilities are given by some function ui : A → [0, 1], which maps

projects to utilities such that, for any distribution δ ,

ui (δ ) =
∑
x ∈A

δ (x) · ui (x).

The aim of distribution mechanisms is to exploit synergies in

the agent’s preferences. It should thus return distributions that are

not Pareto dominated.

Definition 1 (Efficiency). Let θ ∈ Θn
be a type profile. A distribu-

tion δ ′ ∈ ∆(C) Pareto dominates another distribution δ ∈ ∆(C) if
ui (δ

′) ≥ ui (δ ) for all i ∈ N and ui (δ
′) > ui (δ ) for some i ∈ N . A

distribution δ ∈ ∆(C) is efficient if no distribution dominates it.

Every distribution δ ∈ ∆(C) can be decomposed into individual

distributions δi ∈ ∆(Ci ). Depending on the concrete application,

the mechanism may not be able to directly control the use of the

agents’ contributions (for example, when a donor coordination

service does not actually collect money from its participants). Then,

the mechanism’s output is better understood as a recommendation

to the agents about how they should use their resources. In such a

case, the output δ of the mechanism should be implementable, that

is, decomposable into individual distributions such that no agent is

asked to spend resources on projects that she considers suboptimal.

Definition 2 (Implementability). Let θ ∈ Θn
be a type profile. A

distribution δ ∈ ∆(C) is implementable if it can be divided into

individual distributions (δi )i ∈N with δi ∈ ∆(Ci ) for all i ∈ N and

δ =
∑
i ∈N δi such that ui (δi ) = Ci for all i ∈ N .

Clearly, if a distribution δ is implementable then ui (δ ) ≥ Ci .
Hence, implementability implies a condition known elsewhere as

individual fair share [see, e.g., 6]. We say that a mechanism f is effi-

cient (resp. implementable) if f (θ ) is efficient (resp. implementable)

for all θ ∈ Θn
.

It is easily seen that implementability clashes with efficiency.

Consider the type profile shown in Table 1. Implementability im-

ui (a) ui (b) ui (x) Ci

Agent 1 1 0 0.9 1

Agent 2 0 1 0.9 1

Table 1: Type profile showing the incompatibility of imple-
mentability and efficiency.

plies that δ1(a) = 1 and δ2(b) = 1. Hence, u1(δ ) = u2(δ ) = 1. How-

ever, δ is dominated by δ ′ with δ ′(x) = 2 since u1(δ
′) = u2(δ

′) =

1.8. Intuitively, it would be socially efficient to spend the endow-

ment on the “compromise project” x , but given the non-cooperative

environment suggested by Definition 2, both agents will use their

resources on their “pet project” which they slightly prefer to x .

One can also define implementability in game-theoretic terms:

imagine the agents are players in a non-cooperative normal-form

game. Each player can choose a distribution δi ∈ ∆(Ci ), i.e., how
to spend their money. The outcome of the game is a distribution

δ =
∑
i ∈N δi of the endowment, which induces utilities for the

players. Then, a distribution is implementable if and only if it can

be obtained as a Nash equilibrium of this game. The game induced

by the profile in Table 1 is essentially a prisoner’s dilemma, where

spending on x is “cooperate”, and spending on a or b is “defect”.

Agents cannot be forced to participate in the mechanism. They

could choose to keep their resources, and use them as they wish.

Conservatively, we will assume that agents have good outside op-

tions, and that they can use their resources optimally: they can

achieve utilityCi with their resources outside the mechanism. This

is certainly realistic in the case of donor coordination: agents may

decide to donate to their favorite charities directly. Further, even

if not participating, agents still benefit from the projects funded

by the participating agents. However, there is a downside to not

participating: the mechanism only considers the utility functions of

those who contribute to the mechanism. Thus, agents who do not

participate forego the possibility of affecting the contributions of

other agents. Mechanisms under which it is always weakly better

for an agent to participate rather than to act independently are

called individually rational.

Definition 3 (Individual rationality). A mechanism f is individ-

ually rational if for each θ ∈ Θn
and i ∈ N , we have ui (f (θ )) ≥

ui (f (θ−i )) +Ci .

In other words, no agent is better off by spending her contribu-

tion alone while letting the others coordinate the expenditure of

their contributions using the mechanism.

Individual rationality is a demanding condition, because it as-

sumes that agents have a maximally attractive outside option. If

agents’ resources are worthless unless contributed to the mech-

anism, the resulting condition is ui (f (θ )) ≥ ui (f (θ−i )), which is

weak enough to be satisfiable together with efficiency and other

conditions (for example by welfare-maximizing mechanisms). How-

ever, full individual rationality is not compatible with efficiency.

Theorem 1. No individually rational mechanism satisfies effi-

ciency whenm,n ≥ 4.

ui (a) ui (b) ui (c) ui (x) Ci

Agent 1 1 0 0 0.5 + ε 1

Agent 2 0 1 0 0.5 + ε 1

Agent 3 0 0 0 1 1

Agent 4 0 0 1 0.5 + ε 1

Table 2: Type profile with 0 < ε < 1

6
used in Theorem 1.

Proof. Assume for contradiction that there exists a mechanism

f satisfying individual rationality and efficiency. We first determine

a sequence of agents to be used in the proof. For θ = (θ1, θ2, θ3, θ4)

as in Table 2, the distribution δ = f (θ ) should only allocate re-

sources to at most one of a, b, and c . Otherwise, if there is any
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subset {y, z} ⊂ {a,b, c}, y , z with δ (y) > 0 and δ (z) > 0, the

distribution

(δ (y) − κ) y + (δ (z) − κ) z + (δ (x) + 2κ) x

with κ = min(δ (y), δ (z)) is strictly preferred by all four agents.

Thus, without loss of generality, we can assume an ordering of the

agents such that δ (a) ≥ 0 and δ (b) = δ (c) = 0.

Observe that for θ the total endowmentC equals 4. We will now

show the contradiction by arguing that ultimately more than the

total endowment would have to be spent on project x alone already.

Let θ ′ = (θ1, θ2) and δ
′ = f (θ ′). As above, by efficiency we can

assume that without loss of generality δ ′(b) = 0. Otherwise, if

δ ′(a) > 0 and δ ′(b) > 0, the distribution

(δ ′(a) − κ ′) a + (δ ′(b) − κ ′) b + (δ ′(x) + 2κ ′) x

with κ ′ = min(δ ′(a), δ ′(b)) is strictly preferred by both agents with

a utility improvement of 2κ ′ε > 0.

By individual rationality, Agent 2 must get at least the same

utility as if both agents acted in an uncoordinated manner:u2(δ
′) ≥

u2(a) + 1 = 1 and with δ ′(b) = 0, we have δ ′(x) ≥ 1

u2(x )
= 2

1+2ε .

If now Agent 3 joins, we get θ ′′ = (θ1, θ2, θ3) and δ
′′ = f (θ ′′).

Individual rationality for Agent 3 requires that u3(δ
′′) ≥ u3(δ

′) +

1 ≥ 2

1+2ε + 1 = 3+2ε
1+2ε . However, Agent 3 gets positive utility only

from project x , thus we have δ ′′(x) ≥ 3+2ε
1+2ε .

If we finally add the last agent to get the full type profile θ =
(θ1, θ2, θ3, θ4) with δ = f (θ ) again, we already know, e.g., that

δ (c) = 0.

A final application of individual rationality yields u4(δ ) ≥

u4(δ
′′)+1 ≥ 3+2ε

1+2ε ·
1+2ε

2
+1 = 5+2ε

2
. As δ (c) = 0, Agent 4 can only get

positive utility from project x , thus δ (x) ≥ 5+2ε
2

/ 1+2ε
2
= 5+2ε

1+2ε > 4

for 0 < ε < 1

6
, which contradicts the fact that the total endowment

is 4. □

The reason for this incompatibility is structurally similar to the

one for implementability: efficiency requires spending resources

on “compromise project” x , but individual rationality can only be

satisfied if “pet projects” a, b, and c are funded.

5 DICHOTOMOUS UTILITY FUNCTIONS
On the domain of all linear utility functions, we have found that

both implementability and individual rationality are incompatible

with efficiency. Aiming for more positive results, we now consider

the important subdomain of dichotomous utility functions, in which

agents only assign values 0 and 1 to the individual projects [see,

e.g., 2, 5, 6]. In many applications, this is a reasonable simplifying

assumption: agents only distinguish between approved and dis-

approved projects. For example, a donor may identify a number

of charities that she is interested in funding, without further dis-

criminating between these charities or between the charities she is

uninterested in. Notably, this simplified type of utility function is

easier to elicit than full utilities, and it can lead to a system that is

cognitively easier for agents to use.

