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Abstract
Tournament solutions, i.e., functions that associate
with each complete and asymmetric relation on a
set of alternatives a non-empty subset of the alter-
natives, play an important role within social choice
theory and the mathematical social sciences at
large. Laffond et al. have shown that various tour-
nament solutions satisfy composition-consistency,
a structural invariance property based on the sim-
ilarity of alternatives. We define the decomposi-
tion degree of a tournament as a parameter that re-
flects its decomposability and show that computing
any composition-consistent tournament solution is
fixed-parameter tractable with respect to the de-
composition degree. Furthermore, we experimen-
tally investigate the decomposition degree of two
natural distributions of tournaments and its impact
on the running time of computing the tournament
equilibrium set.

1 Introduction
Many problems in multiagent decision making can be ad-
dressed using tournament solutions, i.e., functions that asso-
ciate with each complete and asymmetric relation on a set
of alternatives a non-empty subset of the alternatives. Tour-
nament solutions are most prevalent in social choice theory,
where the binary relation is typically assumed to be given by
the simple majority rule (e.g., Moulin, 1986; Laslier, 1997).
Other application areas include multi-criteria decision analy-
sis (e.g., Arrow and Raynaud, 1986), zero-sum games (e.g.,
Fisher and Ryan, 1995), coalition formation (e.g., Brandt and
Harrenstein, 2010), and argumentation theory (e.g., Dunne,
2007).

Recent years have witnessed an increasing interest in the
computational complexity of tournament solutions by the
multiagent systems and theoretical computer science commu-
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nities. A number of concepts such as the Banks set (Woeg-
inger, 2003), the Slater set (Alon, 2006; Conitzer, 2006), and
the tournament equilibrium set (Brandt et al., 2010). have
been shown to be computationally intractable. For others,
including the minimal covering set and the bipartisan set,
algorithms that run in polynomial time have been provided
(Brandt and Fischer, 2008). The class of all tournaments is
excessively rich and it is well-known that only a fraction of
these tournaments occur in realistic settings (see, e.g., Feld
and Grofman, 1992). Therefore, an important question is
whether there are natural distributions of tournaments that ad-
mit more efficient algorithms for computing specific tourna-
ment solutions.

In this paper, we study tournaments that are decomposable
in a natural well-defined way. A set of alternatives forms a
component if all alternatives in this set bear the same rela-
tionship to all outside alternatives. Elements of a component
can thus be seen as variants of the same type of an alterna-
tive. Laslier (1997) has shown that every tournament admits
a unique natural decomposition into components, which may
themselves be decomposable into subcomponents. A tourna-
ment solution is composition-consistent if it chooses the best
alternatives of the best components (Laffond et al., 1996).1
In other words, a composition-consistent tournament solu-
tion can be computed by recursively determining the winning
components. All of the tournament solutions mentioned ear-
lier except the Slater set are composition-consistent.

In this paper, we provide a formalization of the recursive
decomposition of tournaments and a detailed analysis of the
speed-up that can be achieved when computing composition-
consistent tournament solutions. In particular, we define the
decomposition degree of a tournament as a parameter that
reflects its decomposability. Intuitively, a low decomposi-
tion degree indicates that the tournament admits a particu-
larly well-behaved decomposition and therefore allows the ef-
ficient computation of composition-consistent tournament so-
lutions. Within our analysis, we leverage a recently proposed
linear-time algorithm for the modular decomposition of di-
rected graphs (McConnell and de Montgolfier, 2005; Capelle
et al., 2002).

In related work, Betzler et al. (2010) proposed data reduc-

1Composition-consistency is related to cloning-consistency,
which was introduced by Tideman (1987) in the context of voting.



tion rules that facilitate the computation of Kemeny rankings.
One of these rules, the “Condorcet-set rule”, corresponds
to a (rather limited) special case of composition-consistency
where tournaments are decomposed into exactly two compo-
nents. Furthermore, a preprocessing technique that resem-
bles the one proposed in this paper has been used by Conitzer
(2006) to speed up the computation of Slater rankings. In-
terestingly, even though Slater’s solution is not composition-
consistent, decompositions of the tournament can be ex-
ploited to identify a subset of the optimal rankings.

