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Abstract

We reconsider the well-studied Selfish Routing game witmeaffatency functions. The Price of
Anarchy for this class of games takes maximum value 4/3;rttagimum is attained already for a
simple network of two parallel links, known as Pigou’s netkwd\Ve improve upon the value 4/3 by
means of Coordination Mechanisms.

We increase the latency functions of the edges in the netwerkif £¢(X) is the latency function
of an edgee, we replace it by/e(x) with £e(x) < /(x) for all x. Then an adversary fixes a demand
rate as input. Thengineered Price of Anarctof the mechanism is defined as the worst-case ratio
of the Nash social cost in the modified network over the optsoaial cost in the original network.
Formally, if Cn(r) denotes the cost of the worst Nash flow in the modified networkdter and
Copt(r) denotes the cost of the optimal flow in the original netwonktfe same rate then

Cn(r)
ePoA= max
r>0 Copt(r)

We first exhibit a simple coordination mechanism that acksdor any network of parallel links
an engineered Price of Anarchy strictly less than 4/3. Feradhse of two parallel links our ba-
sic mechanism gives 5/4 = 1.25. Then, for the case of two lehtadks, we describe anptimal
mechanism; its engineered Price of Anarchy lies betweedllahd 1.192.

1 Introduction

We reconsider the well-studied Selfish Routing game witmaffiost functions and ask whether increas-
ing the cost functions can reduce the cost of a Nash*flémother words, the increased cost functions
should induce a user behavior that reduces cost despita¢héhhit the cost is now determined by in-
creased cost functions. We answer the question positindlyei following sense. The Price of Anarchy,
defined as the maximum ratio of Nash cost to optimal cost,3sf@¥ this class of games. We show
that increasing costs can reduce the price of anarchy taua eatfictly below 4/3 at least for the case of
networks of parallel links. For a network of two parallelds) we reduce the price of anarchy to a value
between 1.191 and 1.192 and prove that this is optimal. lardadstate our results precisely, we need
some definitions.

We consider single-commodity congestion games on netwald@ned by a directed grap@ =
(V,E), designated nodest € V, and a set = (¢q)ece Of Nnon-decreasing, non-negative functiofsis
the latency function of edgec E. Let P be the set of all paths fromto t, and letf(r) be a feasible
s,t-flow routingr units of flow. For anyp € P, let fy(r) denote the amount of flow thd{r) routes via
path p. For ease of notation, whanis fixed and clear from context, we will write simplyf,, instead
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Figure 1: Pigou’s network: We show the original network, tdpimal flow and the Nash flow as a
function of the rater, respectively, the Price of Anarchy as a function of the (&eA(r) is 1 for

r <1/2, then starts to grow until it reaches its maximum ¢g84tr = 1, and then decreases again and
approaches 1 asgoes to infinity), and finally the modified latency function®e obtainePoAr) =1

for all r in the case of Pigou’s network.

of f(r), fp(r). By definition, y ,cp fp =r. Similarly, for any edges € E, let fe be the amount of flow
going throughe. We define the latency gf under flowf as/p(f) = ¥ecple(fe) and the cost of flow
f asC(f) = Sece fe- le(fe) and useCop(r) to denote the minimum cost of any flow of rateWe will
refer to such a minimum cost flow as aptimalflow (Opt). A feasible flowf that routes units of flow
from stot is atNash (or Wardrop [29]) Equilibriurf if for py, pz € P with o, > 0, £p, (f) < £p,(f).
We useCy(r) to denote the maximum cost of a Nash flow for rat&’he Price of Anarchy (PoA)23]
(for demand) is defined as

POA(r) = Cnr) and PoA= maxPoA(r).
Copt(r) r>0

PoA is bounded by A3 in the case of affine latency functioAgx) = asx+ be with az > 0 andbe > 0;

see [28, 13]. The worst-case is already assumed for a singplaork of two parallel links, known as

Pigou’s network; see Figure 1.

A Coordination Mechanisfreplaces the cost functioriée)ece by functiond 7 = (/e)ece such that
le(X) > Le(x) for all x> 0. LetC(f) be the cost of flowf when for each edge € E, /. is used instead
of £ and letCy(r) be the maximum cost of a Nash flow of ratéor the modified latency functions. We
define theengineered Price of Anarch§or demand) as

ePoAr) = g:t((r)) and ePoA:rp>%xePoA(r).