Formally, a type profile θ has dichotomous utility functions if

each agent i ∈ N has a linear utility function with ui (x) ∈ {0, 1} for

all x ∈ A. The preferences of such agents are completely described

by their approval sets Ai = {x ∈ A : ui (x) = 1}. Profiles of approval

sets will be denoted by AN = (A1, . . . ,An ). With slight abuse of

notation, the type of agent i will now be denoted by θi = (Ai ,Ci ).
The set of agents who approve project x is denoted by Nx = {i ∈
N : x ∈ Ai }, its weighted cardinality is called the score of x and

denoted by nx =
∑
i ∈Nx Ci .

We will now introduce a number of mechanisms defined for

dichotomous utility functions,
2
and will analyze them in terms

of the properties studied in Section 4. As hinted at by the results

in that section, we find that mechanisms are either efficient or

satisfy implementability/individual rationality, but not usually both.

However, for the restricted domain of dichotomous utilities, one

mechanism turns out to have all these properties. In Figure 1, we

illustrate the mechanisms discussed by considering their output on

an illuminating type profile.

A simple “mechanism” that can be used as a benchmark is the

uncoordinated rule which does not make any attempt to aggregate

agents’ preferences. According to this rule, each agent distributes

her contribution equally among the projects she approves:

UNC(θ ) =
∑
i ∈N

∑
x ∈Ai

Ci
|Ai |

· x . (Uncoordinated Rule)

This mechanism is implementable (and individually rational), but

it violates efficiency as there is no coordination (see Figure 1).

The standard way of attaining efficiency in mechanism design

is by maximizing a notion of social welfare. The literature has

identified three central versions of this concept: utilitarian welfare,

egalitarian welfare, and the Nash product [21]. The fivemechanisms

that follow are all based on optimizing welfare.

The simplest rule following this recipe is the utilitarian rule.
It returns a distribution δ which maximizes the weighted sum

of agents’ utilities

∑
i ∈N Ci ui (δ ).

3
These are exactly those dis-

tributions in which the endowment is distributed only on the

projects with the highest score: if any part of the endowment is

spent on other projects, utilitarian welfare can be increased by

redistributing it to a project with a higher score. There might be

several projects that have the same score, and so there may be

many distributions maximizing utilitarian welfare. For concrete-

ness, we distribute the endowment uniformly among them. Let

Amax = {x ∈ A : nx ≥ ny for all y ∈ A} be the set of projects with
the highest score. Then,

UTIL(θ ) =
∑
i ∈N

∑
x ∈Amax

Ci
|Amax |

· x . (Utilitarian Rule)

UTIL satisfies efficiency because any distribution dominating its

output would have strictly higher social welfare. However, UTIL
is not implementable because all agents have to distribute their

contribution to projects in Amax
, and there may be agents who

approve none of these (see Figure 1). For a similar reason, the rule

fails to be individually rational.

A natural way to obtain an implementable mechanism while

keeping the spirit of utilitarian welfare is to select a distribution that

maximizes welfare among implementable distributions only. This

is what the conditional utilitarian rule does. Again, it is possible to

2
All of our mechanisms have straightforward extensions to general linear utilities.

3
This is a variant of the traditional utilitarian rule where agents are weighted by the size

of their contribution. This variant is more robust, and is continuous in the contributions

Ci . Without weighting, agents with extremely small individual contributions would

get the same influence as agents with large individual contributions.
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explicitly describe the solutions of this constrained optimization

problem: each agent needs to distribute her contribution among

those of her approved projects which have highest score. Again,

for concreteness, we let agents split uniformly in the event of ties.

Formally, we write Amax

i = {x ∈ Ai : nx ≥ ny for all y ∈ Ai } for
the projects with the highest score within the approval set of agent

i . Then,

CUT (θ ) =
∑
i ∈N

∑
x ∈Amax

i

Ci
|Amax

i |
· x . (Conditional Utilitarian Rule)

By design, this rule is implementable, and we will see in Theorem 3

that it satisfies individual rationality. However, imposing the imple-

mentability constraint has destroyed efficiency (see Figure 1). While

CUT is not efficient, it is easy to see that CUT is efficient among
implementable distributions: there cannot exist an implementable
distribution δ ′ which dominates the output of CUT .

The distributions selected by utilitarian mechanisms may lead

to large inequalities in the utility levels enjoyed by the agents.

In some applications, this may be undesirable, and we may want

to guarantee every agent a high utility level. A common way to

achieve this is to maximize egalitarian welfare, the utility level of

the worst-off agent. Since this often leads to inefficient outcomes,

we can instead use the leximin approach, which maximizes the

lowest utility of the agents and then iteratively refines this result

by maximizing the second-lowest utility and so on.

Formally, for δ , δ ′ ∈ ∆(C), we write δ ≥L δ ′ if the vector

(ui (δ ))i ∈N is lexicographically at least as large as (ui (δ
′))i ∈N after

having sorted both vectors into non-decreasing order. Then,

EGAL(θ ) = {δ ∈ ∆(C) : δ ≥L δ
′
for all δ ′ ∈ ∆(C)}.

(Egalitarian Rule)

As defined, EGAL may return several distributions, but they are all

essentially equivalent, because every agent obtains the same utility

in any of the returned distributions [cf. 1, Prop. 2]. Thus, it does

not in practice matter how ties are broken.

Just like UTIL, the rule EGAL is efficient but fails to be imple-

mentable and individually rational (see Figure 1). In response, we

can introduce the conditional egalitarian rule, which selects the

distribution which is leximin-optimal among implementable distri-

butions. Again, this move does not preserve efficiency, but efficiency

among implementable distributions.

CEG(θ ) = {δ ∈ ∆(C) :δ is implementable and

δ ≥L δ
′
for all implementable δ ′ ∈ ∆(C)}.

(Conditional Egalitarian Rule)

The Nash product, which refers to the product of agent utilities,

is often seen as a compromise between utilitarian and egalitarian

welfare [21]. Maximizing the Nash product has been found to yield

“fair” or “proportional” outcomes in many preference aggregation

settings, and it also turns out to be attractive in our context. For-

mally, it is defined as follows.

NASH (θ ) = arg max

δ ∈∆(C)

∏
i ∈N

©­«
∑
x ∈Ai

δ (x)
ª®¬
Ci

= arg max

δ ∈∆(C)

∑
i ∈N

Ci log

©­«
∑
x ∈Ai

δ (x)
ª®¬ .

(Nash Product Rule)

Just like UTIL and EGAL, this rule is efficient. But, remarkably, it

is not necessary to define a “conditional Nash rule”: as we will

see in Theorem 2, the optimum for the Nash product is always

implementable.

All of these mechanisms can be computed efficiently. For UNC,
UTIL, and CUT this is clear from their definitions. One can calcu-

late EGAL and CEG by solving a sequence of linear programs [cf.

1, Prop. 3]. NASH can be efficiently approximated using convex

programming [6], but it can return distributions with irrational

values, so exact computation is not possible.

It is well-known that UTIL, EGAL, and NASH are efficient [see,

e.g., 21]. The example in Figure 1 shows that UNC, CUT , and CEG
violate efficiency: The UNC distribution is dominated by the NASH
distribution, the CUT distribution is dominated by 3.5a + 1.5b, and
the CEG distribution is dominated by 2.6̄a + 2.3̄b. Efficiency is a

demanding property and it can be shown that variants of CUT
which do not distribute uniformly among most approved projects

still violate efficiency. The efficiency loss of CUT was quantified

and bounded by Aziz, Bogomolnaia, and Moulin [2].

5.1 Implementability and Individual
Rationality

In this section, we formally verify the claims concerning imple-

mentability and individual rationality from above. Our main tech-

nical results establish that the Nash product rule satisfies both

implementability and individual rationality.

The example in Figure 1 has shown that UTIL and EGAL are not

implementable. It follows from the definitions that UNC, CUT , and
CEG are implementable. It is less obvious why NASH should be

implementable, but this can be seen from its first-order conditions of

optimality. The following proof is similar to a result by Guerdjikova

and Nehring [18].

Theorem 2. NASH satisfies implementability.

Proof. We consider the Karush–Kuhn–Tucker conditions, and

write the Lagrangian as

L =
∑
i ∈N

Ci log

©­«
∑
x ∈Ai

δ (x)
ª®¬ + λ

(
C −

∑
x ∈A

δ (x)

)
+

∑
x ∈A

µxδ (x),

where λ ∈ R is the Lagrangemultiplier of constraint

∑
x ∈A δ (x) = C

and µx ≥ 0 is the multiplier of the constraint δ (x) ≥ 0.