Our results, on the other hand, allow us to compute
complete choice sets and are applicable to all composition-
consistent tournament solutions, including the uncovered set,
the minimal covering set, the bipartisan set, the Banks set,
the tournament equilibrium set, and the minimal extending
set (Laslier, 1997; Brandt, 2011). The former three admit
polynomial-time algorithms whereas the latter three are com-
putationally intractable. None of the concepts is known to
admit a linear-time algorithm.

We show that computing any composition-consistent tour-
nament solution is fixed-parameter tractable with respect to
the decomposition degree of the tournament, i.e., there are
algorithms that are only superpolynomial in the decompo-
sition degree. We conclude the paper with an experimental
investigation of the decomposition degree and the actual run-
ning time of computing the tournament equilibrium set for
two natural distributions of tournaments. The first one is a
well-studied model that assumes the existence of a true linear
ordering of the alternatives that has been perturbed by binary
random inversions. The other one is a spatial voting model
based on the proximity of voters and alternatives in a multi-
dimensional space.

2 Preliminaries
In this section, we provide the terminology and notation re-
quired for our results (see Laslier (1997) for an excellent
overview of tournament solutions and their properties).

2.1 Tournaments
A tournament T is a pair (A,�), where A is a finite set of
alternatives and � is an asymmetric and complete (and thus
irreflexive) binary relation on A, usually referred to as the
dominance relation. Intuitively, a � b signifies that alter-
native a is preferable to b. The dominance relation can be
extended to sets of alternatives by writing X � Y when x � y
for all x ∈ X and y ∈ Y . The order |T | of a tournament
T = (A,�) refers to its number of alternatives |A|. For a sub-
set of alternatives B ⊆ A, let T |B denote the induced subtour-
nament on B. Finally, a tournament isomorphism of two tour-
naments T = (A,�) and T ′ = (A′,�′) is a bijective mapping
π : A→ A′ such that a � b if and only if π(a) �′ π(b).

2.2 Components and Decompositions
An important structural concept in the context of tournaments
is that of a component. A component is a subset of alterna-
tives that bear the same relationship to all alternatives not in
the set.

Definition 1 Let T = (A,�) be a tournament and B. A non-
empty subset B of A is a component of T if for all a ∈ A \ B
either B � a or a � B. A decomposition of T is a set of
pairwise disjoint components {B1, . . . , Bk} of T such that A =⋃k

i=1 Bi.

The null decomposition of a tournament T = (A,�) is {A};
the trivial decomposition consists of all singletons of A. Any
other decomposition is called proper. A tournament is said to
be decomposable if it admits a proper decomposition. Given a
particular decomposition, the summary of a tournament is de-
fined as the tournament on the individual components rather
than the alternatives.

Definition 2 Let T = (A,�) be a tournament and B̃ =
{B1, . . . , Bk} a decomposition of T . The summary of T with
respect to B̃ is defined as T̃ = ({1, . . . , k}, �̃), where

i �̃ j if and only if Bi � B j.

A tournament is called reducible if it admits a decomposi-
tion into two components. Otherwise, it is irreducible. Laslier
(1997) has shown that there exist a natural unique way to de-
compose any tournament. Call a decomposition B̃ finer than
another decomposition B̃′ if B̃ , B̃′ and for each B ∈ B̃ there
exists B′ ∈ B̃′ such that B ⊆ B′. B̃′ is said to be coarser than
B̃. A decomposition is minimal if its only coarser decompo-
sition is the null decomposition.

Proposition 1 (Laslier (1997)) Every irreducible tourna-
ment with more than one alternative admits a unique minimal
decomposition.

This is obviously not true for reducible tournaments, as
witnessed by the tournament T = ({1, 2, 3},�) with 1 � 2,
1 � 3, and 2 � 3, which admits two minimal decomposi-
tions, namely {{1}, {2, 3}} and {{1, 2}, {3}}. Nevertheless, there
is a unique way to decompose any reducible tournament. A
scaling decomposition is a decomposition with a transitive
summary.

