Funding Public Projects:
A Case for the Nash Product Rule

Florian Brandl Felix Brandt Matthias Greger
Bonn TUM TUM

Dominik Peters Christian Stricker Warut Suksompong
Toronto TUM NUS

We study a mechanism design problem where a community of agents wishes
to fund public projects via voluntary monetary contributions by the commu-
nity members. This serves as a model for public expenditure without an
exogenously available budget, such as participatory budgeting or voluntary
tax programs, as well as donor coordination when interpreting charities as
public projects and donations as contributions. Our aim is to identify a mu-
tually beneficial distribution of the individual contributions. In the prefer-
ence aggregation problem that we study, agents with linear utility functions
over projects report the amount of their contribution, and the mechanism
determines a socially optimal distribution of the money. We identify a spe-
cific mechanism—the Nash product rule—which picks the distribution that
maximizes the product of the agents’ utilities. This rule is Pareto efficient
and incentivizes agents to contribute their entire budget while spending each
agent’s contribution only on projects the agent finds acceptable.
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1. Introduction

Italian tax payers have the option, under the cinque per mille program, to redirect 0.5%
of their personal income tax to a non-profit organization of their choice. To partici-
pate, tax payers enter an organization’s tax code into their tax return, choosing from
a catalog of about 600 research organizations, 10,000 sports organizations, or 47,000
voluntary organizations.! Participating in this program is a good choice for anyone who
believes that funding for at least one of these organizations would do more good than
additional tax income to the Italian government. In 2017, more than 10 million tax pay-
ers participated, for a total payout of more than 300 million euros.? However, one might
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worry that the allocation of funding to the organizations is inefficient because too little
information about the participants’ preferences is elicited. Each person only indicates
a single organization, but presumably they would be happy to support any of several
organizations. If we knew this approval information, we would likely be able to find
an allocation that everyone prefers, in the sense that the money directed to approved
organizations would be larger for each tax payer.

Suppose we convinced the Italian government to allow tax returns to indicate a list
of organizations rather than just one. Given this information, how should we decide on
the allocation of funds? A simple way to ensure a Pareto efficient outcome would be to
maximize utilitarian welfare: one could define an individual’s welfare as the amount of
money disbursed to approved organizations and then maximize the sum of the welfare
of each participating tax payer. The result would be that all the available funds would
be disbursed to the (usually unique) organization that received the most “votes”. While
this is efficient, it fails to provide the participation incentives of the current system: one
additional vote is unlikely to change which organization is most popular, and those who
do not think that this organization is worth funding will choose to not participate.

It is in fact quite difficult to find an allocation mechanism that retains the strong
participation incentives of the naive system (where each agent chooses just one orga-
nization) and also selects an efficient outcome. Mechanisms that spend each voter’s
contribution only on approved organizations tend to fail efficiency. To narrow down the
search, we can observe that any mechanism that incentivizes participation must also
satisfy some natural group fairness axioms: for example, if a group of voters all approve
the same list of organizations, then the mechanism must spend the accumulated tax
contribution of the group on organizations on this list. A result by Bogomolnaia et al.
(2002) about group fairness implies that among separable social welfare functions, there
is only a single candidate that might work: maximizing the Nash product, which selects
the allocation of funds that maximizes the product (rather than the sum) of utilities.
In this paper, we prove that the Nash product rule indeed incentivizes participation at
least as much as the naive rule. In particular, if a tax payer chooses to participate by
submitting a list of approved organizations, we can guarantee that the money allocated
to those organizations grows by at least her individual tax contribution. In fact, it can
grow by more than that, because the Nash product rule may choose to redirect others’
contributions to these organizations.

This result makes the Nash product rule an attractive choice in many other contexts,
where we wish to incentivize voluntary monetary contributions to a common pool which
is to be spent on public projects in an efficient manner. Examples of communities
that face this problem might include residents of an apartment complex (who want to
coordinate spending on gardening in a courtyard, or on cleaning services), homeowners
on a city street (to coordinate tree care, snow removal, or security patrols), or student
clubs in a university (to coordinate funding for events and meet-ups).

Charitable donations provide another important application. Typically, these are
undertaken independently without coordination among donors. As a consequence,
mutual interest in the same charities goes unnoticed, even though the utility of all
donors could be increased through coordination. For any given community of donors,



such as the employees of a company running an annual charity matching program?® or

donors using charitable giving mechanisms like so-called “donor-advised funds” offered
by the same asset manager?, introducing a voting system based on the Nash product rule
could produce better outcomes. The same conclusion holds in higher-stakes applications
involving major philanthropic foundations. Notably, the Open Philanthropy Project,
which grants more than $100 million a year to various organizations, has called on
academics to develop mechanisms to combine different staff members’ views on the
most effective giving opportunities, and also to help coordinate the giving of different
philanthropic organizations (Muehlhauser, 2017). Interest in donor coordination
mechanisms has also been expressed in the effective altruism community (Peters, 2019),
many of whose members have pledged to donate 10% of their income to effective charities.

While our full model allows agents to specify fine-grained utilities, for ease of exposi-
tion, we will start by assuming that each agent only submits a list of approved projects
and that the agent is indifferent among these. We also ask each agent ¢ to commit
a monetary amount C; € [0, B;] to contribute to the funding system within her own
personal budget B;. The approvals are interpreted as dichotomous utility functions, so
that w;(z) € {0,1} is the utility per unit of money that agent i assigns to project x.
For a distribution ¢ of the overall collected contributions to projects, agent i’s utility of
distribution ¢ is defined as u;(6) := >, u;(x)d(x), where 6(z) is the amount spent on
project . With dichotomous utilities, u;(J) is just the total amount of money that &
spends on projects approved by i.

Our main result concerns contribution incentives. We wish to assure agents that it is
beneficial for them to contribute their whole budget to the mechanism. In other words,
if 4 contributes an additional amount € > 0 of money, then the total amount spent
on projects approved by i needs to increase by at least €. Formally, if the mechanism
selects distribution 6 when ¢ contributes C; € [0, B; —¢], and selects distribution ¢’ when
i contributes C; + ¢ with € > 0, then we must guarantee that u;(¢") > u;(d) +e. We call
this property contribution incentive-compatibility.

While this property may seem mild on first sight, it is difficult to satisfy together with
efficiency. A naive procedure where each agent’s contribution is split uniformly between
her approved projects, violates efficiency. Maximizing utilitarian welfare among all dis-
tributions is efficient, but severely violates contribution incentive-compatibility, because
the mechanism may spend agent ¢’s contribution on projects that are not acceptable to i.
If we constrain the welfare maximization to distributions where each agent’s contribution
is only spent on acceptable projects (aka the “conditional utilitarian rule”), contribution

3For example, Microsoft and Apple run such programs. In 2020, Microsoft employees donated over $110
million to charities, which the company doubled to over $220 million. (https://www.microsoft.
com/en-us/corporate-responsibility/philanthropies/employee-engagement). Since its incep-
tion in 2011, Apple’s charity matching program raised nearly $600 million in total donations
for more than 34,000 organizations (https://www.apple.com/newsroom/2020/12/a-1andmark-year-
of-giving-from-apple/).

4For example, the asset manager Fidelity Charitable made over $9 billion in donor-recommended grants
in 2020 to 170,000 organization via donor-advised funds (https://www.fidelitycharitable.org/
insights/2021-giving-report.html).
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incentive-compatibility is satisfied but we lose efficiency. Replacing the utilitarian ob-
jective with a Rawlsian leximin objective does not work either, and mechanisms based
on serial dictatorships fail, too.

Remarkably, the Nash product rule described above combines efficiency and contri-
bution incentives. The Nash product rule selects the distribution § that maximizes
[Ticn wi(0)%i, where C; is the size of i’s contribution and N is the set of agents. Since
this rule maximizes a monotonic function of agents’ utilities, its outcome is guaranteed
to be efficient. While it is easy to see that the Nash product rule satisfies u;(0") > u;(0)
when 7 contributes an additional amount ¢, it is more difficult to establish that we have
u;(8") > u;(0) + € as required by contribution incentive-compatibility. Our main result,
Theorem 3, shows that this property is satisfied by the Nash product rule. The proof
reasons about the trajectory of the maximizer of the Nash product as a function of agent
i’s contribution. We derive a lower bound for the derivative of agent i’s utility along
this trajectory. Integrating this bound yields the result.