We stress that the optimal cost refers to the original latdémactions/.

2This assumes continuity and monotonicity of the latencgfiams. For non-continuous functions, see the discussitn |
in this section.

3Technically, we considesymmetriccoordination mechanisms in this work, as defined in [9] thee,latency modifications
affect the users in a symmetric fashion.

4One can interpret the differenég— e as a flow-dependent toll imposed on the edge



Non-continuous Latency Functions. In the previous definition, as it will become clear in Sectiyn
it is important to allow non-continuous modified latencié®wever, when we move from continuous
to non-continuous latency functions, Wardrop equilibriandt always exist. Non-continuous functions
have been studied by transport economists to model thetefiéstep-function congestion tolls and
traffic lights. Several notions of equilibrium that handisabntinuities have been proposed in the liter-
atur€. The ones that are closer in spirit to Nash equilibria, aosé¢hproposed by Dafernfofl5] and
Berstein and Smith [4]. According to the Dafermos’ [15] défim of user optimizationa flow is in
equilibrium if nosufficiently smalfraction of the users on any path, can decrease the lateege#peri-
ence by switching to another péattBerstein and Smith [4] introduced the conceptskr Equilibrium
weakening further the Dafermos equilibrium, taking thefi@n of the users to the limit approaching O.
The main idea of their definition is to capture the notion @ itidividual commuterthat is implicit in
Wardrop’s definition for continuous functions. The Dafeswguilibrium on the other hand is a stronger
concept that captures the notion of coordinated deviatigrgroups of commuters

We adopt the concept of User Equilibrium. Formally, we say thfeasible flowf that routes units
of flow from stot is a User Equilibrium, iff for allpy, p> € P with f,, >0,

lp, () < Iimirﬂ‘)épz(f +elp, —€lp), (1)
&

wherel, denotes the flow where only one unit passes along apath

Note that for continuous functions the above definition éniital to the Wardrop Equilibrium. One
has to be careful when designing a Coordination Mechanigimdiscontinuous functions, because the
existence of equilibria is not always guaranteel is important to emphasize, that all the mechanisms
that we suggest in this paper use both lower semicontinuodsegula? latencies, and therefore User
Equilibrium existence is guaranteed due to the theorem]ofNloreover, since our modified latencies
are non-decreasing, all User Equilibria are also DaferBywearrow equilibria. From now on, we refer to
the User Equilibria as Nash Equilibria, or simply Nash flows.

Our Contribution: We demonstrate the possibility of reducing the Price of Ahgifor Selfish Routing
via Coordination Mechanisms. We obtain the following ré&stor networks ok parallel links.

o if original and modified latency functions are continuousjmprovement is possible, i.@PoA>
PoA see Section 2.

o for the case of affine cost functions, we describe a simplediation mechanismAthat achieves
an engineered Price of Anarchy strictly less than 4/3; setid&e3. The functiond, are of the
form

)

i) = le(x) forx<re
R P for x > re.

For the case of two parallel links, the mechanism gives ®é &ection 3.1), for Pigou’s network
it gives 1, see Figure 1.

e Forthe case of two parallel links with affine cost functions, describe anptimal® mechanism;
its engineered Price of Anarchy lies between 1.191 and 1(46@ Sections 4 and 5). It uses

5See [26, 24] for an excellent exposure of the relevant cdscéipe relation among them, as well as for conditions that
guarantee their existence.

61n [15], Dafermos weakened the orginal definition by [14] takm it closer to the concept of Nash Equilibrium.

"See Section 5 for a formal definition.

8See for example [186, 4] for examples where equilibria do misteeven for the simplest case of two parallel links and
non-decreasing functions.

9See [4] for a definition of regular functions.

10The lower bound that we provide in Section 5 holds for all tataistic coordination mechanisms that usm-decreasing

modified latencieswith respect to both notions of equilibrium described ie grevious paragraph.



modified cost functions of the form

®)

A le(x)  forx<reandx > Ue
le(X) =
le(Ug) fOrre < X< Ue.