Suppose δ is an optimal solution. By complementary slackness,

we must have µx = 0 whenever δ (x) > 0. Also, we must have

∂L/∂δ (x) = 0, that is,

∑
i ∈Nx Ci/ui (δ ) − λ + µx = 0. By case

distinction based on whether δ (x) > 0, it follows that λδ (x) =
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Uncoordinated

a b c d ui

δ1 0.5 · 0.5 · 3

δ2 0.5 · · 0.5 3

δ3 · 0.5 0.5 · 2

δ4 · 0.5 · 0.5 2

δ5 1 · · · 2∑
2 1 1 1 12

not efficient

Utilitarian

a b c d ui

δ1 1 · · · 5

δ2 1 · · · 5

δ3 1 · · · 0

δ4 1 · · · 0

δ5 1 · · · 5∑
5 · · · 15

not implementable

Egalitarian

a b c d ui

δ1 1 · · · 2.5

δ2 1 · · · 2.5

δ3 · 1 · · 2.5

δ4 · 1 · · 2.5

δ5 0.5 0.5 · · 2.5∑
2.5 2.5 · · 12.5

not implementable

Conditional Utilitarian

a b c d ui

δ1 1 · · · 3.5

δ2 1 · · · 3.5

δ3 · 0.5 0.5 · 1.5

δ4 · 0.5 · 0.5 1.5

δ5 1 · · · 3∑
3 1 0.5 0.5 13

not efficient

Nash Product

a b c d ui

δ1 1 · · · 3

δ2 1 · · · 3

δ3 · 1 · · 2

δ4 · 1 · · 2

δ5 1 · · · 3∑
3 2 · · 13

Conditional Egalitarian

a b c d ui

δ1 0.6̄ · 0.3̄ · 2.6̄

δ2 0.6̄ · · 0.3̄ 2.6̄

δ3 · 1 · · 2.3̄

δ4 · 1 · · 2.3̄

δ5 1 · · · 2.3̄∑
2.3̄ 2 0.3̄ 0.3̄ 12.3̄

not efficient

Figure 1: Example for dichotomous utilities and
uniform contributions with approval profile AN =

({a, c}, {a,d}, {b, c}, {b,d}, {a}). The last row of each table
shows the distribution returned by the mechanism. The
other rows show a division of this distribution into individ-
ual distributions (zeros omitted) and the agents’ utilities.
Approved projects are highlighted in grey. This is the
smallest approval profile in which efficiency requires more
than just assigning 0 to Pareto dominated projects.

∑
i ∈Nx Ciδ (x)/ui (δ ) for all x ∈ A. Hence,

λ ·C =
∑
x ∈A

λδ (x) =
∑
x ∈A

∑
i ∈Nx

Ciδ (x)/ui (δ )

=
∑
i ∈N

Ci
∑
x ∈Ai

δ (x)/ui (δ ) =
∑
i ∈N

Ci = C .

So λ = 1, and hence

∑
i ∈Nx Ci/ui (δ ) = 1 for all x ∈ A such that

δ (x) > 0.

Now, for each i ∈ N , define an individual distribution δi ∈ ∆(Ci )
with δi (x) = Ciδ (x)/ui (δ ) for all x ∈ Ai , and δi (x) = 0 otherwise.

Clearly, ui (δi ) = Ci . To see that δ =
∑
i ∈N δi , note that for x ∈ A

with δ (x) = 0 we have δi (x) = 0 for all i ∈ N , and for x ∈ A with

δ (x) > 0, we have∑
i ∈N

δi (x) =
∑
i ∈Nx

δi (x) =
∑
i ∈Nx

Ciδ (x)/ui (δ )

= δ (x)
∑
i ∈Nx

Ci/ui (δ ) = δ (x). □

For NASH , the individual distribution δi of agent i can be inter-

preted as the distribution δ restricted and rescaled to her approval

set Ai [18], i.e.,

δi (x) = Ci
δ (x)

ui (δ )
= Ci

δ (x)∑
y∈Ai δ (y)

for all x ∈ A.

Notably, the agents can thus easily compute their individual dis-

tributions from the distribution δ without the need of a central

instance telling the agents their individual contributions and even

without the agents knowing the other agents’ approval sets or con-

tributions. All other implementable mechanisms considered in this

paper fail this property, which can easily be seen in Figure 1.

Theorem 3. CUT satisfies individual rationality. UTIL, EGAL, and
CEG violate individual rationality.

Proof. CUT : Let δ = CUT (θ ) and ˜δ = CUT (θ−i ). Due to imple-

mentability of CUT , the individual rationality condition ui (δ ) ≥

ui ( ˜δ ) +Ci can be simplified to

∑
j ∈N \{i } ui (δj ) ≥

∑
j ∈N \{i } ui ( ˜δj ).

Now we also show the stronger statement that every summand

weakly increases, i.e., ui (δj ) ≥ ui ( ˜δj ) for all j ∈ N \ {i} by claiming

that Amax

j ⊆ Ai or Ã
max

j ∩ Ai = ∅. In both cases the inequality is

satisfied becauseui (δj ) = Cj ≥ ui ( ˜δj ) orui (δj ) ≥ 0 = ui ( ˜δj ) respec-

tively. The theoretical third caseAmax

j ⊈ Ai and Ã
max

j ∩Ai , ∅ is not

possible: Assume for contradiction that there exists x ∈ Amax

j \Ai

and y ∈ Ãmax

j ∩ Ai . Due to the definition of Ãmax

j and x,y ∈ Aj
we have ñy ≥ ñx . Then, as only the weighted approval scores for

projects approved by agent i increase in θ compared to
˜θ , we have

ny = ñy +Ci ≥ ñx +Ci > ñx = nx ,

which is a contradiction to x ∈ Amax

j .

UTIL: Agents 3 and 4 in Figure 1 each get utility 1 by spending

their contribution alone instead of utility 0 when coordinating

according to the utilitarian rule.

EGAL: For AN = ({a}, {b}, {a}), EGAL would split the endow-

ment 1.5a + 1.5b. If Agent 3 spends her contribution alone and

completely on a, EGAL would split the endowment of the first two

agents 1a+ 1b instead. Thus Agent 3 could increase her utility from

1.5 to 2.

CEG: AssumeAN = ({a}, {b}, {c}, {ab}, {ac})with uniform indi-

vidual contributions. If Agent 4 with A4 = {ab} spends alone, then
CEG(θ−4) = 1.5a +b + 1.5c . (From implementability, it follows that

CEG(θ−4)(b) = 1 and by symmetry CEG(θ−4)(a) = CEG(θ−4)(c).)
Thus, Agent 4 has utility u4(θ−4) + 1 = 2.5 + 1 = 3.5. If Agent 4

joins the mechanism, then CEG(θ ) = 1.6̄a + 1.6̄b + 1.6̄c (optimality

is easy to see from the singleton voters), giving Agent 4 utility

u4(θ ) = 3.3̄ < 3.5. □

Theorem 4. NASH satisfies individual rationality.
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The proof of this result is technically involved and requires a

number of lemmas, whose proofs we defer to the appendix due to

space constraints. At a high level, we estimate the rate of change

of an agent’s utility as her contribution increases, and integrate

this quantity as she goes from not participating to participating in

the mechanism to obtain the desired result. The estimation entails

expressing the logarithm of the utilities as a Taylor expansion

and analyzing the relationship between the change in an agent’s

contribution and the change in these utilities at the distribution

returned by NASH .

Curiously, we are not aware of any other rules that satisfy indi-

vidual rationality and efficiency.

5.2 Strategyproofness
When agents are strategic, they may try to misrepresent their pref-

erences in a way that induces the mechanism to choose a more-

preferred distribution. Mechanisms that are immune to strategic

misrepresentation are called strategyproof.

Definition 4 (Strategyproofness). Amechanism is strategyproof if
for all θ, θ ′ ∈ Θn

with θ = θ ′ except ui , u
′
i , ui (f (θ )) ≥ ui (f (θ

′)).

Note that, under this definition, we are only interested in pre-

venting misrepresentation of the utility function ui . The other part
of an agent’s type is her contribution Ci which she might also mis-

report (more precisely, underreport), but this worry is captured by

the notion of individual rationality.

In most mechanism design settings, strategyproofness is only ob-

tained by degenerate mechanisms that ignore most of the informa-

tion, such as dictatorships. However, in the domain of dichotomous

preferences, more positive results are known. For example, in social

choice, approval voting is known to be strategyproof [7]. In our

setting, there also exist attractive strategyproof mechanisms. In par-

ticular, UNC, CUT , and UTIL are all strategyproof [2]. Remarkably,

in the conditional utilitarian rule CUT , we have an example of a rule

that is individually rational, implementable, and strategyproof. It is

also efficient among implementable distributions, but it fails to be

efficient outright. Indeed, of the strategyproof rules we have listed,

only UTIL is efficient. However, UTIL fails to be implementable and

it fails to be individually rational. In fact, UTIL can be unfair to

an extreme extent: if one agent contributes the majority of the en-

dowment, then UTIL will exclusively fund projects approved by the

majority contributor. Thus, UTIL can leave some contributors with

zero utility, and thus fails a property that Bogomolnaia, Moulin,

and Stong [6] call positive share.