Proposition 2 (Laslier (1997)) Every reducible tournament
admits a unique scaling decomposition such that each com-
ponent is irreducible.

This scaling decomposition into irreducible components
is also the finest scaling decomposition. In graph-theoretic
terms, this decomposition partitions the tournament into its
strongly connected components.

2.3 Tournament Solutions
Since the dominance relation may contain cycles and thus fail
to have a maximal element, a variety of so-called tournament
solutions have been suggested to take over the role of singling
out the “best” alternatives of a tournament. Following Laslier
(1997), we require a tournament solution to be invariant un-
der tournament isomorphisms and to select the maximum (or
Condorcet winner) whenever it exists.



Definition 3 A tournament solution is a function S that as-
sociates with each tournament T = (A,�) a non-empty sub-
set S (T ) of A such that

(i) S ((π(A),�′)) = π(S ((A,�))) for all tournaments (A,�),
(A′,�′), and every tournament isomorphism π : A → A′
of (A,�) and (A′,�′); and

(ii) S (T ) = {a} whenever there is some a ∈ A such that
a � A \ {a}.

A tournament solution is composition-consistent if it
chooses the “best” alternatives from the “best” components
(Laffond et al., 1996).

Definition 4 A tournament solution S is composition-
consistent if for all tournaments T and T̃ such that T̃
is the summary of T with respect to some decomposition
{B1, . . . , Bk},

S (T ) =
⋃

i∈S (T̃ )

S (T |Bi ).

2.4 Fixed-Parameter Tractability
We briefly introduce the most basic concepts of parameter-
ized complexity theory (see, e.g., Niedermeier, 2006). In con-
trast to classical complexity theory, where only the size of
problem instances is taken into account, parameterized com-
plexity allows for a more fine-grained analysis by considering
arbitrary parameters of the instances. A problem with param-
eter k is said to be fixed-parameter tractable (or to belong
to the class FPT) if there exists an algorithm that solves the
problem in time f (k) · poly(|I|), where |I| is the size of the
input and f is some computable function independent of |I|.

For example, each (computable) problem is trivially fixed-
parameter tractable with respect to the parameter |I|. The cru-
cial point is to identify a parameter that is reasonably small
in realistic instances and to devise an algorithm that is only
superpolynomial in this parameter.

3 Decomposition Trees
Propositions 1 and 2 offer a straightforward method to it-
eratively decompose tournaments. If the tournament is re-
ducible, take the finest scaling decomposition. If it is irre-
ducible, take the minimal decomposition. The repeated ap-
plication of these decompositions leads to the decomposition
tree of a tournament.

Definition 5 The decomposition tree D(T ) of a tournament
T = (A,�) is defined as a rooted tree whose nodes are non-
empty subsets of A. The root of D(T ) is A and for each node B
with |B| ≥ 2, the children of B are defined as follows:

• If T |B is reducible, the children of B are the components
of the finest scaling decomposition of T |B.

• If T |B is irreducible, the children of B are the compo-
nents of the minimal decomposition of T |B.

It follows from Propositions 1 and 2 that every tournament
has a unique decomposition tree. By definition, each node
in D(T ) is a component of T and each leaf is a singleton.
However, not all components of T need to appear as nodes
in D(T ). An example of a decomposition tree is provided in
Figure 1.

a
b

c

d

e
f

g

A

{a, d, e, g}

{a} {d, e}

{d} {e}

{g}

{b} { f , c}

{ f } {c}

Figure 1: Example tournament with corresponding decom-
position tree. Nodes { f , c} and {d, e} are reducible, all other
nodes are irreducible.