The Price of Anarchy is a standard measure to quantify thecefif selfish behavior. There is a vast
literature studying the Price of Anarchy for various mod#iselfish routing and scheduling problems
(see [25]). We show that simple coordination mechanismsednce the Price of Anarchy for selfish
routing games below the 4/3 worst case for networks of paratlks and affine cost functions.

We believe that our arguments extend to more general codtidms, e.g., polynomial cost functions.
However, the restriction to parallel links is crucial forrqaroof. We leave it as a major open problem to
prove results for general networks or at least more genetalarks, e.g., series-parallel networks.
Implementation: We discuss the realization of the modified cost function ifngpke traffic scenario
where the driving speed on a link is a decreasing functiomeffiow on the link and hence the transit
time is an increasing function. The step function in (3) carrdmlized by setting a speed limit corre-
sponding to transit timés(ue) once the flow is above.. The functions in (2) can be approximately
realized by access control. In any time unit ordytems are allowed to enter the link. If the usage rate
of the link is above, the queue in front of the link will grow indefinitely and hentransit time will go
to infinity.

Related Work: The concept of Coordination Mechanisms was introducedhi@ ¢bnference version
of) [9]. Coordination Mechanisms have been used to imprbedrice of Anarchy in scheduling prob-
lems for parallel and related machines [9, 19, 22] as welbastirelated machines [3, 6]; the objective is
makespan minimization. Very recently, [10] consideredrasigective the weighted sum of completion
times. Truthful coordination mechanisms have been studi¢t, 7, 2].

Another very well-studied attempt to cope with selfish bédrais the introduction of taxes (tolls)
on the edges of the network in selfish routing games [11, 182017, 5]. The disutility of a player is
modified and equals her latency plus some toll for every eldgeis used in her path. It is well known
(see for example [11, 18, 20, 21]) that so-called marginat s, i.e.,/e(X) = f(X) +XC4(X), result in
a Nash flow that is equal to the optimum flow for the originaltdasctions! Roughgarden [27] seeks
a subnetwork of a given network that has optimal Price of Amarfor a given demand. [12] studies
the question whether tolls can reduce the cost of a Nashileduih. They show that for networks with
affine latencies, marginal cost pricing does not improvectigt of a flow at Nash equilibrium, as well
as that the maximum possible benefit that one can get is no tmamethat of edge removal.

Discussion: The results of this paper are similar in spirit to the resditzussed in the previous para-
graph, but also very different. The above papers assumeakas or tolls are determined with full
knowledge of the demand rate Our coordination mechanisms mwspriori decide on the modified
latency functionsvithout knowledge of the demaritimust determine the modified functioAsind then
an adversary selects the input rateMore importantly, our target objectives are different; want to
minimize the ratio of the modified cost (taking into accourd increase of the latencies) over trig-
inal optimal cost. Our simple strategy presented in Section Jeaviewed as a generalization of link
removal. Removal of a link reduces the capacity of the edgeeto, our simple strategy reduces the
capacity to a threshold..

111t is important to observe that although the Nash flow is etmigthe optimum flow, its cost with respect to the marginal
cost function can be twice as large as its cost with respebgtoriginal cost function. For Pigou’s network, the maadicosts
arel;(x) = 2xand/>(x) = 1. The cost of a Nash flow of ratewith r < 1/2 is 22 with respect to marginal costs; the cost of
the same flow with respect to the original cost functionis



2 Continuous Latency Functions Yield No I mprovement

The network in this section consists loparallel links connecting to t and the original latency func-
tions are assumed to be continuous and non-decreasing. dWetlsat substituting them by continuous
functions brings no improvement.

Lemma 1. Assume that the original functiorfg are continuous and non-decreasing. Consider some
modified latency functionéand some rate r for which there is a Nash Equilibrium flbwuch that the
latency functiory; is continuous affi(r) for all 1 <i <k. Then ePof) > PoAr).

Proof. It is enough to show thafy(r) > Cn(r )- Let f be a Nash flow for rate and the original cost
functions. If f = f, the claim is obvious. Iff # f, there must be 4 with fj(r) > f;(r). The local

continuity of 7 at fi(r), implies that?;(fi(r)) = & (fi(r)), for all i,i’ < k such thatfi(r), f(r) > 0.