Definition 5 (Positive share). A mechanism satisfies positive share
if for all θ ∈ Θn

and i ∈ N , ui (f (θ )) > 0.

In 2005, Bogomolnaia, Moulin, and Stong [6] conjectured that,

like UTIL, all efficient and strategyproof mechanisms will fail pos-

itive share—and hence many other desirable properties such as

implementability or individual rationality, which imply positive

share. They “submit as a challenging conjecture the following state-

ment: there is no strategyproof and ex ante efficient mechanism

guaranteeing positive shares.” Bogomolnaia et al. were able to prove

impossibility theorems of this type only when substituting much

stronger versions of strategyproofness or of positive share, and

additionally requiring anonymity and neutrality. Still, their proofs

were rather involved, and one of them required thatm ≥ 17. As

to whether a mechanism satisfying the original conditions exists,

they left it as “a challenging open question to which we suspect

the answer is negative when [m] and [n] are large enough.”
Here, we confirm Bogomolnaia et al.’s conjecture.

Theorem 5. No mechanism satisfies efficiency, strategyproofness,

and positive share whenm ≥ 4 and n ≥ 6.

To our surprise, Bogomolnaia et al.’s suspicion that an impossi-

bility would require a large number of voters and projects turned

out to be false. In addition, our proof goes through with a signif-

icantly weaker form of strategyproofness than the one stated in

Definition 4.

We proved Theorem 5 using computer-aided theorem proving

techniques and specifically using SAT solving. The basic idea is

to reduce the statement in question to a finite—yet very large—

problem, which is encoded as a formula in propositional logic and

then shown to be unsatisfiable by a SAT solver. The formula’s

variables describe the mechanism in explicit form, with variables

for each possible type profile, and we add constraints to enforce the

axioms. We then extract a minimal unsatisfiable set of constraints

from the formula and translate this back into a human-readable

proof of the result. This approach has been employed successfully

to prove a number of impossibility theorems in social choice theory

[see, e.g., 8, 17, 25].

On first sight, our problem has a continuous flavor, since the

mechanisms that we consider return real-valued distributions. This

suggests encodings into integer linear programming, or into SMT,

which has previously been used to prove a strong impossibility

theorem in probabilistic social choice [8]. A drawback of these

continuous methods is that they can (presently) only handle com-

paratively small instances. Solving times tend to become prohibitive

once we search for an impossibility on a domain of more than a

few thousand profiles. Discrete encodings of social choice problems

into SAT can often be solved for hundreds of thousands of profiles.

Our problem can be discretized by only considering the sup-
port of the distribution returned by our mechanism. Thus, for 4

alternatives, there are only 2
4 − 1 = 15 possible outcomes per

profile (rather than infinitely many). Note that the positive share

axiom only refers to the support. Less obviously, Aziz, Brandl, and

Brandt [3] have proved that whether a distribution is efficient or

not depends only on its support. The only remaining axiom is strat-

egyproofness, which depends on the precise distributions returned

by the mechanism. However, it turns out that impossibility still

holds when only considering particularly clear-cut manipulations.

In the encoding, we only consider manipulations in which the ma-

nipulator enforces a distributions in which the entire endowment

is distributed across her approved projects, i.e., by manipulating

she obtains the maximum utility of C .
Even after discretizing, the formulas involved are very big,

and further reduction techniques are needed. Without imposing

anonymity, there are 15
6 ≈ 11 million different profiles with n = 6

andm = 4, and we need to use 15 variables for each profile (one

for each support), giving 170 million variables in total. It is much

easier to obtain a result when we impose anonymity and neutrality,

which was also done by Bogomolnaia, Moulin, and Stong [6]. A

mechanism is anonymous if it is invariant under renaming agents,
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and it is neutral if a permutation of the projects induces the same

permutation in the mechanism’s output.

When we consider anonymous and neutral mechanisms, the

number of essentially different profiles reduces to 2197. In fact,

with these extra axioms, the impossibility holds even for n = 5, for

which there are only 736 essentially different profiles. Solving the

resulting formula is almost instantaneous with a modern SAT solver.

After extracting a minimal unsatisfiable set, we were astonished

to find that it only referred to two different profiles, giving a short

and elegant proof.

Theorem 6. No anonymous and neutral mechanism satisfies effi-

ciency, strategyproofness, and positive share ifm ≥ 4 and n ≥ 5.

Proof. We prove the incompatibility form = 4 and n = 5. The

proof can be adapted to larger values by adding agents approving

all projects or by adding projects which no-one approves.

Assume there is a strategyproof mechanism f satisfying effi-

ciency and positive share. Now consider a profile θ with uniform

contributions Ci = 1 for all agents i ∈ N and the approval profile

AN = ({a,b}, {a, c}, {a,d}, {b, c}, {a}).

Let δ = f (θ ) be the distribution returned by the mechanism. Be-

cause f is anonymous and neutral, since b and c are symmetric, we

must have δ (b) = δ (c), and this value must be positive by positive

share for Agent 4. It follows that u1(δ ) < C because a positive

amount is spent on project c , which Agent 1 does not approve.

Suppose Agent 1 states her approval set as {b,d}. The resulting
profile θ ′ has approval profile

A′
N = ({b,d}, {a, c}, {a,d}, {b, c}, {a}).

Let δ ′ = f (θ ′) be the distribution now returned by the mechanism.

Suppose first that both δ ′(c) and δ ′(d) are positive, say δ ′(c) ≥ ϵ
and δ ′(d) ≥ ϵ for some ϵ > 0. Then δ ′ is Pareto dominated by

the distribution obtained from δ ′ by moving ϵ from c to a and ϵ
from d to b. This contradicts efficiency of f , so either δ ′(c) = 0 or

δ ′(d) = 0. Now c and d are symmetric projects in θ ′, and thus we

must have δ ′(c) = δ ′(d) by anonymity and neutrality of f . Thus
δ ′(c) = δ ′(d) = 0 and the entire endowment is distributed between

projects a and b, and so u1(δ
′) = C , where we take Agent 1’s utility

as reported in profile θ , and in particular u1(δ
′) > u1(δ ).

Hence, Agent 1 has successfully manipulated, which contradicts

strategyproofness. □

This short proof relies heavily on symmetry arguments. Without

anonymity and neutrality, the proofs become much more compli-

cated. In the appendix, we give a proof that still uses anonymity,

but that does not need neutrality. Without either of the axioms, a

tractable formula can be obtained by only including profiles similar

to the ones used in the proofs of the weaker statements. The result-

ing computer-generated proof, which reasons about manipulations

between hundreds of type profiles, is available on request.

Mechanisms satisfying notions such as positive share or imple-

mentability try to be “fair” to each agent, and aim for an outcome

that makes every agent reasonably happy. There is an obvious

strategy to try to exploit this tendency: agents may pretend to be

less happy than they are. In our setting, this would correspond to

approving fewer projects.
4
We can show, by a proof similar to the

one above, that every efficient mechanism that satisfies positive

share can be manipulated using this technique. The proof uses

anonymity and neutrality and, in contrast to Theorem 5, we do not

know whether this can be dropped. The proof is in the appendix.

Theorem 7. Every anonymous and neutral mechanism satisfy-

ing efficiency and positive share can be manipulated by an agent

reporting a subset of their truthful approval set, ifm ≥ 5 and n ≥ 5.

Interestingly, Theorem 5 implies there is no efficient and strate-

gyproof mechanism which approximates egalitarian welfare (since

the optimal egalitarian welfare in any profile is always at least Ci ,
and we show that every efficient and strategyproof mechanism will

sometimes return a distribution with egalitarian welfare 0).

Another way to potentially manipulate the resulting distribution

is to split one’s contribution into k parts and pretend to be k agents

(with the same utility functions) rather than only one. It follows

from the definitions that all considered mechanisms are immune to

this kind of manipulation.

6 CONCLUSION
We have proposed a novel mechanism design setting that is con-

cerned with the collective distribution of individual contributions.

While we show that, for general utility functions, efficiency is diffi-

cult to satisfy in conjunction with other desirable properties, the

results for dichotomous utility functions are quite encouraging

(see Table 3). We identified two attractive distribution mechanisms

(NASH and CUT ) that satisfy implementability and individual ra-

tionality. On top of implementability, NASH has the remarkable

property that each individual distribution is identical to the total

distribution restricted and rescaled to the corresponding approval

set. While NASH satisfies the standard notion of efficiency, CUT
only guarantees efficiency among all implementable distributions

(which may be sufficient if non-implementable distributions are

ruled out per se). On the other hand,CUT satisfies strategyproofness

while NASH can be manipulated, even when restricting attention

to “free-rider” manipulations. Both NASH and CUT—as well as all
the other mechanisms we consider—can be efficiently computed

(computing the NASH distribution exactly is not possible, but it can

be approximated efficiently using standard optimization software).