The Nash product rule is the only mechanism known to us that is both efficient and
contribution incentive-compatible for an arbitrary number of projects. It is plausible
that the mechanism is characterized by these properties, but we could not establish
this. However, as discussed in Section 2, two characterizations by Bogomolnaia et al.
(2002) and Guerdjikova and Nehring (2014) imply that, at least when imposing further
strong assumptions, the Nash product rule is characterized by contribution incentive-
compatibility. The Nash product rule satisfies an additional property that is important
in our model: it spends the contribution of user ¢ only on projects that are approved
by i. Formally, we say that a distribution § is decomposable if we can decompose it as
0 = 01+ - -+ 0, such that d; spends exactly C;, and spends it only on projects acceptable
to ¢. In Theorem 1, we prove that the distribution selected by the Nash product is
always decomposable. This provides an intuitive justification of the chosen distribution
to agents. Decomposability can also be interpreted as an incentive property: in some
applications, the money is not distributed to projects by a central clearinghouse, but the
mechanism’s output is just used as a recommendation to agents where to direct their
contribution. In this case, decomposability becomes essential, since a recommendation
to send money to an unacceptable project is likely to be ignored. There do exist artificial
mechanisms other than the Nash product rule that are efficient and decomposable,® but
the Nash product rule is the only such mechanism known to us that arises naturally
from the maximization of a social welfare function. The Nash product rule not only
satisfies decomposability, but, moreover, the fraction of agent i’s contribution to project
x is directly proportional to the utility 6(x)u;(z) she derives from x in the Nash product
distribution §. Thus, agents can then easily compute their individual distributions J;
once they know 6. We leverage this observation to construct a simple, dynamic procedure
in which agents iteratively revise their contributions to projects in proportion to the

To construct such mechanisms, note that we can modify an efficient distribution and retain efficiency
as long as we do not increase its support (see, e.g., Aziz et al., 2015). So we can, for example, take
the support of the Nash product distribution and let every agent assign her entire contribution to
one of her most preferred projects within the support. The resulting distribution is efficient and
decomposable.



utility they receive from the distribution of the previous round. A result of Cover (1984)
from the theory of optimal portfolio selection implies that this procedure approximates
a Nash product distribution arbitrarily well as the number of rounds goes to infinity. In
Theorem 2, we state this result and give a compact proof tailored to our setting. Hence,
the Nash product rule arises naturally from a simple decentralized spending dynamic.

Our results generalize beyond the case of dichotomous utilities. In our formal treat-
ment, we allow agents to indicate arbitrary utility values u;(x) > 0 for the projects,
and extend these to distributions as linear utilities as before, so u;(0) = >, u;(z)d(z).
The Nash product rule works for this more general class of utilities, and in particu-
lar it retains efficiency. It also continues to satisfy contribution incentive-compatibility
and decomposability, but these two properties hold in a weak sense that only distin-
guishes acceptable projects with strictly positive utility w;(z) > 0 from unacceptable
ones with u;(x) = 0. Contribution incentive-compatibility guarantees that the amount
spent on acceptable project grows by € when an extra amount of ¢ is contributed, and
decomposability guarantees that an agent’s contribution is only spent on acceptable
projects. In Section 5, we discuss strengthened versions of decomposability and con-
tribution incentive-compatibility that use fine-grained utilities and provide guarantees
based on an agent’s most-preferred project (for example, strong decomposability re-
quires that an agent’s contribution is only spent on most-preferred projects). These two
stronger properties may be desirable, but we prove impossibility theorems that show
that each of the two strengthened axioms is incompatible with efficiency.

While the Nash product rule is incentive-compatible in the sense that it is decom-
posable and incentivizes contribution, it still allows for other strategic behavior. In
particular, agents may have an incentive to misrepresent their utility functions. Because
the Nash product penalizes distributions in which some agents obtain very low utility,
it can be beneficial for agents to pretend to like popular projects less, or even to mark
them as unacceptable. This will make the Nash product rule worry that those agents
will be underserved, and thus increase the funding of other projects acceptable to them.
Unfortunately, by a result due to Hylland (1980, Thm. 2), every efficient mechanism
will be vulnerable to misrepresentation of preferences, except for dictatorships. This
impossibility is robust, and analogues hold even for dichotomous utilities (Bogomolnaia
et al., 2005; Duddy, 2015; Brandl et al., 2021). Since efficiency is our main objective, we
ignore possible misrepresentation of preferences in our discussion.

Overall, our discussion suggests that the Nash product rule is a prime candidate
for funding public projects through voluntary individual contributions. It combines
efficiency with strong incentive properties, and as detailed in Section 2, it also satisfies
important fairness and proportionality properties. Finally, the rule is simple to define,
can be easily approximated, and because it is decomposable, its distribution decisions
can be easily understood by users. We are excited for the possibility of implementing a
system based on the Nash product rule in the real world.



2. Related Work

The classic literature on private provision of public goods (e.g., Samuelson, 1954;
Bergstrom et al., 1986) studies Nash equilibria in the non-cooperative setting where
each agent decides how much to contribute to funding a public good. The main conclu-
sion is that public goods will be underprovided in equilibrium, leading to inefficiency.
In our model, we study cases where underprovision is less of a problem, for example
because a company’s matching program makes contributing a dominant strategy, or be-
cause the outside option is unattractive, such as paying more taxes. Similarly, in the
context of donor coordination, agents may have set aside a part of their income as a bud-
get for charitable activities. The inefficiency that we are worried about is an inefficient
allocation among different public goods.

In contrast to the above literature, we study a setting where there is an explicit coor-
dinating infrastructure or mechanism that aggregates preferences. Our model can thus
be said to fall within the area of collective decision making where the set of alterna-
tives is some subset of the Euclidean space, modeling divisible public goods or lotteries
over indivisible public goods (see, e.g., Le Breton and Weymark, 2011). Two concrete
applications in this context that have recently gained a lot of attention are those of
participatory budgeting (e.g., Aziz and Shah, 2020) and probabilistic social choice (e.g.,
Brandt, 2017).

Participatory budgeting is a paradigm that allows citizens to collectively decide how
a portion of a public budget ought to be spent (Cabannes, 2004). It has mostly been
studied under the assumption that the budget is provided by an outside source (such
as the city government). In the most common model, projects come with a fixed cost,
and they can either be fully funded or not at all. Probabilistic social choice studies the
aggregation of individual preferences into a lottery over alternatives. Both settings are
interrelated because a division of a fixed endowment among projects is equivalent to a
probability distribution over alternatives. The social choice literature typically focusses
on ordinal preferences. Bogomolnaia et al. (2005) have initiated the study of probabilistic
social choice for dichotomous utility functions, where cardinal and ordinal preferences
coincide.

The idea of maximizing the product of agents’ utilities originates in the Nash bar-
gaining solution and the corresponding mechanism is therefore often referred to as the
Nash product rule (Nash, 1950).6 The Nash product rule has recently become popular
in various fields, including the allocation of indivisible private items (Caragiannis et al.,
2019), committee elections (Lackner and Skowron, 2018), and participatory budgeting
(Fain et al., 2016, 2018). For all these settings, the Nash product rule satisfies strong
fairness and proportionality properties.

In the context of dichotomous preferences, Aziz et al. (2019) showed that the Nash
product rule guarantees average fair share: for any group of a% of the agents which is

SIn the context of asset allocation, this rule is known as the Kelly criterion (Kelly, Jr., 1956). When
interpreting the utility vectors of the agents as a multidimensional random variable which takes the
value of agent i’s utility vector with probability C;, the Kelly criterion maximizes the same objective
function as the Nash product rule.



cohesive (there is a project that they all approve), for an average group member, the
Nash product spends at least a% of the endowment on approved projects. They also
proved that the Nash product rule satisfies strict participation. This property, which
was introduced by Brandl et al. (2015), makes sense for the fixed-endowment setting,
but it is relatively weak in our setting with variable contributions.” Our main result
showing that the Nash product rule is contribution incentive-compatible implies Aziz
et al.’s (2019) result.

Two axiomatic characterizations of the Nash product rule are of particular interest in
our context. First, Bogomolnaia et al. (2002, Prop. 6) have shown that the Nash prod-
uct rule is the only rule that satisfies unanimous fair share (a condition weaker than de-
composability and significantly weaker than contribution incentive-compatibility) among
rules that maximize a quantity of the form . C;if(u;i(6)) for some function f (see
also Aziz et al., 2019, p. 768). Their result was shown for the domain of dichotomous
preferences, but easily extends to our more general domain due to the restricted form of
mechanisms considered. Secondly, Guerdjikova and Nehring (2014) have characterized
a solution concept called the diversity value for weighting different information sources
based on their reliability. Their result can be translated into a characterization of the
Nash product rule for dichotomous preferences using conditions such as convexity, con-
tinuity, reinforcement, and a core condition that is again weaker than decomposability
and significantly weaker than contribution incentive-compatibility.