Therefore,

~ A A

Eur) =C(f(r Zf DG =r-2(Fi(0) =1 4(f1) = r-4(5(0)

sincefj (X) > ¢;(x) for all xand/; is non-decreasing. Sindes a Nash flow we havg(fi(r)) </¢;(f;(r))
for anyi with fi(r) > 0. Thus

3 A Simple Coordination Mechanism

Let 4i(x) = ax+ by = (x+ y)/A; be the latency function of theth link, 1 <i < k. We call A; the
efficiencyof the link. We order the links in order of increasibgyalue and assunta < b, < ... < by as
two links with the samé»-value may be combined (by adding their efficiencies). We alag assume
g > 0fori <k; if g =0, linksi+ 1 and higher will never be used. We say that a linksedif it carries
positive flow. The following theorem summarizes some basitsfabout optimal flows and Nash flows;
it is proved by straightforward calculatioh®.We state the theorem for the case thaits positive. The
theorem is readily extended to the cage-= 0 by lettingax go to zero and determining the limit values.
We will only use the theorem in situations, whege> 0.

Theorem 1. Leth <hby <...<bcandAj € Oforalli. LetAj=y;<jA andlj = ¥, y;. Consider a
fixed rate r and let ;f and fiN, 1 <i <Kk, be the optimal flow and the Nash flow for rate r respectively.
Let

r= (biy1 —bi)A;
Then Nash uses link j fors rj and Opt uses link j for t> r; /2. If Opt uses exactly j links at rate r

then A F
r/\ +4/2, whered———y.
j

fr =
| /\J

12| a Nash flow all used links have the same latency. Thugliifks are used at rateand fiN is the flow on thea-th link,
thenay f}' +by = ... = ajf +bj; <bj,3 andr = f' +...+ f\. The values for; and f follow from this. Similarly, in an
optimal flow all used links have the same marginal costs.



1 1
Copt(r) = A (rP+Tjr) - 4—'| A (r?+Tr) —Cj,where G = ( Z (bn— bi)z)\h)\i> /(4N)).
if)

If Nash uses exactly j links at rate r then

If s < rand Opt uses exactly jlinks at s and r then

Copt(r) = Copt(s) + /\ij ((r — 3)2 +(Fj+2s)(r — s)) )

If s < r and Nash uses exactly j links at s and r then

Cn(r) ZCN(S)-i-Aij ((r —S)2+(rj +2s)(r —s)).

FinaIIy, I',- +rj = bj/\j andl'j,1+rj = bj/\jfl.

We next define our simple coordination mechanism. It is gosgiby paramete®;, Ry, ..., R« 1;

R > 2 for alli. We call thej-th link super-efficientf A; > Rj_1Aj_1. In Pigou’s network, the second
link is super-efficient for any choice &% sinceA, = « andA; = 1. Super-efficient links are the cause
of high Price of Anarchy. Observe that Opt starts usingjttie link at rater;/2 and Nash starts using
it at rater;. If the j-th link is super-efficient, Opt will send a significant fract of the total flow across
the j-th link and this will result in a high Price of Anarchy. Ourardination mechanism induces the
Nash flow to use super-efficient links earlier. The Iatenay:ﬁmnstﬁi are defined as foIIowsEi =4 if
there is no super-efficient link > i; in particular the latency function of the highest link (aKik) is
unchanged. Otherwise, we choose a threshold Val(gee below) and sét(x) = ¢(x) for x < T; and
{(x) = o for x> T;. The threshold values are chosen so that the following behessults. We call this
behaviormodified Nash (MN)

Assume that Opt uséslinks, i.e.,rn/2 <r <rn;1/2. If Aiz1 <RA; foralli, 1<i < h, MN behaves
like Nash. Otherwise, lef be minimal such that link + 1 is super-efficient; MN changes its behavior
at raterj,1/2. More precisely, it freezes the flow across the fjréinks at their current values when
the total flow is equal t@;1/2 and routes any additional flow across links 1 tok. The thresholds
for the lower links are chosen in such a way that this freegfiigct takes place. The additional flow
is routed by using the strategy recursively. In other wohelsj; + 1, ..., ji + 1 be the indices of the
super-efficient links. Then MN changes behavior at rajes/2. At this rate the flow across links 1 to
ji is frozen and additional flow is routed across the higherslink