We believe that efficient distribution mechanisms like the ones

discussed in our paper are not only of theoretical interest but can

be easily deployed in the real world to allow donors to coordinate

their philanthropic efforts.
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4
This notion of “subset-strategyproofness” has also been studied in the context

of proportional multiwinner elections [24]. The corresponding notion of superset-
strategyproofness has been studied by Aziz, Bogomolnaia, and Moulin [2], who found

that CUT and EGAL satisfy it, while NASH fails it.
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UNC UTIL EGAL NASH CUT CEG

Efficiency – ✓ ✓ ✓ (imp.) (imp.)

Implementability ✓ – – ✓ ✓ ✓
Individual Rationality ✓ – – ✓ ✓ –

Strategyproofness ✓ – – – ✓ –

Project Monotonicity ✓ ✓ – – ✓ –

Table 3: Axiomatic properties of distribution mechanisms
for dichotomous utility functions. CUT and CEG are not effi-
cient, but they return distributions that are efficient among
all implementable distributions.
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A OMITTED PROOFS
A.1 Proof of Theorem 4
Formally, in order to prove Theorem 4, we have to show that for all

θ ∈ Θn
and i ∈ N , ui (NASH (θ )) ≥ ui (NASH (θ−i )) +Ci . Consider

the functionд : Θn → ∆(1)withд(θ ) = NASH (θ )/Cθ for all θ ∈ Θn
,

where Cθ denotes the sum of the contributions in θ . We will show

that

ui (д(θ )) ≥
1

Cθ
((Cθ −Ci )ui (д(θ−i )) +Ci ), (1)

which is equivalent to the inequality above for NASH .

Denote by Pθ ⊆ Rn the polytope of feasible utility profiles

scaled by 1/Cθ , i.e., Pθ = {u(δ ) : δ ∈ ∆(1)}. Note that Pθ is convex.

ForU ∈ Pθ , let Fθ (U ) =
∑
i ∈N Ci logUi .

Lemma 1. For all θ ∈ Θn
, Fθ has a unique maximizer U ∈ Pθ .

Moreover, −Cθ logm ≤ Fθ (U ) ≤ 0 and −Cθ/Ci logm ≤ logUi ≤ 0

for all i ∈ N .

Since by Lemma 1, Fθ has a unique maximizer for all θ ∈ Θn
,

we can define the function U : Θn → Rn
≥0

that returns this unique

maximizer. Observe thatU(θ ) ∈ Pθ for all θ ∈ Θn
.

Lemma 2. U is continuous in CN on Rn>0
and Ui is weakly in-

creasing in Ci for all i ∈ N .

Lemma 3. For every θ ∈ Θn
and U ∈ Pθ , there is ε > 0 such

that for all dU ∈ Rn with |dU | ≤ ε and U + dU ∈ Pθ , we have

U + tdU ∈ Pθ for all t ∈ [0, 2].

The next three lemmas will be useful for analyzing error terms

obtained in the main analysis.

Lemma 4. Let θ ∈ Θn
,U = U(θ ), anddU ∈ Rn such thatU +dU ∈

Pθ . Then, ∑
i ∈N

Ci
dUi
Ui

≤ 0.

If alsoU − dU ∈ Pθ , then equality holds.

Lemma 5. Let θ ∈ Θn
, x ∈ Rn , and α, β > 0 such that∑

i ∈N Cixi = 0 and −α ≤ xi ≤ β for all i ∈ N . Then,∑
i ∈N

Cix
2

i ≤ αβ
∑
i ∈N

Ci .

Lemma 6. For all µ ∈ (0, 2) there is ε∗ ∈ (0, 1) with the following

property: For any Φ : [0, 2] → R such that Φ(1) = maxt ∈[0,2] Φ(t)
and

αt − (1 + ε)βt2 ≤ Φ(t) ≤ αt − (1 − ε)βt2
,

for some α, β ≥ 0 and ε ∈ (0, ε∗) and all t ∈ [0, 2], it holds that

α ≥ µΦ(1).

Proof of Theorem 4. We will prove (1). Let µ ∈ (0, 2) and let

ε∗ be such that the conclusion of Lemma 6 holds. Letε ∈ (0, ε∗).
Moreover, let θ ∈ Θn

and U = U(θ ). Considering the Taylor

expansion of the logarithm, there is ε ′ > 0 such that for all i ∈ N
and |r | < ε ′,�����log(Ui + r ) − logUi −

r

Ui
+

1

2

(
r

Ui

)
2

����� ≤ ε

4

(
r

Ui

)
2

. (2)

Now let C ′
N ∈ Rn>0

such that C ′
1
= C1 + dC1 with 0 < dC1 <

min{ε ′, ε/(2+ε )C1} and C ′
i = Ci for all i ∈ N \ {1}, and let θ ′ =

(u,C ′). Consider the function ϕ : Rn → R defined on dU with

|dU | < ε∗, such that

ϕ(dU ) := Fθ ′(U+dU )−Fθ (U )−dC1 logU1 =
∑
i ∈N

Ci
dUi
Ui
+dC1

dU1

U1

−ψ (dU ),

for someψ : Rn → R with

(1 − ε)
1

2

∑
i ∈N

Ci

(
dUi
Ui

)
2

≤ ψ (dU ) ≤ (1 + ε)
1

2

∑
i ∈N

Ci

(
dUi
Ui

)
2

.

The existence ofψ is guaranteed by (2) and the bound on dC1.

Now letU ′ = U(θ ′) and dU ′ = U ′−U . Note that, since the only

term in ϕ(dU ) that depends on dU is Fθ ′(U +dU ), dU ′
maximizes ϕ

among all dU ∈ Rn withU +dU ∈ Pθ . By Lemma 3, there is ε ′′ > 0

such that, for all dU ∈ Rn with |dU | ≤ ε ′′ and U + dU ∈ Pθ , we

haveU + rdU ∈ Pθ for all r ∈ [0, 2]. SinceU is continuous in CN
by Lemma 2, |dU ′ | will be small if dC1 is small and we can choose

dC1 even smaller if necessary so that 2|dU ′ | ≤ min(ε ′, ε ′′). Then,
the function Φ : [0, 2] → Rwith Φ(r ) = ϕ(rdU ′) is well-defined and

satisfies the prerequisites of Lemma 6 with

α =
∑
i ∈N

Ci
dU ′

i
Ui
+ dC1

dU ′
1

U1

and β =
1

2

∑
i ∈N

Ci

(
dU ′

i
Ui

)2

.

Hence, it follows from Lemma 6 that∑
i ∈N

Ci
dU ′

i
Ui
+ dC1

dU ′
1

U1

≥ µΦ(1).

Since U maximizes Fθ , by Lemma 4,

∑
i ∈N Ci

dU ′
i

Ui ≤ 0. It follows

that

dC1

dU ′
1

U1

≥ µΦ(1). (3)

Next, let δ = д(θ ). If δ (a) = 1 for some a ∈ A, then a ∈ Ai
for all i ∈ N , since otherwise the lower bound on Fθ (U ) from

Lemma 1 would be violated. Then u1(δ ) = 1 and (1) is trivially

satisfied. So assume that δ (a) < 1 for all a ∈ A. Thus, for |t | > 0

small enough, the distribution δ t with δ t (a) = (1 + t)δ (a) for all
a ∈ A1 and (1 − U1/(1−U1) t)δ (a) for all a ∈ A \ A1 is in ∆(1). Let
dU t = u(δ t ) −U . For |t | small enough, we have thatU +dU t ∈ Pθ
and U − dU t

θ ∈ Pθ . Indeed, U + dU
t = u(δ t ), and for the second

statement we can perturb δ infinitesimally in the opposite direction.

This is a valid perturbation because δ (a) < 1 for all a ∈ A, and for

a ∈ A such that δ (a) = 0 we have δ t (a) = δ (a). Thus, by Lemma 4,

we have ∑
i ∈N

Ci
dU t

i
Ui
= 0.

So for sufficiently small |t |, we have

ϕ(dU t ) = dC1

dU t
1

U1

−ψ (dU t ) ≥ dC1

dU t
1

U1

−(1+ε)
1

2

∑
i ∈N

Ci

(
dU t

i
Ui

)
2

.

Since dU t
1
= u1(δ

t ) −U1 = (1 + t)U1 −U1, we have that
dU t

1
/U1 = t .