Fain et al. (2016) have initiated the study of a participatory budgeting setting where
projects can receive an arbitrary amount of funding (like in our paper) but the budget is
still exogenous and of fixed size. Fain et al. argued that allocations in Lindahl equilibrium
(Foley, 1970) are particularly desirable. The Lindahl equilibrium is a market equilibrium
in an artificial market for public goods. In these markets, each agent faces personalized
prices (usually interpreted as taxes) for the public goods, and in equilibrium each agent
demands the same bundle of public goods. Under standard assumptions, Foley (1970)
showed that a Lindahl equilibrium exists (by reducing to the Arrow—Debreu private
goods case), and is efficient. He also showed that equilibrium allocations are in the core:
no coalition of agents can afford (using only a fraction of the budget proportional to
their size) an allocation that each coalition member prefers to the equilibrium. For the
case of additive linear utilities, Fain et al. (2016) proved that the Nash product rule
yields an allocation in Lindahl equilibrium, and hence is in the core.® The core can be
interpreted as guaranteeing agents proportional representation: if a fraction of a% of
agents assign positive utility only to some set A’ of projects, then the Nash product rule
will spend at least a% of the budget on projects in A’.

"For dichotomous preferences, strict participation implies that if before contributing, 8% of others’
money was spent on ¢’s approved projects, then strictly more than 8% of i’s additional contribution
will be spent on i’s approved projects, while others’ money is not spent in a worse way for ¢. On the
other hand, contribution incentive-compatibility ensures that if agent ¢ contributes money, all of it
will be spent on i’s approved projects, while again others’ money is not spent in a worse way for i.
Aziz et al., p. 768, mention that a large class of additive welfarist rules satisfy strict participation.
Out of these only the Nash product rule satisfies contribution incentive-compatibility.

8This mirrors the canonical result that the Nash product yields an equilibrium in Fisher markets for
private goods under additive valuations (Eisenberg and Gale, 1959).



Gul and Pesendorfer (2020) study Lindahl equilibrium as a collective choice rule.
They characterize the set of all Lindahl equilibrium utility profiles as the outcomes of
a bargaining solution they call the equitable solution. Every outcome of the equitable
solution can be justified by being the Nash bargaining outcome of a simple related
bargaining problem.

The key difference between all of the above literature and our model is that in our
model, the individual contributions to the pool are owned by the agents. This suggests
the definitions of the axioms of decomposability and contribution incentive-compatibility,
which—to the best of our knowledge—have not been considered in previous work.

Since we study a model of public goods provision with direct monetary contributions,
one could assume quasilinear utilities and try to use the Vickrey—Clarke-Groves (VCGQG)
mechanism. However, since the VCG mechanism implements the utilitarian rule, it
will not incentivize contributions in our sense. It will also not be budget-balanced and
generally run a deficit. Thus, the VCG mechanism does not seem useful for our purposes.

3. Model and Axioms

Let A be a finite set of m projects (e.g., charities or joint activities). A distribution &
is a function that describes how some amount V is distributed among the projects, so
§: A — Ryo with ) ,6(z) = V. For convenience, we write distributions as linear
combinations of projects, so that a + 2b denotes the distribution ¢ with é(a) = 1 and
d(b) = 2. The set of all distributions of value V' is denoted by A(V).

There is a finite set N of n agents. Each agent i € N has a budget B; € Ryg and a
utility function u;: A — R>q, where u;(a) > 0 is agent ¢’s utility for every unit of money
that goes to project a. So agent i’s utility for a distribution § € A(V) is

wi(8) = 6(z) - wi(a).

T€EA

A project is said to be acceptable by an agent if it gives her positive utility, and unac-
ceptable it gives her utility 0. In the special case that an agent assigns the same utility to
all projects, we label all projects as acceptable and set all utilities to 1. For convenience,
we rescale utility functions such that the utility assigned to least-preferred acceptable
projects is 1, i.e., min{u;(x): u;(x) > 0} = 1. (We explain in Definition 3, which follows
Definition 3, how to adapt the model to work without this normalization.) A utility
function w; is dichotomous if u;(xz) € {0,1} for all x € A, so that agent ¢ only distin-
guishes between acceptable and unacceptable projects without discriminating between
the acceptable ones. In this context, we refer to the set of acceptable projects of an
agent as her approval set.

Each agent chooses a non-negative contribution C; € [0, B;] no larger than her budget
that she contributes to a common pool. A (contribution) profile is a tuple of contributions
C = (Cj)ien- Let C = ;e N0, B;] denote the set of all profiles, and let C~g = ;e n (0, B;]
be the set of profiles where every agent has a positive contribution. The sum of all agents’
contributions in a profile is |C] = Y. 5 C; and is called the pool. A mechanism f maps



a profile C' to a distribution of the pool f(C) € A(|C|). Hence, we take the agents’
budgets and utility functions to be fixed and known and consider the game induced by
a mechanism that asks the agents for their contributions.

We now discuss the main properties of distribution mechanisms that we are interested
in: efficiency, decomposability, and contribution incentive-compatibility.

A mechanism that yields high-quality distributions should, at minimum, satisfy Pareto
efficiency. Indeed, if a mechanism produces a distribution so that we could redistribute
the pool between projects and thereby increase the utility of every agent who contributes
to the mechanism, then the mechanism has not made full use of the potential for mutual
gains. We intend mechanisms to ignore agents with zero contributions, and therefore
define efficiency only with respect to agents with positive contributions. Thus, a Pareto
improvement may be worse for an agent who has chosen not to contribute to the mech-
anism.

Definition 1 (Efficiency). Given a contribution profile C' € C, a distribution ¢’ € A(|C|)
dominates another distribution 6 € A(|C]) if u;(d") > u;(0) for all i € N with C; > 0
and u;(0") > w;(9) for some ¢ € N with C; > 0. A mechanism f is efficient if for every
profile C, no distribution dominates f(C).

In applications, the mechanism might operate in a decentralized setting and not be
able to directly control the use of the agents’ contributions (for example, when a donor
coordination service does not actually collect money from its participants). In such cases,
the mechanism’s output ¢ is better understood as a recommendation to the agents about
how they should use their resources. We would then need to decompose ¢ into individual
distributions §; € A(C;), so that if every agent spends her reported contribution accord-
ing to J;, we recover 6. A distribution is decomposable if d; spends agent ¢’s contribution
exclusively on projects acceptable by 1.

Definition 2 (Decomposability). Let C be a profile. A distribution 6 € A(|C]) is
decomposable if it can be divided into individual distributions (d;);eny with 6; € A(C})
foralli € N and § = ), 0; such that for all i € N, we have 6;(x) > 0 only if u;(x) > 0.

We say that a mechanism f is decomposable if f(C) is decomposable for all profiles
C.

In Section 5, we discuss a strengthening of decomposability which requires that 6;(x) >
0 only if 7 has assigned maximum utility to x, i.e., only if u;(z) > w;(y) for all y €
A. However, this requirement turns out to be too strong; it clashes with efficiency.
Alternative characterizations of decomposability and strong decomposability are given
in Appendix B.

We want to incentivize agents to contribute their entire budget since this increases the
potential gains from coordination. Suppose each agent 7 aims to maximize u;(f(C))—C,
i.e., her utility for the distribution of the pool minus her own contribution. This objective
is well-motivated if agent ¢ could spend money outside the mechanism so as to obtain
one unit of utility per unit of money. Given our normalization of utility functions,
this is equivalent to agent ¢ valuing one unit of money as much as one unit of money



going to a least-preferred acceptable project. A mechanism then incentivizes agent i
to contribute her entire budget if choosing C; = B; is a weakly dominant strategy for
agent 4. If this property holds independently of the agents’ budgets, it is equivalent to
u;(f(C)) — C; being weakly increasing in C;. We call such a mechanism contribution
incentive-compatible.