We useCyn(r) = éﬁl"“’R“*l(r) to denote the cost of MN at ratevhen operated with parametd®s
to Re_1. ThenePoAr) = Cun(r)/Copt(r). For the analysis of MN we use the following strategy. We
first investigate the benign case when there is no superesgifiink. In the benign case, MN behaves
like Nash and the worst case bound of 4/3 on the PoA can nevattdieed. More precisely, we will
exhibit a functionB(Ry,...,Rk_1) which is smaller than A3 for all choices of thér’s and will prove
Cun(r) < B(R,...,Re_1)Copt(r). We then investigate the non-benign case. We will derivearrence
relation for R R ‘0

N (r
ePoARy,...,R-1) mrax Conl)
In the case of a single link, i.ek = 1, MN behaves like Nash which in turn is equal to Opt. Thus
ePoA) = 1. The coming subsections are devoted to the analysis ofitke &nd more than two links,
respectively.



3.1 TwolLinks

The modified algorithm is determined by a param®&er 1. If A, < RA1, modified Nash is identical to
Nash. IfA; > RA1, the modified algorithm freezes the flow across the first link:A22 once it reaches
this level. In Pigou’s network we hav@ (x) = x and /3(x) = 1. ThusA, = . The modified cost
functions ard’s(x) = £(x) andéy(x) = x for x < r»/2 = 1/2 and/;(x) = « for x > 1/2. The Nash flow
with respect to the modified cost function is identical to tptimum flow in the original network and
Cn(f*) =C(f*). ThusePoA= 1 for Pigou’s network.

Theorem 2. For the case of two links, ePoA max1+ 1/R, (4+4R)/(4+ 3R). In particular ePoA=
5/4for R=4.

Proof. Consider first the benign cage < RA;. There are three regimes: foK r,/2, Opt and Nash
behave identically. Fory/2 <r <r,, Opt uses both links and Nash uses only the first link, and for
r >rp, Opt and Nash use both linkBoA(r) is increasing for <r, and decreasing far> r,. The worst
case is at =rp. ThenPoA(rp) =Cn(r2)/Copt(r2) = Cn(r2)/(Cn(r2) —C2) =1/(1—-Cy/Cn(r2)). We
upper-boundC,/Cy(r2). Recall thatry, = (b, — bi)Ag, ra+ 1 = boA; andC(rp) = (1//\1(r§ +Tar2).

We obtain

C _ (bg—bl)z)\l)\z (bz—bl) A1A2 < )\2 < 1
CN(rz) 4/\2(1/)\1)(@ + ylrz) 4/\2(1/)\1)(b2 — bl))\le)\l 4(l+ l/R) ’

ThusPoAr) <B(R):=1/(1—R/(4(R+1))) = (4+4R)/(4+ 3R).

We come to the caske > RA;: There are two regimes: for< r,/2, Opt and MN behave identically.
Forr >ry/2, Opt uses both links and MN routes/2 over the first link and —r»/2 over the second
link. Thus forr >r,/2:

ePoAr) = Cn(r)  Copi(r2/2)+ 52 228 |y ~2/2) _
Copt(r) Copt(rz/2)+(r r2/2> +bp(r —r2/2) 7\2

1+1/R

3.2 Many Links

As already mentioned, we distinguish cases. We first stuglipémign casg;, 1 <R A foralli, 1 <i <k,
and then deal with the non-benign case.

TheBenign Case:  We assum@,; < RA; for alli, 1 <i < k. Then MN behaves like Nash. We will
showePoA< B(Ry,...,Rk_1) < 4/3; hereB stands for benign case or base case. Our proof strategy is
as follows; we will first show (Lemma 2) that for theh link the ratio of Nash flow to optimal flow is
bounded by 2y/(Ai + Ax). This ratio is never more than two; in the benign case, it isnded away
from two. We will then use this fact to derive a bound on the®of Anarchy (Lemma 4).

Lemma 2. Let h be the number of links that Opt is using. Then
i o
f* = Ni+Nn

fori <h.IfAj 1 <RjA;jforall j, then

2/\n < 2P
/\i—i-/\h_F’—i—l7

where P.= Ry - [1<i<k(1+R).