Similarly, it follows that −U1/(1−U1) t ≤ dU t
i /Ui ≤ t for all i ∈ N .

Thus, applying Lemma 5 with α = U1/(1−U1) t , β = t , and xi =
dU t

i /Ui , it follows that

ϕ(dU t ) ≥ dC1t − (1 + ε)
1

2

U1Cθ
1 −U1

t2
.
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Now let t :=
1−U1

U1Cθ
dC1. If dC1 is small enough, then also t is small

enough and, recalling that dU ′
maximizes ϕ among all dU ∈ Rn

withU + dU ∈ Pθ , we get

Φ(1) = ϕ(dU ′) ≥ ϕ(dU t ) ≥
1

2

(1 − ε)
1 −U1

U1Cθ
(dC1)

2
.

Thus, by (3), we get

dC1

dU ′
1

U1

≥
µ

2

(1 − ε)
1 −U1

U1Cθ
(dC1)

2
,

from which it follows from dC1 > 0 that

dU ′
1
≥
µ

2

(1 − ε)
1 −U1

Cθ
dC1.

Since µ ∈ (0, 2) was arbitrary and ε > 0 can be chosen arbitrarily

small, it follows that

dU ′
1
≥

1 −U1

Cθ
dC1.

Now, let CsN ∈ Rn>0
such that Cs

1
= C1 + s and C

s
i = Ci for all

i ∈ N \ {1}, θs = (u,Cs ), and ˜U(s) = U(θs ). By the above inequal-

ity, the lower right derivative of
˜U1 at s is at least (1− ˜U1(s))/Cθs .

Integrating this estimate from 0 to dC1 yields

−

∫ dC1

0

∂ ˜U1(s)
∂s

1 − ˜U1(s)
ds ≤ −

∫ dC1

0

1

Cθ + s
ds

from which we get

log(1 − ˜U1(dC1)) − log(1 − ˜U1(0)) ≤ −(log(Cθ + dC1) − log(Cθ )).

Exponentiation yields (1− ˜U1(dC1))/(1− ˜U1(0)) ≤ Cθ/(Cθ+dC1). Rewrit-

ing the variable θ as θ ′, we have

˜U1(dC1) ≥
1

Cθ ′ + dC1

(Cθ ′
˜U1(0)+dC1) =

1

Cθ ′ + dC1

(Cθ ′U1(θ
′)+dC1).

(4)

Finally, to prove (1), let θ ∈ Θn
, C1 > ε > 0, and θ ε = (u,Cε )

with Cε
1
= ε and Cε

i = Ci for all i ∈ N \ {1}. Let x ∈ д(θ ) and
U = u(x). By the monotonicity part of Lemma 2 and taking θ ′ = θ ε

and dC1 = C1 − ε in (4), we have that

U1 ≥
1

Cθ

(
Cθ εU1(θ

ε ) +C1 − ε
)
≥

1

Cθ
((Cθ −C1 + ε)U1(θ−1) +C1 − ε) .

Since this inequality holds for all C1 > ε > 0, it follows that

U1 ≥
1

Cθ
((Cθ −C1)U1(θ−1) +C1) ,

which proves (1). □

A.2 Proof of Lemma 1
Assume for contradiction that there are two distinctU ′,U ′′ ∈ Pθ
which maximize Fθ . As a positive linear combination of strictly

concave functions, Fθ is a strictly concave function. Hence, for

U = 1/2 (U ′ +U ′′) ∈ Pθ , by strict concavity of Fθ , we have

Fθ (U ) >
1

2

(
Fθ (U

′) + Fθ (U
′′)

)
= Fθ (U

′),

which contradicts the assumption thatU ′
maximizes Fθ over Pθ .

Let δ ∈ ∆(1) be the uniform distribution over A and U ∈ Pθ
a maximizer of Fθ . Observe that for U δ = u(δ ) ∈ Pθ , we have

U δ
i ≥ 1/m for all i ∈ N . Hence, Fθ (U ) ≥ Fθ (U

δ ) ≥ −Cθ logm.

Moreover, for all i ∈ N ,Ui ≤ 1 and hence, Fθ (U ) ≤ 0.

Lastly, let i ∈ N . Clearly, logUi is upper bounded by log 1 = 0.

For the lower bound, observe that

Ci logUi ≥ −Cθ logm −
∑

j ∈N \{i }

Cj logUj ≥ −Cθ logm,

where the first inequality follows from the lower bound on Fθ (U )

and the second inequality follows from the upper bound on logUj .

The desired bound is obtained after division by Ci .

A.3 Proof of Lemma 2
First we show that U is continuous in CN on Rn>0

. Let θ ∈ Θn
,

θ = (u,CN ) with CN ∈ Rn>0
, (CkN )k ∈N ⊆ Rn>0

converging to

CN , and θk = (u,CkN ). Further, let U k = U(θk ) and U = U(θ ).

Observe that since CkN converges to CN , by Lemma 1, 1 ≥ U k
i ≥

λ > 0 for all i and some λ > 0 and large enough k . Hence, by

passing to a subsequence if necessary, we may assume that U k

converges toU ∗
for someU ∗ ∈ Pθ . Since the family of functions

Fθ , Fθk , k ∈ N, is uniformly equicontinuous on [λ, 1]n , it follows

that Fθk (U
k ) converges to Fθ (U

∗). Moreover, asU k
maximizes Fθk ,

we have Fθk (U
k ) ≥ Fθk (U ), which converges to Fθ (U ). Hence, U ∗

maximizes Fθ , which, by Lemma 1, implies thatU ∗ = U and hence,

U k
converges toU .

Let θ, θ ′ ∈ Θn
and t > 0 such that θ ′ = (u,C ′) with C ′

1
= C1 + t

and Ci = C ′
i for all i ∈ N \ {1}. We show that U1(θ

′) ≥ U1(θ ).
LetU = U1(θ ) andU

′ = U1(θ
′) and assume for contradiction that

U ′
1
< U1. Then,

Fθ ′(U ′) =
∑
i ∈N

Ci logU ′
i +t logU ′

1
<

∑
i ∈N

Ci logUi+t logU1 = Fθ ′(U ),

where the inequality follows from the assumption thatU ′
1
< U1 and

the fact thatU is a maximizer of Fθ . This contradicts the assumption

thatU ′
maximizes Fθ ′ .

A.4 Proof of Lemma 3
Since Pθ is a polytope, it is an intersection of a finite number of

closed half-spaces Hi . Observe that the desired property holds for

each Hi . Indeed, if the pointU is in the interior of Hi , we can take

ε to be half of the distance from U to the boundary of Hi , while

if U is on the boundary of Hi , the entire ray {U + tdU | t ≥ 0} is

contained in Hi and we can take ε to be any positive real number.

It follows that the desired property also holds for the intersection

of the half-spaces Hi , which is Pθ .

A.5 Proof of Lemma 4
Consider the function τ : [0, 1] → R with τ (t) = Fθ (U + tdU ) and

observe that τ attains its maximum at 0. Since Ui > 0 for all i ∈ N
by Lemma 1, τ is differentiable at 0. Hence, the right derivative of

τ at 0 is non-positive, i.e.,

∂τ

∂t

��
t=0
=
∂

∂t

(∑
i ∈N

Ci log(Ui + tdUi )

) ��
t=0
=

∑
i ∈N

Ci
dUi
Ui

≤ 0.

If additionallyU −dU ∈ Pθ , the first part implies −
∑
i ∈N Ci

dUi
Ui ≤

0, from which equality follows.
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A.6 Proof of Lemma 5
Since −α ≤ xi ≤ β , we have

���xi − β−α
2

��� ≤ β+α
2

. It follows that∑
i ∈N

Cix
2

i =
∑
i ∈N

Ci

(
xi −

β − α

2

)
2

−

(
β − α

2

)
2 ∑
i ∈N

Ci

≤

(
β + α

2

)
2 ∑
i ∈N

Ci −

(
β − α

2

)
2 ∑
i ∈N

Ci

= αβ
∑
i ∈N

Ci ,

as claimed.

A.7 Proof of Lemma 6
We first prove an auxiliary lemma.

Lemma 7. Let λ∗ ∈ (0, 1/2). Then, there are ε∗ ∈ (0, 1) and t ∈ [1, 2]

such that

t − λ
1 + ε

1 − ε
t2 > 1 − λ for all λ ∈ [0, λ∗] and ε ∈ (0, ε∗).