An internal (i.e., non-leaf) node B of D(T ) with children
B1, . . . , Bk corresponds to the tournament TB = ({1, . . . , k}, �̃)
where i �̃ j if and only if Bi � B j, i.e., TB is the summary
of T |B with respect to the decomposition {B1, . . . , Bk}. The
order of TB is thus equal to the number of children of node B.
Moreover, we call an internal node B reducible (respectively,
irreducible) if the tournament TB is reducible (respectively,
irreducible).2 If B is reducible, we assume without loss of
generality that the children B1, . . . , Bk are labelled according
to their transitive summary, i.e., Bi � B j if and only if i < j.
In particular, the maximum of TB is 1.

Recent results on the modular decomposition of directed
graphs (Capelle et al., 2002; McConnell and de Montgolfier,
2005) imply that the decomposition tree of a tournament can
be computed in linear time.3

Proposition 3 The decomposition tree of a tournament T can
be computed in time O(|T |2).

The proof consists of two steps. In the first step, a factoriz-
ing permutation of the tournament is constructed. A factoriz-
ing permutation of T = (A,�) is a permutation of the alterna-
tives in A such that each component of T is a contiguous inter-
val in the permutation. McConnell and de Montgolfier (2005)
provide a simple algorithm that computes a factorizing per-
mutation of a tournament in linear time. Furthermore, there
exists a fairly complicated linear-time algorithm by Capelle
et al. (2002) that, given a tournament T and a factorizing per-
mutation of T , computes the decomposition tree D(T ).

4 Computing Solutions via Decompositions
Let S be a composition-consistent tournament solution and
consider an arbitrary tournament T = (A,�) together with
its decomposition tree D(T ). For an internal node B of

2T |B is reducible (respectively, irreducible) if and only if its sum-
mary TB is.

3The size of the representation of a tournament is already
quadratic in the number of its alternatives.



D(T ), let Bi(D(T ), B) denote the ith children of B in D(T ).
Composition-consistency implies that

S (T |B) =
⋃

i∈S (TB)

S (T |Bi(D(T ),B)).

The choice set S (T ) can thus be computed by starting at the
root of D(T ) and iteratively applying the equation above.
If B is reducible, we immediately know that S (T |B) =
S (T |B1(D(T ),B)), since 1 is the maximum of the transitive tour-
nament TB. A straightforward implementation of this ap-
proach is given in Algorithm 1.

Algorithm 1 Compute S (T ) via decomposition tree
1: Compute D(T )
2: S ← ∅
3: Q← (A)
4: while Q , () do
5: B← Dequeue(Q)
6: if |B| = 1 then
7: S ← S ∪ B
8: else
9: if B is reducible then

10: Enqueue(Q, B1(D(T ), B))
11: else // B is irreducible
12: for all i ∈ S (TB) do
13: Enqueue(Q, Bi(D(T ), B))
14: return S

Algorithm 1 visits each node of D(T ) at most once. The
algorithm for computing S is only invoked for tournaments
TB for which B is irreducible and |B| ≥ 2. The order of such a
tournament TB is equal to the number of children of node B in
D(T ). The decomposition degree of T is defined as an upper
bound of this number.

Definition 6 Let Irr(D(T )) be the set of irreducible internal
nodes of D(T ). The decomposition degree δ(T ) of a tourna-
ment T is given by

δ(T ) =

{
max{|TB| : B ∈ Irr(D(T ))}, if Irr(D(T )) , ∅
0, otherwise.

Proposition 3 implies that δ(T ) can be computed efficiently.
The decomposition degree of the example tournament in Fig-
ure 1 is 3.

Let f (n) be an upper bound on the running time of an al-
gorithm that computes S (T ) for tournaments of order |T | ≤ n.
Then, the running time of Algorithm 1 can be upper-bounded
by f (δ(T )) times the number of irreducible nodes of D(T ).
We thus obtain the following theorem.

Theorem 1 Let S be a composition-consistent tournament
solution and let f (k) be an upper bound on the running time
of an algorithm that computes S for tournaments of order at
most k. Then, S (T ) can be computed in O(n2) + f (δ) · (n − 1)
time, where δ is the decomposition degree of T and n is the
order or T .