Definition 3 (Contribution incentive-compatibility). A mechanism f is contribution
incentive-compatible if for each i € N and all profiles C', we have

ui(f(C_y, Cl/)) — CZ/ <wu(f(C-,Cy)) — C;  for all CZ/ with 0 < CZI < Ci.g

In particular, not participating (C} = 0) is at least weakly dominated by contributing
any positive amount of one’s own budget. We can re-write the definition as

ui(f(C-i, Ci)) —ui(f(C—;,Ci —¢€)) > €

for all 0 < e < (. Thus, increasing one’s contribution by € causes an increase of at least
€ in the utility derived from the distribution selected by f.

In Section 5, we discuss a strengthening of contribution incentive-compatibility that
requires u;(f(C)) — C; - maxyec 4 u;(y) to be weakly increasing in C;j. This corresponds to
the assumption that an agent values one unit of money as much as one unit of money
going to her highest utility project. Again, this stronger version is incompatible with
efficiency.

Decomposability and contribution incentive-compatibility are logically independent
properties, even when utilities are dichotomous. Appendix C gives two mechanisms that
satisfy only one of these axioms at a time. Nevertheless, the two properties seem to be
related as together with efficiency, contribution incentive-compatibility is likely to imply
decomposability since the Nash product rule always returns a decomposable distribution.

4. The Nash Product Rule

The Nash product, which refers to the product of agent utilities, is often seen as a
compromise between utilitarian and egalitarian welfare (Moulin, 1988). Maximizing the
Nash product has been found to yield fair and proportional outcomes in many preference
aggregation settings, and it also turns out to be attractive in our context. Formally,

NASH(C) = arg max H (ui(6))°" = arg max Z Cilog (u;(68)) .10
seA(C)) jen SeA(C) jen

Note that NASH weights agents by their contribution. (As a convention, we let 0° = 1
and 0log0 = 0, so that NASH ignores agents with zero contribution.) An unweighted

9We normalized utility functions so that min{u;(z): u;(z) > 0} = 1. Without this normalization, the
definition of contribution incentive-compatibility would read u;(f(C—;, C})) — C; min{u;(x): u;(z) >
0} < ui(f(C-s,Cs)) — Ciminf{u,(x): ui(x) > 0}.

" NASH is invariant to rescaling utility functions. Hence, the normalization min{u;(x): u;(z) > 0} =1
does not affect NASH.

10



Nash rule where each agent gets assigned the same weight would violate decomposability
and contribution incentive-compatibility. Indeed, that mechanism would not take into
account the individual contributions at all, and thus agents with large contributions
would have the same influence as agents with very small (or even zero) contributions.
This shows the need to weight agents.

There can be several distributions that maximize the Nash product.'’ However, all
of these distributions yield the same amount of utility to each agent (due to the strict
convexity of the objective function, see Lemma 1). Thus, we can arbitrarily break ties
in these cases without affecting any of the axioms considered here.

We now show that NASH is efficient, decomposable, and incentivizes contribution.
The first of these is easy: The distribution NASH (C') maximizes a sum of functions,
namely C;log(-), that are strictly increasing in the agents’ utilities provided that C; > 0.
Thus, NASH is efficient (see, e.g., Moulin, 1988). We will prove that NASH satisfies the
other two axioms later in this section. First, we verify these claims for a small example.

Agent 1 1 0 1
Agent 2 1 3 1

Table 1: Profile C' = (1,1) with B; = C; for i € {1,2} and NASH(C) = 1.5 a + 0.5 b.

Example 1. A simple example of NASH for a profile C' with two agents and two projects
is shown in Table 1. We have

0 = NASH(C) = argmaxd(a) - (6(a) +3 5(b)) =1.5a+ 0.5 b.
SEA(2)

The collective distribution ¢ can be decomposed into individual distributions
0p=a and d2=0.5(a+Db).
Contribution incentive-compatibility is satisfied in this example because
ui(NASH((1 —e1,1)))+e1 = 1.5—0.5¢; and
ua(NASH((1,1 —€2))) +e2 = 6—2e9 —2min{1.5,2 —ea}.

are (weakly) decreasing for increasing 1 = By — Cy and g9 = By — (b, respectively.
On the other hand, simply maximizing the sum of individual utilities in this example
would result in & = 2 b, which is not decomposable, as project b is unacceptable for
agent 1, and violates contribution incentive-compatibility because agent 1 would prefer
an outside option to participating in the mechanism. ]

1 Consider the following example (which notably does not contain any ‘clone’ projects). There are four
agents with approval sets {a, ¢}, {a, d}, {b,c}, and {b,d} and each agent contributes 1. Then, the set
of NASH distributions consists of all convex combinations of 2a + 2b and 2¢ + 2d.
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4.1. Decomposability

The Nash product distribution is the solution of an optimization problem, and thus
satisfies the first-order conditions of optimality. By manipulating these conditions, we
can show that the Nash product distribution is always decomposable.!'?

Theorem 1. NASH is decomposable.

Proof. We have to show that there is a decomposition of NASH(C) into ¢; € A(C;),
i € N, such that ). 5 6;(x) = (=) for all z.
We consider the Karush-Kuhn-Tucker (KKT) conditions and write the Lagrangian

as
LO Mgt sim) = 3 Crlog (ui(5)) + A <|0| = 6<x>> Y i)
ieEN x€A €A
where A € R is the Lagrange multiplier for the constraint ., é(x) = |C| and . >0
is the multiplier for the constraint é(x) > 0.

Suppose 9§ is an optimal solution. By complementary slackness, we must have p, =0
whenever §(x) > 0. Also, we must have 0L/06(x) = 0, that is, >, Ciui(x)/ui(0) —
A+ p, = 0. By case distinction based on whether d(x) > 0, it follows that Ad(z) =
Y ien Cid(x)ui(x)/ui(9) for all z € A. Hence,

A Ol =) Aé(x) ZZC Zc 5 => Ci=IC|.

TEA r€EAIEN iEN iEN

So XA =1, and hence ), Ciui(x)/u;(6) = 1 for all z € A such that 6(z) >0

Now, for each i € N, define an individual distribution §; € A(C;) with §;(x) =
Ci0(x)ui(z)/u;(0) for all z € A. Clearly, supp(d;) C {a € A: u;(a) > 0} and 6; € A(C)),
since > 4 0(x)ui(x) = u;(0). To see that 6 = ),y d;, note that for z € A with
d(x) = 0 we have 6;(xz) =0 for all i € N, and for z € A with §(z) > 0, we have

:L'
Zéi Zc& 5

1EN €N ZEN

(). O

By inspecting the proof, we see that the distribution d; of agent ¢ satisfies a stronger
notion of decomposability: the fraction of her contribution that she gives to project x is
proportional to the utility d(z)u;(x) she derives from z in the Nash product distribution
d (see also Guerdjikova and Nehring, 2014). For example, if half of agent i’s utility
u;(0) is due to the amount d(x) spent on x, then she transfers half of her contribution
to x. Thus, it suffices that a central clearinghouse announces the overall distribution
0. Agents can then easily compute their individual distributions §; without needing to
know the other agents’ utility functions or contributions.

12This proof is similar to a result by Guerdjikova and Nehring (2014) who consider NASH with dichoto-
mous preferences, and establish an equivalent property in this restricted setting.
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4.2. Computation

In general, NASH can be computed to arbitrary precision using convex programming
(see, e.g., Bogomolnaia et al., 2005). However, NASH cannot be computed exactly (in
the standard binary representation) because it may return distributions with irrational
values. An example is given in Table 2.

ui(a) wui(b) wui(c) Ci
Agent 1 1 1 0 1
Agent 2 1 0 1 1
Agent 3 0 1 1 1
Agent4 0 0 1 1

Table 2: Profile C = (1,1,1,1) with approval sets {ab},{ac}, {bc},{c}. Let § =
NASH(C). Alternatives a and b are symmetric, so d(a) = §(b). Thus §(c) =
4 — 28(a). So we can write the Nash objective as 26(a)(4 — §(a))?(4 — 26(a)),
which is maximized for §(a) = (7 — /17) /4.

We observed after the proof of Theorem 1 that the distribution selected by NASH
is a fixed point of a process where agents spend their contribution on a project in
proportion to the utility they receive from that project under the NASH distribution.
This observation, due to Guerdjikova and Nehring (2014), gives rise to a simple, dynamic
procedure for approximating NASH, similar to the proportional response dynamic that
converges to equilibrium in Fisher markets for private goods (Zhang, 2011).

For C' € C~o, consider the mapping f: A(|C|) — A(|C]) defined by

Usj

() T or a 13
i(5)6( ) for all 6 € A(|CY).