Proof. The inequality in the statement can be rewritten as λ <
t−1

1+ε
1−ε t

2−1

. Choose an arbitrary t ∈ (1, 1

λ∗ − 1). We have t ∈ [1, 2] and

λ∗ < 1

1+t . Since limε→0

t−1

1+ε
1−ε t

2−1

= 1

1+t , we can choose ε∗ ∈ (0, 1)

such that λ∗ < t−1

1+ε
1−ε t

2−1

for all ε ∈ (0, ε∗). It follows that λ < t−1

1+ε
1−ε t

2−1

for all λ ∈ [0, λ∗] and ε ∈ (0, ε∗), as desired. □

We now proceed to prove Lemma 6. If µ ≤ 1, then by choosing

any ε∗ ∈ (0, 1), we have µΦ(1) ≤ Φ(1) ≤ α by assumption. Assume

henceforth that µ > 1. For any ε∗ ∈ (0, 1) that we choose later, note

that if α = 0, then taking the given ε ∈ (0, ε∗) yields Φ(1) ≤ 0, so

α ≥ µΦ(1) always holds. Hence it suffices to consider α > 0. Let

λ∗ := 1 − 1

µ > 0 and choose ε∗ > 0 and t∗ ∈ [1, 2] such that

t∗ − λ
1 + ε

1 − ε
(t∗)2 > 1 − λ

for all λ ∈ [0, λ∗] and ε ∈ (0, ε∗), which is possible by Lemma 7.

Let λ :=
α−Φ(1)

α ≥ 0. Assume for the sake of contradiction

that the desired conclusion is not true, i.e., α < µΦ(1). This is
equivalent to λ < λ∗. Since the function Ψ(t) := αt − Φ(t) satisfies
β(1 − ε)t2 ≤ Ψ(t) ≤ β(1 + ε)t2

, by substituting t = t∗ and t = 1, we

have Ψ(t∗) ≤ Ψ(1) 1+ε
1−ε (t

∗)2. It follows that

Φ(t∗) = αt∗ − Ψ(t∗) ≥ α

(
t∗ −

Ψ(1)

α

1 + ε

1 − ε
(t∗)2

)
= α

(
t∗ − λ

1 + ε

1 − ε
(t∗)2

)
> α(1 − λ) = Φ(1).

This contradicts the assumption that Φ(1) = maxt ∈[0,2] Φ(t).

A.8 Proof of Theorem 7
We prove the incompatibility form = 5 and n = 5, and the proof

can be adapted to larger values as before.

Assume that f is a mechanism satisfying efficiency and positive

share. Now consider a profile θ with uniform contributions (Ci = 1

for all agents i ∈ N ) and the approval profile

AN = ({a}, {abc}, {abd}, {ace}, {de}).

Let δ = f (θ ) be the distribution returned by the mechanism. Since

f is efficient, we must have δ (b) = δ (c) = 0, because otherwise a

Pareto improvement can be obtained by redistributing resources

from either of these alternatives to a. Since the profile is symmetric

under the permutation σ = (b c)(d e), we must have δ (b) = δ (c)
and δ (d) = δ (e) because f is anonymous and neutral. By positive

share for Agent 5, we must have δ (d) = δ (e) > 0. It follows that

u4(δ ) < C because a positive amount is spent on project d , which
Agent 4 does not approve.

Now, suppose that the fourth agent pretends not to approve a,
so we get the profile θ ′ with the following approvals:

A′
N = ({a}, {abc}, {abd}, {ce}, {de}).

Let δ ′ = f (θ ′) be the distribution now returned by the mechanism.

Again, by efficiency, we must have δ ′(b) = 0 since we can otherwise

redistribute resources from b to a to get a Pareto improvement.

Next, suppose that both δ ′(c) and δ ′(d) are positive, say δ ′(c) ≥ ϵ
and δ ′(d) ≥ ϵ for some ϵ > 0. Then δ ′ is Pareto dominated by

the distribution obtained from δ ′ by moving ϵ from c to a and ϵ
from d to e . This contradicts efficiency of f , so either δ ′(c) = 0

or δ ′(d) = 0. Since projects c and d are symmetric in θ ′, we must

have δ ′(c) = δ ′(d) = 0. Hence, δ ′ distributes the entire endowment

between projects a and e , and so u4(δ
′) = C .

Thus, Agent 4 has successfully manipulated f by reporting a

subset of her true approval set.

A.9 Proof of Theorem 5 assuming anonymity
Throughout this proof, we will only consider profiles with uni-

form contributions. Let the support of a distribution δ be the set of

projects x for which δ (x) > 0. In this proof, we will sometimes use

shorthands like xyz to refer to the set {x,y, z}.
Let A = {a,b, c,d} be the set of projects. For each pair {x,y} of

projects from {b, c,d}, consider the following profile, where z is

the project in the singleton {b, c,d} \ {x,y}.

Px ,y = ({x}, {y}, {a, x}, {a,y}, {x, z}, {y, z}).

If, in this profile, the mechanism gives a positive amount of re-

sources to both a and z, then we can redistribute these resources to

x and y in a way that leads to a Pareto improvement, contradicting

efficiency. By positive share, both x and y need to get a positive

amount. Thus, there are three options for the support used at profile

Px ,y :

(α ) {x,y},
(β) {a, x,y},
(γ ) {x,y, z}.

We will prove, using strategyproofness, that option α is impossible,

that option β can hold at only one of the profiles Pb ,c , Pc ,d , Pd ,b ,
and that option γ can also hold at only one of these profiles. This is

a contradiction.

Each part of the proof refers to a table of profiles (Tables 4, 5,

and 6). Each row specifies a profile. The last column lists all supports

that are compatible with efficiency and positive share. We say that

a support is chosen at a profile if it is the support of the distribution

returned by f at that profile. Each of the three proof parts begins by

making an assumption on which support is chosen at the profile of

the first row: namely, the proof assumes it is one of the underlined

supports. The proof then goes through the profiles in the table,
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A1 A2 A3 A4 A5 A6 possible supports

θ1
: ay az xy zy xy y ay, zy,azy

θ2
: axy az xy zy xy y ay, zy,azy

θ3
: ax az xy zy xy y ay,axy,azy

θ4
: ax azy xy zy xy y ay, xy,axy

θ5
: ax ay xy zy xy y ay, xy,axy

θ6
: ax ay xy zy x y xy,axy

θ7
: ax ay zx zy x y xy,axy, xzy

Table 4: Profiles for the proof, part α .

using strategyproofness to deduce which support(s) are possibly

chosen in the other profiles; these possible supports are underlined.

We say that an agent is happy with the support chosen at a profile

if the agent approves all projects in that support.

Option α is impossible. We prove that f (Px ,y ) does not have
support {x,y}.

Consider profile θ1
. In this profile, a and z are symmetric, and

so without loss of generality we may assume that zy or azy is

chosen at θ1
. (That is, if ay is chosen, then the proof that follows

can be relabeled to yield the same conclusion.) Thus, Agent 1 is not

happy and manipulates to obtain θ2
. By strategyproofness, Agent 1

cannot be happy at θ2
so either zy or azy must be chosen. Agent

1 manipulates again to obtain θ3
, where Agent 1 cannot be happy

so azy is chosen. Note that Agent 2 in θ4
is happy with azy. Thus,

to avoid a manipulation of Agent 2, that agent needs to already be

happy in θ4
, so there ay is chosen. To avoid manipulation of Agent

2 in θ5
, Agent 2 needs to also be happy in θ5

, so ay is chosen there.

Agent 5 is not happy and manipulates from θ5
to θ6

, and cannot be

happy there, so axy is chosen. Agent 3 is not happy andmanipulates

to θ7
and cannot be happy there, so xy cannot be chosen. This is

the desired conclusion, because θ7 = Px ,y .

Option β applies at most once. We prove that if f (Px ,y ) has sup-
port {a, x,y}, then f (Py,z ) does not have support {a,y, z}. Be re-
labeling the proof, one can establish that if f (Py,z ) has support
{a,y, z} then f (Pz,x ) does not have support {a, z, x}; and that if

f (Pz,x ) has support {a, z, x} then f (Px ,y ) does not have support
{a, x,y}. These three statements give the desired conclusion.