Proof: Let T be a tournament and n = |T |. We show that Al-
gorithm 1 computes S (T ) in O(n2)+ f (δ(T )) · |Irr(D(T ))| time.
Correctness follows from composition-consistency of S . The
running time can be bounded as follows. Computing D(T ) re-
quires time O(n2) (Proposition 3). During the execution of the
while-loop, each node B of D(T ) is visited at most once. If B
is reducible or a singleton, there is no further computation. If
B ∈ Irr(D(T )), S (TB) is computed. As |TB| is upper-bounded
by δ(T ), this can be done in f (δ(T )) time. Finally, as the num-
ber of internal nodes in a tree with n leafs is bounded by n−1,
we have that |Irr(D(T ))| ≤ n − 1. Summing up, this yields a
running time of at most O(n2) + f (δ(T )) · (n − 1). �

In particular, Theorem 1 shows that the computation of
S (T ) is fixed-parameter tractable with respect to the parame-
ter δ(T ).

To get a better understanding of this theorem, consider a
composition-consistent tournament solution S such that f (n)
is in E = DTIME(2O(n)). This holds, for example, for the
Banks set. For any given tournament T of order n, Theorem 1
then implies that S (T ) can be computed efficiently (i.e., in
time polynomial in n) whenever δ(T ) is in O(logk n). The-
orem 1 is of course also applicable to tractable tournaments
solutions such as the minimal covering set and the biparti-
san set. Although computing these solutions is known to be
in P, existing algorithms rely on linear programming and may
be too time-consuming for very large tournaments. For both
concepts, a significant speed-up can be expected for distri-
butions of tournaments that admit a small decomposition de-
gree.

Generally, decomposing a tournament asymptotically
never harms the running time, as the time required for com-
puting the decomposition tree is only linear in the input size.4

5 Experimental Results
It has been shown in the previous section that comput-
ing composition-consistent tournament solutions is fixed-
parameter tractable with respect to the decomposition degree
of a tournament. While the clustering of alternatives within
components has some natural appeal by itself, an important
question concerns the value of the decomposition degree for
reasonable and practically motivated distributions of tourna-
ments. In this section, we will explore this question exper-
imentally using two probabilistic models from social choice
theory. Both models are based on a set of an odd number
of voters who entertain preferences over candidates. Given a
finite set of candidates A and an odd number of voters with
linear preferences over A, the majority tournament is defined
as the tournament (A,�), where a � b if and only if the num-
ber of voters preferring a to b is greater than the number of
voters preferring b to a.

One of the most studied and mathematically simplest pref-
erence model in social choice theory is called impartial cul-
ture and assumes that all preference profiles are equally likely
and hence uniformly distributed. However, impartial culture
is generally considered as fairly unrealistic (see, e.g., Tsetlin

4Checking whether there exists a maximum already requires
θ(n2) time.



et al., 2003) as it does not impose any structure on the prefer-
ences and it is precisely this structure that we seek to exploit.
It can be shown that under impartial culture, the probability
that just a single non-trivial component exists goes to zero.
Hence, there would be little to no speedup from exploiting
composition-consistency. We consider the following alterna-
tive models.

Noise model The first model we consider is a standard
model in social choice theory where it is usually attributed
to Condorcet (see, e.g., Young, 1988). Condorcet assumed
that there exists a “true” ranking of the candidates and that
the voters possess noisy estimates of this ranking. In partic-
ular, he assumed that there is a probability p > 1

2 , such that
for each pair a, b of candidates, each voter ranks a and b ac-
cording to the true ranking with probability p and ranks them
incorrectly with probability 1 − p.