(FO)@) = Cin
1EN

The ith summand is called the individual distribution of agent i. Hence, given a distri-
bution d, the fraction of the contribution agent i assigns to project x in f(§) equals the
fraction of the utility agent i derives from the overall contribution d(x) to x. The proof
of Theorem 1 shows that we have f(d) = d for 6 = NASH(C). The mapping f induces
a dynamic procedure: For any initial distribution 6°, we obtain a sequence (6*)ren by
setting 0% = f(6F~1) for each k > 1.

It turns out that this dynamic procedure has been studied in the literature on optimal
portfolios, where projects correspond to stocks and utilities encode stock performance.!
In this context, Cover (1984) showed that the Nash product of §* converges to the

3Note that f is well-defined only if u;(8) > 0 for all i € N. This will always hold in our analysis.

! That literature has argued that a portfolio of stocks maximizing expected log returns (which corre-
sponds to the Nash product) produces optimal earnings in the long run (Cover and Thomas, 2006,
Chapter 16). The formal analysis focusses on stock returns over time and thus does not seem relevant
to the study of NASH as an aggregation rule.
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optimum Nash product if 6° has full support, and the sequence (6*)ren converges to
a Nash distribution under additional assumptions. Thus, by simply computing terms
of the sequence (5’“) keN, one can approximate a Nash distribution without resorting to
convex programming.

For convenience, we give a compact proof of this result. It is based on Cover’s proof,
which features a clever use of Jensen’s inequality. Our proof is adapted to our setting
and is more compact since our model assumes the number of agents to be finite. We
emphasize that whenever the Nash distribution is unique (which it is for a generic profile),
the sequence (6%)ren converges to it.

We write F'(6) = >_,cn Cilog(u;(8)) for the (log) Nash product of § € A(|C]).

Theorem 2. Let C € C~q and §° € A(|C|) be a distribution with full support. Denote by
(0% )ren its induced sequence. Then, (F(6))ren converges to the optimum Nash product.
If the Nash distribution is unique, (6*)gen converges to NASH.

Proof. Note that if 6 has full support, then u;(§) > 0 for all i € N. Moreover, in the
next iterate f(d), every agent assigns her contribution only to projects for which she has
strictly positive utility. Hence, u;(6¥) > 0 for all 4 and k, and 6*(z) = 0 for a project
implies u;(x) = 0 for all agents . We can thus ignore such projects and assume 6*(z) > 0
for all x and k. Normalizing by dividing by |C| if necessary, we may assume that |C| = 1,
so that 6¥ € A(1) for all k.

The proof proceeds in two steps.

1. The sequence (F(6%))ren converges.
2. Every accumulation point of (6¥)yecy is a Nash product distribution.

Step 1. For k > 1, we get

F(oMh) — ZC log (u, 5 ) Z C;log (Z SFH (2 (z) >

v

€N 1EN TEA
(1) , u; (@ k )
—ZCllog > Zc 5k 5k ()2 (5
i€EN z€A \JjEN
(2)
>> G Y Fa > c
iEN €A JEN
€A zGN JEN ($)
4) k1] et @ 1 k+1 _ sky2 >

where (1) and (4) follow from the definition of the dynamic procedure, (2) is an applica-

tion of Jensen’s inequality for concave functions (notice that Y-, , 6%(z )51(%?) =1), (3)
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changes the summation order, and (5) uses Lemma 11.6.1 of Cover and Thomas (2006),
where the left-hand side is the Kullback-Leibler divergence of 6¥*! and 6.

Hence, (F(6))ren is a weakly increasing sequence. As it is bounded from above by
F(6*) where §* is a Nash product distribution, it converges.

Step 2. The KKT-conditions for this concave optimization problem are sufficient, i.e.
every 0* € A(1) that satisfies them is a Nash product distribution. As shown in the
proof of Theorem 1, the KKT-conditions are given for every x € A with p, > 0 by

ZQ’M +pu, =1 and [6*(x) > 0 implies p, = 0].
ieN ui(0%)

Assume that the dynamic procedure terminates, i.e., for some k, 6*(z) = 0¥+ (z) =

§*(2) Y ien Ci lzi(%i)) for all z € A. Recalling that 6¥(x) > 0 for all projects x € A and
k € N, 6* satisfies the KKT-conditions and is a Nash product distribution.

In all other cases, let &' be an accumulation point of (6¥)zeny and (6%)eny be
a subsequence converging to it. We show that ¢ is a fixed-point of f. The se-
quence (F(f(6")) — F(6%))en converges to 0 by Step 1. Continuity of F implies

0= F(f(&)) — F(&) > ﬁg(z)ﬂf(é’) — &'||3, and so f(0') = &. Therefore, ¢'(z) =

8(x) X ien C’i%, which shows that ¢’ satisfies the KKT-conditions for all z with
§'(z) > 0.

Denote by S the set of all accumulation points. S is connected as the step size of the
dynamics converges to 0 by Step 1. As (F(0%))ren converges, F(§') = F(8") for any two
8',6" € S. If there exists a & € S that has full support, then & and consequently, all
accumulation points are Nash distributions as (F(6*))gen is increasing.

In the remaining cases, every accumulation ¢’ point is located in a face Ty = {§ € A(1) :
§(x) =0 = d(x) = 0} of A(1) and maximizes F on this face by the fact that ¢’ has
full support in Ty. Therefore, u;(6') = u;(6”) for all i € N and &',8 € Ty and even for
general &',8" € S by connectivity of S.

Assume now that there exist 0’ € S and x € A with ¢'(x) = 0 but >,y Ci% > 1.

This implies limy o0 ;e n Ci ;"(%?) > 1 which contradicts §'(x) = 0.

Combining both steps, we conclude that every accumulation point of (6¥)zcy is a
Nash product distribution and (F(6*))ren converges to the optimum Nash product as
it is weakly increasing. If the Nash product distribution is unique, (6*)rey thus has a
unique accumulation point and converges (to the Nash product distribution). O

We mention some additional properties of this dynamic procedure. First, as noted
by Cover (1984), one can bound the approximation error via F(6*) — F(6¥) <

maxge A log (Zle N Ci 711‘((6?)). Second, every distribution 6* appearing in the sequence

(apart from &) is decomposable, which is important when stopping after a finite num-
ber of steps. Finally, the procedure also converges to a Nash distribution in some cases
where it is not unique. Suppose there are two ‘clone’ projects = and y (such that all
agents are indifferent between = and y) but that the Nash distribution is unique if we
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were to merge these projects. Notice that if we start the dynamic procedure with the
uniform distribution over all projects, then we have 6*(z) = §¥(y) at each step k, which
implies that the dynamic procedure does converge to a Nash distribution.

4.3. Contribution Incentive-Compatibility

We now turn to our main result that NASH is contribution incentive-compatible. The
proof is technical and requires a number of lemmas, which are stated and proved in the
appendix. At a high level, we estimate the rate of change of an agent’s utility as her
contribution increases, and integrate this quantity as she goes from not participating to
participating in the mechanism to obtain the desired result. We are not aware of a simpler
proof using the first-order conditions. Attempts to prove Theorem 3 by differentiating the
first-order conditions with respect to C; (as in the proof of Theorem 1) were unsuccessful.

Theorem 3. NASH is contribution incentive-compatible.

Proof. Recall that we normalized utilities so that the utility assigned to least-preferred
acceptable projects is 1 and so that the utility assigned to unacceptable projects is 0.
We must show that for all C € C and i € N,

ul(NASH(C_z, Cz)) — Cl Z uz(NASH(C_Z, CZ/)) — Cl/ for all Cz/ with 0 S Cz/ S CZ

Since NASH is invariant under replacing an agent with utility function u; and con-
tribution C; by two agents with utility function u; and contributions C] and C; — C/,
respectively, it suffices to consider the case C; = 0. Abusing notation, we write C_; for
the profile with (C_;); = 0 and (C_;); = Cj for j # i. Consider the function g: C — A(1)
with g(C) = NASH(C)/|C| for all C € C. We will show that

w(o(C)) = 177 (101 = Coula(C-) + Co). 1)
which is equivalent to the inequality above for NASH with C} = 0. We prove (1) with
t = 1 as the focal agent. For the remainder of the proof, fix the contributions C} of all
agents j # 1, and assume that C; > 0 for all j # 1. This is without loss of generality
because NASH ignores agents with zero contribution.