Consider profile θ8 = Px ,y , and assume that axy is chosen. To

avoid Agent 1 manipulating, Agent 1 needs to be happy in θ9
, so

xy is chosen. To avoid Agent 1 manipulating, Agent 1 needs to

be happy in θ10
, so xy is chosen. To avoid Agent 5 manipulating,

Agent 5 needs to be happy in θ11
, so xy is chosen. Agent 4 is not

happy and manipulates from θ11
to θ12

, and cannot be happy there

so xy of zxy is chosen. Agent 4 is not happy and manipulates to

θ13
, and cannot be happy there so zxy is chosen. To avoid Agent 3

manipulating, Agent 3 needs to be happy in θ14
, so zy is chosen. To

avoid Agent 3 manipulating, Agent 3 needs to be happy in θ15
, so

zy is chosen. To avoid Agent 1 manipulating, Agent 1 needs to be

happy in θ16
, so zy is chosen. Agent 2 is not happy and manipulates

to θ17
, and cannot be happy there so zy or azy is chosen. Agent 2

is not happy and manipulates to θ18
, and cannot be happy there so

azy is chosen. To avoid Agent 4 manipulating, Agent 4 needs to be

A1 A2 A3 A4 A5 A6 possible supports

θ8
: ax ay zx zy x y xy,axy, xzy

θ9
: axy ay zx zy x y xy, zxy

θ10
: xy ay zx zy x y xy, zxy

θ11
: xy ay zx zy xy y zy, xy, zxy

θ12
: xy ay zx azy xy y zy, xy, zxy

θ13
: xy ay zx az xy y zy,azy, zxy

θ14
: xy ay zxy az xy y ay, zy,azy

θ15
: xy ay zy az xy y ay, zy,azy

θ16
: zy ay zy az xy y ay, zy,azy

θ17
: zy axy zy az xy y ay, zy,azy

θ18
: zy ax zy az xy y ay,azy,axy

θ19
: zy ax zy azy xy y ay, xy,axy

θ20
: zy ax zy ay xy y ay, xy,axy

θ21
: zy ax zy ay zxy y ay, xy,axy

θ22
: zy ax zy ay zx y xy,axy, zxy

θ23
: zy axy zy ay zx y zy, xy, zxy

θ24
: zy xy zy ay zx y zy, xy, zxy

θ25
: azy xy zy ay zx y zy, xy, zxy

θ26
: azy xy z ay zx y zy, xy, zxy

θ27
: az xy z ay zx y zy,azy, zxy

Table 5: Profiles for the proof, part β .

happy in θ19
, so ay is chosen. To avoid Agent 4 manipulating, Agent

4 needs to be happy in θ20
, so ay is chosen. Agent 5 is not happy

and manipulates to θ21
, and cannot be happy there so ay or axy is

chosen. Agent 5 is not happy and manipulates to θ22
, and cannot

be happy there so axy is chosen. To avoid Agent 2 manipulating,

Agent 2 needs to be happy in θ23
, so xy is chosen. To avoid Agent

2 manipulating, Agent 2 needs to be happy in θ24
, so xy is chosen.

Agent 1 is not happy and manipulates to θ25
, and cannot be happy

there so xy or zxy is chosen. Agent 3 is not happy and manipulates

to θ26
, and cannot be happy there so xy or zxy is chosen. Agent 1

is not happy and manipulates to θ27
, and cannot be happy there so

azy is not chosen. This is the desired conclusion, since θ27 = Py,z
up to reordering voters, and we assumed that f is anonymous.

Option γ applies at most once. Consider profile θ28
. Note that

projects x and z are symmetric in it. We will prove that if at θ28
we

choose xy or zxy, then at θ40 = Px ,y we cannot choose xzy. On the

other hand if at θ28
we choose zy, then the proof can be relabelled

to show that at Pz,y we cannot choose zxy. Thus, we prove that
{x,y, z} can be chosen at at most one of the profiles Px ,y and Pz,y .
By further relabellings of the proof, like in part β , we then find that

{x,y, z} can be chosen at at most one of Px ,y , Py,z , and Pz,x , as
desired.

Consider profile θ28
, and assume that xy or zxy is chosen. Agent

1 is not happy and manipulates to θ29
, and cannot be happy there

so zxy is chosen. Agent 2 is not happy and manipulates to θ30
, and

cannot be happy there so zxy is chosen. Agent 1 is not happy and

manipulates to θ31
, and cannot be happy there so zxy is chosen. To

avoid Agent 3 manipulating, Agent 3 needs to be happy in θ32
, so

zy is chosen. To avoid Agent 3 manipulating, Agent 3 needs to be

happy in θ33
, so zy is chosen. Agent 2 is not happy and manipulates
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A1 A2 A3 A4 A5 A6 possible supports

θ28
: zy zy zx xy xy y zy, xy, zxy

θ29
: az zy zx xy xy y zy, zxy

θ30
: az azy zx xy xy y zy, zxy

θ31
: az ay zx xy xy y zy,azy, zxy

θ32
: az ay zxy xy xy y ay, zy,azy

θ33
: az ay zy xy xy y ay, zy,azy

θ34
: az axy zy xy xy y ay, zy,azy

θ35
: az ax zy xy xy y ay,azy,axy

θ36
: azy ax zy xy xy y ay, xy,axy

θ37
: ay ax zy xy xy y ay, xy,axy

θ38
: ay ax zy zxy xy y ay, xy,axy

θ39
: ay ax zy zxy x y xy,axy

θ40
: ay ax zy zx x y xy,axy, zxy

Table 6: Profiles for the proof, part γ .

to θ34
, and cannot be happy there so zy or azy is chosen. Agent 2

is not happy and manipulates to θ35
, and cannot be happy there

so azy is chosen. To avoid Agent 1 manipulating, Agent 1 needs to

be happy in θ36
, so ay is chosen. To avoid Agent 1 manipulating,

Agent 1 needs to be happy in θ37
, so ay is chosen. Agent 4 is not

happy and manipulates to θ38
, and cannot be happy there so ay or

axy is chosen. Agent 5 is not happy and manipulates to θ39
, and

cannot be happy there so axy is chosen. Agent 4 is not happy and

manipulates to θ40
, and cannot be happy there so zxy is not chosen.

This is the promised conclusion.

A.10 Monotonicity
Our model gives rise to a number of natural monotonicity axioms.

While for all the considered mechanisms, increasing the contribu-

tion of an agent cannot decrease her utility, this may result in a

utility decrease for another agent (avoiding this was proposed as

an axiom in the context of cake cutting by Moulin and Thomson

[22]).

In this section, we will briefly discuss monotonicity with respect

to projects, i.e., if a project becomes more popular, it should not

receive less resources.

Definition 6 (Project monotonicity). A mechanism f is project
monotonic if for all type profiles θ , θ ′ ∈ Θn

with approval sets

(A1, . . . ,An ), agents i ∈ N , projects x < Ai , and θ
′ = θ , except

A′
i = Ai ∪ {x}: f (θ ′)(x) ≥ f (θ )(x).

It follows from the definitions that UTIL and CUT satisfy project

monotonicity. Perhaps surprisingly, the other considered mecha-

nisms fail project monotonicity.

Theorem 8. EGAL, CEG, and NASH violate project monotonicity.

Proof. For θ with AN = ({a}, {abc}, {bd}, {cd}) and uniform

contributions, EGAL(θ ) = CEG(θ ) = 2a+2d . If Agent 1 additionally
approves project d , i.e., A′

1
= {a,d}, we get EGAL(θ ′) = CEG(θ ′) =

0.8a + 0.8b + 0.8c + 1.6d . Hence, the contribution for d decreased

from 2 to 1.6.

CEG and EGAL

a b c d ui

δ1 1 · · · 2

δ2 1 · · · 2

δ3 · · · 1 2

δ4 · · · 1 2∑
2 · · 2 8

θ with A1 = {a}

CEG and EGAL

a b c d ui

δ1 · · · 1 2.4

δ2 0.8 · 0.2 · 2.4

δ3 · 0.8 · 0.2 2.4

δ4 · · 0.6 0.4 2.4∑
0.8 0.8 0.8 1.6 9.6

θ ′ with A′
1
= {a,d}

For NASH , considering θ with AN =

({a}, {a,b}, {a, c}, {b, c,d}, {b,d}, {c,d}) and contributions

Ci = 1 for 1 ≤ i ≤ 3 and Ci = 2 for 4 ≤ i ≤ 6, we have

NASH (θ ) = 3a + 6d . If Agent 1 additionally approves project d , i.e.,
A′

1
= {a,d}, we get NASH (θ ′) = 2κ a + κ b + κ c + (9 − 4κ) d with

κ = (7−
√

22)/3. Hence, the contribution for project d decreased from

6 to 9 − 4κ ≈ 5.92055... .

NASH

a b c d ui

δ1 1 · · · 3

δ2 1 · · · 3

δ3 1 · · · 3

δ4 · · · 2 6

δ5 · · · 2 6

δ6 · · · 2 6∑
3 · · 6 27

θ with A1 = {a}

NASH (rounded)

a b c d ui

δ1 0.21 · · 0.79 7.46

δ2 0.6̄ 0.3̄ · · 2.31

δ3 0.6̄ · 0.3̄ · 2.31

δ4 · 0.21 0.21 1.59 7.46

δ5 · 0.23 · 1.77 6.69

δ6 · · 0.23 1.77 6.69∑
1.54 0.77 0.77 5.92 32.92

θ ′ with A′
1
= {a,d}

□
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