Spatial Model Spatial models of voting are well-studied
objects in social choice theory (see, e.g., Austen-Smith and
Banks, 2000; Conitzer, 2006). For a fixed natural number
d of issues, we assume that candidates as well as voters are
located in the space [0, 1]d. The position of candidates and
voters can be thought of as their stance on the d issues. Vot-
ers’ preferences over candidates are given by the proximity to
their own position according to the Euclidian distance. The
one-dimensional case coincides with the well-studied model
of single-peaked preferences. We generate tournaments by
drawing the positions of candidates and voters uniformly at
random from [0, 1]d.
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Figure 2: Decomposition degree (noise model, p = 0.55)

The results of our experiments with regard to the decom-
position degree are presented in Figures 2 and 3. The x-axis
shows the number of voters (starting at 5 with increments
of 30). In order to facilitate the comparison of results for a
varying number of candidates, the y-axis shows the normal-
ized decomposition degree, i.e., the decomposition degree di-
vided by the number of candidates. Each graph shows the
results for a fixed number of candidates, and each data point
corresponds to the average value of 30 instances. When-
ever the normalized decomposition degree is less than one,

composition-consistency can be exploited, even for tourna-
ment solutions that already admit optimal (i.e., linear-time)
algorithms. The slower the original algorithm, the more dra-
matic is the speedup obtained by capitalizing on the decom-
position tree.

Figure 2 shows the results for the noise model with param-
eter p = 0.55. For any number of candidates, the decompo-
sition degree goes to zero when the number of voters grows.
This is not surprising because the probability that the tourna-
ment is transitive tends to 1 for any p > 1

2 (and a transitive
tournament T has δ(T ) = 0). Interestingly, the decomposi-
tion degree drops abruptly when a certain number of voters is
reached.
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Figure 3: Decomposition degree (spatial model, d = 2)

Figure 3 shows the results for the two-dimensional spa-
tial model (d = 2). We also experimented with dimensions
between 2 and 20. Surprisingly, the decomposition degree
does not significantly increase when moving to a higher-
dimensional space. Similar to the noise model discussed
above, δ tends to 0 for growing n because a population of
voters that is evenly distributed in [0, 1]d tends to produce
transitive tournaments.

The results of these experiments show that, even for
moderately-sized electorates, tournaments in both distribu-
tions are highly decomposable and therefore allow sig-
nificantly faster algorithms for computing composition-
consistent tournament solutions.

In order to examine the actual impact on the running time,
we compared the naive implementation of the tournament
equilibrium set (Brandt et al., 2010) with Algorithm 1. The
results for tournaments of size 30 generated with the noise
model are shown in Figure 4 where each data point repre-
sents an average over 20 runs. For a small number of vot-
ers, when the tournaments are typically non-decomposable,
the naive algorithm is already quite quick and using Algo-
rithm 1 does not lead to a significant speedup. However, as
the number of voters increases, tournaments become more
structured and exploiting composition-consistency proves to
be extremely beneficial. In case of the spatial model, tourna-
ments tend to be decomposable even for a small number of
voters (see Figure 3) and consequently, Algorithm 1 achieves
a minimal average speedup of around 103 for 30 candidates,
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Figure 4: Comparison of running times for computing the
tournament equilibrium set on a 2.66GHz Core i5 machine
(noise model, p = 0.55, 30 candidates)

independently of the number of voters and dimensions.

6 Conclusion
In this paper, we studied the algorithmic benefits of
composition-consistent tournament solutions. We defined the
decomposition degree of a tournament as a parameter that
reflects its decomposability. Intuitively, a low decomposi-
tion degree indicates that the tournament admits a particu-
larly well-behaved decomposition. Our main result states that
computing any composition-consistent tournament solution
is fixed-parameter tractable with respect to the decomposi-
tion degree. This is of particular relevance for tournament
solutions that are known to be computationally intractable
such as the Banks set and the tournament equilibrium set.
For example, one corollary of our main result is that the
Banks set of a tournament can be computed efficiently when-
ever the decomposition degree is polylogarithmic in the num-
ber of alternatives. We experimentally determined the de-
composition degree of two natural distributions of tourna-
ments stemming from social choice theory and found that
the decomposition degree in many realistic instances is sur-
prisingly low. As a consequence, the speedup obtained by
exploiting composition-consistency when computing tourna-
ment solutions for these instances is quite substantial as we
showed experimentally for the tournament equilibrium set.
Since computing a decomposition tree requires only linear
time, decomposing a tournament never hurts, and often helps.
Composition-consistency can be further exploited by paral-
lelization and storing the solutions of small tournaments in a
lookup table.
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