Denote by P; C R™ the polytope of feasible utility profiles scaled by 1/|C]|, i.e.,
P1 = {u(d): 6 € A(1)}. Since utility functions are linear, P; is convex. For U € Py,
let Fo(U) = > ,cn CilogU;. Since by Lemma 1, Fo has a unique maximizer for all
C € Csq, we can define the function U: C~g — P1 that returns this unique maximizer
for these profiles.

Consider the function U; (C1) = u1(g(C1,C—-1)) of agent 1’s scaled utility as a function
of Cy. If U1 (C1) > 1, then since Uy (C4) is monotonically increasing in Cy by Lemma 2,

1 1
U (Cr) = il (IC] = C)U(Cr) + Cith(Cr)) = il ((IC] = C1)ti(0) 4 C1),
which proves (1) in this case. The bulk of the proof is to derive a lower bound on the
derivative of U;(C4) whenever U;(C1) < 1. Then, integrating this derivative and using

monotonicity of U gives (1).
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Step 1. Assume that C; > 0 and U1 (C1) < 1, and let U = U(C'). Moreover, let p € (0,2)
be arbitrary and let €* be such that the conclusion of Lemma 7 holds; let € € (0,£*).
Considering the Taylor expansion of the logarithm, there exists ¢’ > 0 such that for all
i€ N and |r| <€,

r 1/7r)\? e [ r\?
log(Us +7) —logUs — — + = () |<S (1) . 2
og(U; + 1) —log U, i + 5 <Uz> 1 <Uz> (2)
Now let C" € Cs¢ be such that C] = C; + dC; with 0 < dCy < min{e’,@C&}

and C] = C; for all i € N '\ {1}. Consider the function ¢: R™ — R defined on dU with
|dU| < €*, such that

dU; dU
$(dU) := For (U +dU) = Fo(U) = dCrlog Uy = Y Gy + dC—— — 9(dU),
i€EN Ui Ul

for some 1: R™ — R with

TR e (‘g])? <p(D) < (1+2)5 3G (‘g)z

i€EN 1EN

The existence of 1 is guaranteed by (2) and the bound on dC.

Now let U’ =U(C") and dU" = U’ — U. Note that, since the only term in ¢(dU) that
depends on dU is For (U +dU), dU’ maximizes ¢ among all dU € R™ with U 4 dU € P;.
By Lemma 3, there is ¢’ > 0 such that, for all dU € R" with |[dU| < &” and U+dU € Py,
we have U + rdU € P, for all r € [0,2]. Since U is continuous in C' by Lemma 2, |dU’|
will be small if dC7 is small and we can choose dC7 to be even smaller if necessary so
that 2|dU’| < min(¢’,e”). Then, the function ®: [0,2] — R with ®(r) = ¢(rdU’) is
well-defined and satisfies the prerequisites of Lemma 7 with

du! du! 1 AU\ 2
=) Ot +dCy d ==Y G L)
a ZEZN U, + 1 U, an I3 5 ZGZN ( U, )

Hence, it follows from Lemma 7 that

dU! U,
e U 4 ac, > ud(1).
o~ Ui U1

Since U maximizes F¢, by Lemma 4, } .y C’Z%U{ < 0. It follows that

d !
ac, 21 > 1), (3)
Ur

Next, let 6 = g(C). Let Hi = 3 c 4.y, (a)>0 0(a) be the fraction spent on agent 1’s
acceptable projects, i.e., those that agent 1 assigns positive utility. Recall that U; < 1,
and so H; < 1. Since NASH gives agents with positive contribution positive utility, we
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have H; > 0. From 0 < H; < 1, we get that 6(a) < 1 for all @ € A. Thus, for |t| > 0
small enough, take the distribution ¢ with

5 (a) = (1+¢)d(a) for all a € A with uy(a) > 0,
(1— - 1)6(a) for all a € A with uy(a) = 0.

One can check that 6° € A(1):

Y M@= Y (+t)s@+ Y (- Hptila)

acA acA acA
u1(a)>0 u1(a)=0
—1+0 Y d@ -t S )
acA acA
u1(a)>0 u1(a)=0

=+t H + (1 - 61— H) = 1.

Let dU* = u(6%) —U. For |t| small enough, we have that U +dU! € Py and U —dU* € P;.
Indeed, U + dU*? = u(d?), and for the second statement we can perturb ¢ infinitesimally
in the opposite direction. This is a valid perturbation because §(a) < 1 for all a € A,
and for a € A such that 6(a) = 0 we have §'(a) = 6(a). Thus, by Lemma 4, we have

dUt

€N

So for sufficiently small |¢|, we have

aut U} dU!
H(dUY) = dCy—+ — (dU*Y) > d(]l—l - Zc ( ) .
Ui
zEN

Since de = ul(ét) U = (1 +t)Uy — Uy, we have that dU—Ulf = t. Similarly, it follows
Z <tforallie N.
Now, by deﬁnltlon of Hy, we have Uy > Hy. Thus 1 — U; <1 — H;y. Hence —1951 <
i flllql . Thus, applying Lemma 5 with o = (17U7i71) t,8=t,and z; = dTUf, it follows that

1 U0

t2
21-U;

¢(dU?) > dCit — (14 ¢)=

Now let t := [1]]%1' dCy. If dC is small enough, then ¢ is also small enough and, recalling
that dU’ maximizes ¢ among all dU € R™ with U + dU € Py, we get

1 1-U;

— ! > t > = _ 2'
B(1) = 6dU") > (V") > 5(1 = ) Gt (dC)
Thus, by (3), we get
AUl 1-0,
> P
dCy U, = 2( )U1|C‘ (dcl) )
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from which it follows from dC7 > 0 that

1-U

w
dU; > =(1—¢) ]

dcy.
2 G

Since pu € (0,2) was arbitrary and € > 0 can be chosen arbitrarily small, it follows that

1-U;

Ui = e

dch.

Step 2. We show (1) for C; > 0. (The case C7 = 0 is trivial.) By Lemma 2, U (s)
is monotonically increasing in s € [0,B;]. We have already proved (1) in the case
U1 (C1) > 1. Hence, we may assume U (s) < 1 for all s € [0, C1].

Let € € (0,C4) be arbitrary. By Step 1, the lower right derivative of U; at s € (g,C1)
1-U1(s)

is at least m

. Integrating this estimate from ¢ to C yields

Ch 62/:91(5) Ch 1
_ 7561 < — 7d
/8 1 Ui(s)" = / ICl—Cr+s

from which we get

log(1 — U (C1)) —log(1 — Ui (e)) < —(log |C| —log(|C| — C1 +¢)).
Exponentiation yields 117_121((051)) < |C|Tg]1+s. Since € was arbitrary and U/, is monotonic,

1-U1(Ch) |C|-C1 . . . .
114, (0) < T Rewriting this equation gives us

we get

U(C) > é| (IC] = CLUL(0) + Cy),
which is (1). O

5. Limits of Efficient Mechanisms

In this section, we discuss the limits that we run into if we try to strengthen our notions
of decomposability and contribution incentive-compatibility as described in Section 3.
Specifically, we show that these strengthenings are incompatible with efficiency.

First, we consider strong decomposability, which requires that § can be divided into
individual distributions (d;);cn where for each i € N, we have 0;(xz) > 0 only if ¢ has
assigned mazimum utility to z, i.e., only if u;(x) > u;(y) for all y € A. In other words,
each agent is only asked to spend her contributions on her favorite projects.

Proposition 1. No efficient mechanism satisfies strong decomposability when m > 3
and n > 2.
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wi(a) wi(b) ui(x) C;

Agent 1 14+¢ 0 1 1
Agent2 0 1+4+e¢ 1 1

Table 3: Profile with 0 < ¢ < 1 showing the incompatibility of strong decomposability
and efficiency.

Proof. To see that strong decomposability is in conflict with efficiency, consider the
example in Table 3. Here, both agents 1 and 2 have a pet project a and b, respectively,
which the other agent dislikes; there is also a compromise project x, which is close to
optimal for both. It is best for an agent to spend her entire contribution on her pet
project independently of what the other agent is doing. So the only allocation we can
implement in the above sense is a + b, which gives utility 1+ ¢ for both. But this fails to
make use of the mutual interest in x: if they spent the whole pool of 2 on x, they could
achieve utility 2 each. O

One can interpret the situation in Table 3 as a prisoner’s dilemma in which agents
cooperate by spending on z or defect (free-ride) by spending on a and b.

The strengthening of contribution incentive-compatibility we discussed in Section 3
especially requires that u;(f(C)) > w;(f(C—;)) + Ciui™™, where u"®* = maxyea u;(y).
This strong contribution incentive-compatibility cannot be satisfied in conjunction with
efficiency. The strong version makes sense if agents can use their money to fund public
projects without going through the aggregation mechanism. This is typically the case
for charities, but may be less applicable for some of the other scenarios discussed in
Section 1, such as residents of an apartment complex.

Proposition 2. No efficient mechanism is strongly contribution incentive-compatible
when m >4 and n > 3.

u;(a) u;(b) u;(c) u;(z) C;
Agent 1 2—¢ 0 0 1 1
Agent 2 0 2—¢ 0 1 1
Agent 3 0 0 2—¢ 1 1

Table 4: Profile with 0 < & < 0.5 used in the proof of Proposition 2.

Proof. Assume for contradiction that there exists a mechanism f that is strongly con-
tribution incentive-compatible and efficient.
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For C' = (1,1, 1) as in Table 4, the distribution 6 = f(C) should only allocate resources
to at most one of a, b, and c¢. Otherwise, if there is any subset {y,z} C {a,b,c}, y # z
with d(y) > 0 and 6(z) > 0, the distribution

0(y) =) y+(6(2) = k) 24 (6(x) +2r) z

with £ = min(d(y), §(z)) is strictly preferred by all three agents. Thus, without loss of
generality, we can assume that d(c) = 0.

Starting with agent 1, we let the other agents join one after another and, using strong
contribution incentive-compatibility, derive lower bounds on the resources allocated to
project x. It will turn out that after agent 3 has joined, the mechanism would have to
allocate more than the whole pool of 3 to x in order to accommodate strong contribution
incentive-compatibility, which is a contradiction.

Let C" = (1,1,0) and ¢’ = f(C"). As above, efficiency implies that either ¢’(a) = 0 or
8’(b) = 0. Otherwise, if 6’(a) > 0 and ¢’(b) > 0, the distribution

(0'(a) — k') a+ (8'(b) — k') b+ (§'(z) + 2K) x

with £" = min(d’(a), §’(b)) is strictly preferred by both agents with a utility improvement
of 2k’e > 0. We assume that ¢'(b) = 0. Treating the case §’(a) = 0 requires no more
than switching the order of agents 1 and 2.

By strong contribution incentive-compatibility, agent 2 must get at least the same
utility as if both agents acted in an uncoordinated manner: ug(d') > ug(a) + Cou®* =
ug(a) + (2 —e) = 2 — e and with ¢§'(b) = 0, we have ¢§'(z) > u22z§) =2—c.

Thus the utility of agent 3 from ¢’ can be bounded from below by wus(é') >
8 (x) ug(z) > (2 —¢).

Applying strong contribution incentive-compatibility for agent 3 yields ug(d) >
ug(6') + Cau™ > (2 —¢e)+1-(2—¢) =4 — 2. As 6(c) = 0, agent 3 can only get
positive utility from project z, and thus §(z) = us(9) >4—2e > 3for 0 < e < 0.5, which

ug ()
exceeds the pool of 3. ’ O

The reason for this incompatibility is structurally similar to that for decomposability:
efficiency requires spending resources on the compromise project z, but strong contri-
bution incentive-compatibility can only be satisfied if the pet projects a, b, and c are
funded.

In computational experiments, it appears that NASH satisfies a version of contribu-
tion incentive-compatibility that is stronger than the standard version but weaker than
strong contribution incentive-compatibility. This version is inspired by the proportional
spending property that we saw in the proof of Theorem 1 and in the dynamic procedure
that converges to NASH (Section 4.2). Let C' € C be a contribution profile and write
0 = NASH(C). For an agent i € N with C; > 0 and for an amount € > 0 of potential
extra contribution, let §. € A(e) be the distribution with d.(z) = a - §(z) - u;(x) for all
x € A, where a = ¢/(|C|-u;(9)). Thus, d-(z) is proportional to the utility that i derives
from project z in distribution §. We conjecture that NASH satisfies

ul(NASH(CLZ, C; + 6)) > ’LLZ((S) + ul(és)
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This property lies between our two definitions of contribution incentive-compatibility
because € < u;(0;) < € - uP**.

When only allowing dichotomous utility functions, both decomposability and contribu-
tion incentive-compatibility coincide with their strong counterparts. Hence, Propositions
1 and 2 do not apply. In this restricted setting, which has been well-studied (Bogomol-
naia et al., 2005; Duddy, 2015; Aziz et al., 2019; Brandl et al., 2021), NASH becomes
an even stronger candidate mechanism, though Duddy’s (2015) conditional utilitarian
rule, which returns the decomposable distribution with the highest utilitarian welfare,
constitutes an attractive alternative.
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A. Lemmas Used for the Proof of Theorem 3

Lemma 1. For all C € C~g, Fo has a unique mazimizer U € P1. Moreover, C; < U; <
|C|u®* for all i € N.

Proof. Assume for a contradiction that there are two distinct U’,U” € P; which maxi-
mize Fo. As a positive linear combination of strictly concave functions, F is a strictly
concave function. Hence, for U = % (U"+U") € Py, by strict concavity of F¢, we have

Fo(U) > % (Fo(U) + Fo(U")) = Fe(U"),

which contradicts the assumption that U’ maximizes F over Py.

Now let i € N. Clearly, U; is upper bounded by |C|uj***. For the lower bound on U,
recall from Theorem 1 that NASH is decomposable. Thus the distribution NASH(C) is
the sum of distributions d;, j € N, such that §; € A(C;) and §;(x) > 0 only if u;(x) > 0.
In particular, u;(d;) > C;, since we have normalized utility functions so that the lowest
positive utility of each agent is 1. O

Recall that U: C5o — RY returns the unique maximizer of F¢. By Lemma 1, U is
well-defined. We show that U(C') is continuous. Moreover, the utility of every agent is
weakly increasing in her contribution.

Lemma 2. U(C) is continuous in C' on Cso and Uy (Ch) is weakly increasing in Ci.

Proof. First we show that U is continuous in C on Csg. Let C € Cs(y and consider a
sequence (C*)geny C RZ, converging to C. Further, let U* = Y(C*) and U = U(C).
Observe that since C* converges to C, by Lemma 1, we have 0 < \ < Uf < A for
all ¢ and some A\, A > 0 and large enough k. Hence, by passing to a subsequence if
necessary, we may assume that U* converges to U* for some U* € P;. Since the family of
functions F, For, k € N, is uniformly equicontinuous on [\, A]", it follows that F.(U*)
converges to Fo(U*). Moreover, as U* maximizes For, we have Fou(U*) > Foi(U),
which converges to Fo(U). Hence, U* maximizes F¢, which, since F¢ has a unique
maximizer by Lemma 1, implies that U* = U. Hence, U* converges to U.

We prove that U;(Cy) = U(C1,C_1) is weakly increasing in Cy. Let s > 0, U =
U(C1,C_1), and U =U(Cy +s,C_1). Assume for contradiction that U] = U (C1+s) <
U (C1) = Uy. Then,

For(U') =Y CilogUj + slog Uj < > CilogUs + slog Uy = Fer(U),
iEN iEN

where the inequality follows from the assumption that U] < U; and the fact that U is a
maximizer of F. This contradicts the assumption that U’ maximizes F¢r. ]

Lemma 3. For every C € C and U € Py, there is € > 0 such that for all dU € R™ with
|[dU| <& and U 4+ dU € Py, we have U + tdU € Py for all t € [0,2].
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Proof. Since Pj is a polytope, it is an intersection of a finite number of closed half-spaces
H;. Observe that the desired property holds for each H;. Indeed, if the point U is in the
interior of H;, we can take € to be half of the distance from U to the boundary of H;,
while if U is on the boundary of H;, the entire ray {U + tdU |t > 0} is contained in H;
and we can take £ to be any positive real number. It follows that the desired property
also holds for the intersection of the half-spaces H;, which is P;. ]

The next three lemmas will be useful for analyzing error terms obtained in the main
analysis.

Lemma 4. Let C € Cso, U =U(C), and dU € R"™ such that U + dU € P;. Then,
dU

1EN
If also U — dU € Pq, then equality holds.

Proof. Counsider the function 7: [0,1] — R with 7(¢) = F(U 4 tdU) and observe that 7
attains its maximum at 0. Since U; > 0 for all ¢ € N by Lemma 1, 7 is differentiable at
0. Hence, the right derivative of 7 at 0 is non-positive, i.e.,

dU; _
8t|t0 8t<ZClogU+th>\t0 e 7, <

iEN iEN

If additionally U —dU € Py, the first part implies — >, C;i Tt dU < 0, from which equality
follows. O

Lemma 5. Let C € C, x € R", and o, B > 0 such that ) ;. Ciz; =0 and —a < x; < 3

for alli € N. Then,
Y Cix} <aB) G
iEN ieN

Proof. Since —a < z; < 3, we have ﬂ%"‘ < 65—0‘ It follows that

S oa?=Y 0 <x._ 5_0‘>2_ <ﬁ_0‘>220.
. 7 ‘ (2 (2 2 2 . 1
1EN 1EN 1EN

() He- (7
=ap) G

iEN

Tr; —

as claimed. O

For the proof of Lemma 7, we need the following auxiliary lemma.
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Lemma 6. Let \* € (0,3). Then, there are e* € (0,1) and t € [1,2] such that

1+€
t— A
1-—

2>1—X forall A €[0,\*] and € € (0,¢%).

Proof. The inequality in the statement can be rewritten as A <

arbitrary ¢ € (1,5 — 1). We have t € [1,2] and \*

}ftg_t;— 7. Choose an
Since lim,_.g #jfl = l%rt,
we can choose ¢ € (0,1) such that \* < W for all € € (0,e*). It follows that
A< 1+t€_t21_1 for all A € [0, \*] and € € (0,£*), as desired. O

1—¢e

1
<m.

Lemma 7. For all pn € (0,2) there is €* € (0,1) with the following property. For any
®:[0,2] — R such that ®(1) = max,c(g 2 P(t) and such that there are o, > 0 and
€ (0,e*) with

at — (14¢)Bt? < ®(t) < at — (1 —e)Bt? (4)
for allt €[0,2], it holds that o > p®(1).

Proof. If p < 1, then by choosing any ¢* € (0,1), we have u®(1) < ®(1) < a by
assumption. Assume henceforth that p > 1. Let A* :=1— i > 0 and choose €* > 0 and

€ [1,2] such that
1+e¢

1-¢
for all A € [0, \*] and € € (0,¢*), which is possible by Lemma 6.

Let ®, o, 3, and ¢ as in the statement of the lemma. If o = 0, we get ®(1) <0 Db
Equation (4). Hence, a > u®(1) holds. Now consider the case a > 0. Let \ := 2= 2(1) 2
0. Assume for contradiction that the desired conclusion is not true, i.e., o < u®(1). This
is equivalent to A < A\*. The function ¥(t) := at — ®(t) satisfies B(1 — &)t < ¥(t) <
B(1+¢)t?. By substituting ¢t = t* and ¢ = 1, we have W(t*) < ¥(1)1E£(*)2. It follows
that

B(H) = at’ — V(") > a <t* _ ‘I’S)ii@*)?) —a <t* - Aiz(t*)?) > a(l— )
— a(1).

This contradicts the assumption that ®(1) = max;c(g 2 (%) O

t*— A

(t)? >1— A

B. Characterization of Decomposability

Recall that for i € N, A; = {a € A: u;(a) > 0} denotes the support of u;. Moreover, let
A; = argmax{u;(a): a € A},

Proposition 3. Let 6 € A(|C]) be a distribution. Then, § is

(i) decomposable if and only if for every N' C N, eru x) >N Cis

S Ai
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(ii) strongly decomposable if and only if for every N' C N, eruiew 1 6(x) >
Z'Z:EN/ CZ'

Proof. We prove (i). It is easy to see that the inequalities hold if § is decomposable.
We prove the converse direction by an application of the strong duality theorem. A
distribution ¢ is decomposable if and only if the following linear program P has a solution
with value |C|.
primal (P)
max 3 ey D jea Tij
s.t. ZjEA Tij < C; Vie N
ZﬁAixzng VieN
DlienTij <0(j)  VjeA
x>0

with = (214, T1py .- ., T24y...) € RY§" where x;; represents a possible contribution of
agent ¢ on project j.
The dual of the linear program P is

dual (D)

min Y,y Ciyi + ZjeA 6(5)y;

s.t. yi—l-ijl VZGNV]EAZ
Yit+y; 21— ynti Vie NVj ¢ A;
y=>0

with y = (y1, .-+, Y2n, Ya, Yby - - - ) € R;’B‘Fm.

Assuming ) JeUsens As 8(3) = X ;en Ci for every N' € N, we claim that there always
exists an optimal solution y* to its dual D such that y; ., = --- =5, = 0. This means
that we can reduce D to D" where the second constraint simplifies to y;+y; > 1. Looking
at the dual of D’ called P’, we observe that compared to P, the constraint » g, Tij <0
for all ¢ € N is removed. Thus, the optimal value of P’ is |[C| as § € A(|C|). As all of
the stated problems have optimal solutions, the strong duality theorem implies that all
four linear programs have the same optimal value |C| and thus, 0 is decomposable as
then, P has a solution with value |C].

To prove the claim, let ¥ be an optimal solution to D and Ag be the set of all j € A
with y; = 0. Thus for all ¢ with A; N Ag # (), we have y; > 1 and we can set y,4; = 0.
Denote the set of all such agents by Ng. If Ng = N we are done.

Otherwise, let N' = N\ Ny and j' = arg minje )., a,¥;- Define Y = y; +y; for all
i€ N, y; =y; —yy forall j € Ujcns 4i and y; = y;, otherwise. By construction, y' is
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still feasible and

> Ciyi+ 60y

i€N jeA

= Y Cuyit+ Y Cli—yi)+ D sW+y)+ Y. Gy
PEN\N' iEN’ J€Uient Ai JEUsenr Ai

>3 Cufi— Y Ciyy+ Y Ciyyr+ > 60 =Y Cayi + > _ 63
ieN iEN’ iEN' jeA ieN jeA

as yj szU‘gN’ 4, 0(4) = yjr > ien Ci by assumption. Thus, y’ is an optimal solution
to D, and compared to y the set Ny is larger. Therefore, iterating this procedure with

y =y until Ny = N, we end in a solution y* to D with %, =--- =5, =0.
The proof for (ii) proceeds along the same lines. The only difference is that now A; is
used instead of A;. O

Proposition 3 implies that, for the special case of dichotomous preferences, decom-
posability is equivalent to the fair group share axiom introduced by Bogomolnaia et al.
(2002) and later dubbed proportional sharing by Duddy (2015).

C. Independence of Contribution Incentive-Compatibility and
Decomposability

We first define a mechanism that satisfies decomposability but violates contribution
incentive-compatibility. To this end, we consider a rule that always returns the de-
composable distribution with minimal utilitarian welfare and thus represents an an-
tipode to the conditional utilitarian rule CUT introduced by Duddy (2015). Let
APn = {g € A:ug(a) > 0and Y, oy ug(a) < >, oy ua(b) for all b with w;(b) > 0}.
Then,
Ci
A

ANTICUT(C)=>_ >

iEN peAmin

This mechanism is decomposable by construction but fails to satisfy contribution
incentive-compatibility. For example, let N = {1,2}, A = {a,b}. Let u1 = lg,p
and ug = lg,, and By = By = 1.1%  Then, ANTICUT((1,1)) = a + b and
ANTICUT((1,0)) =0.5-a+0.5-b. Since

up(0.5-a+05-b) —0=05>0=us(a+b)—1,

ANTICUT violates contribution incentive-compatibility.

Second, we construct a mechanism that is contribution incentive-compatible but vio-
lates decomposability for N = {1,2,3} and A = {a,b,c¢,d}. (This mechanism can be

5For B C A, denote by 1p the dichotomous utility function with 15(z) = 1 for x € B and 15(z) = 0
for z ¢ B.
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straightforwardly extended to more agents and projects.) Let u; =1 {ap}s U2 = lga ey,
and ug = Liays and By = By = B3 =1.

We define f(C) = min{C1,Cs} - a + (C1 — min{C1,Cs}) - b + (Co — min{Cy, Cs}) -
¢ + (min{C1,C2} + C3) - d. Then, f is not decomposable since, for example, if C =
Cy =C5 =1, f(C) = a+2-d, which is not decomposable. On the other hand, one
can (by distinguishing the cases C; < Cy and C; > C3) verify that f is contribution
incentive-compatible.
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