Proof. Fori > |, the Nash flow on theth link is zero and the claim is obvious. Fox j, we can write
the Nash and the optimal flow through links

fiN = I‘Ai//\j + (Fj)\i//\j — y,) and fi* = I‘Ai//\h—i— (Fh)\i//\h — y.)/2
Therefore their ratio as a function pfs

_ NAn 2r+2r —2bi/\j
fx AV +Th—biAp

The sign of the derivative’'(r) is equal to the sign df, — biAn — 2I"j + 2biA; and hence constant. Thus
F(r) attains its maximum either far; or forr; 1. We have

F(rj+1)§ﬁ‘zrj+1+2rj—2bi/\j _Mn 2(bji1—bi)A,
Nj 2+ Th—biAn Aj 20N — 201+ Th—biAg
- 2(bj1 —bi)An _ 2(bj+1 —bi)An
 Ya<ira(20ji1—2bg)Ag+ Ygen(Bg—bi)Ag  Fg<j(20j41—bg—bi)Ag+ T | _g<n(bg — bi)Ag
_ 2(bj 1 —bi)An
- 2g<i (2bj11—bg—bi)Ag + Di<g<| (2bj4 1 —bg—bi)Ag+ Zj<g§h(bg —bi)Ag
< 2(bj 1 —bi)An
T Yg<i 2(0j41 = b)Ag+ Ficg<n(Bj+1 —bi)Ag
_ 2Nn _ 2N
 Sg<i2Agt YicgenAg Ai+An
and
F(r_)<ﬁ‘2rj+2rj—2bi/\j :ﬁ‘ 2(bj —bi)A;
: TN 2rj+Th—biAg Nj 20jAj =20+ Th—DbiAy
_ 2(bj — bi)An B 2(b; —bi)An
N 20<] (2bj —2bg)Ag + ZQSh(bg —bi)Aq B 29<] (2bj — by —bi)Ag+ Zj<g§h(bg —bi)Ag
_ 2(bj — bi)An
 Yg<i(20) —bg—bi)Ag+ Fi g (20] —bg—bi)Ag+ ¥ jg<n(bg — bi)Ag
Z(bj — bi)/\h 2N\n 2N\n

< = pr—
T Yg<i 205 —bi)Ag+ Ticgen(bj —bi)Ag  3g<i2Ag+ YicgenAg  Ait+An
If Aj11 <RjAj forall j, thenAj 1 = Aj+Aj < (14 Rj)Aj forall j and hencé\, <A <PA;. O
Lemma 3. For any realsy, a, andB with1 < u <2anda /B < u, Ba < “u—_zla2+[32.

Proof. We may assumg > 0. If B = 0, there is nothing to show. So assufie- 0 and leta /3 = du
for somed < 1. We need to show (divide the target inequality@® du < (1 —1)6°+ 1 or equivalently
uoé(1—9) < (1-9)(1+9). This inequality holds fod < 1 andu < 2. O

Lemmad. If fiN/fi* < u < 2foralli, then PoA< HZ/(HZ—LH—l). If A; <RjA; forall j, then

. 4P?
POA<B(Ry,....Re-1) = 2557

where P=Ry - [M1<j<k(1+Rj).



Proof. Assume that Nash usgdinks and letL be the common latency of the links used by Nash. Then
L=afN+bifori<jandL <l =afN+bfori> j. Thus

oM =Lr =3 LG < Tt +b)f < B2 S a (2 + 3 a(i)?+bih)

-1
< 12 Cn(r) + Copt(r)

and hencePoA< p?/(u? — u+1). If Aj < RjA; for all j, we may useu = 2P/(P+ 1) and obtain
POA< 4P?/(3P? +1). O

The General Case:  We come to the case whedg, 1 > R/A; for somei. Let j be the smallest sudh
Forr <rj;1/2, MN and Opt use only links 1 tpand we are in the benign case. Hee&®Ais bounded
by B(Ry,...,Rj-1) < 4/3. MN routes the flow exceeding,1/2 exclusively on higher links.

Lemma5. MN does not use links before Opt.

Proof. Consider anyr> j+1. MN starts to use link atsy =rj,1/2+ 5 j11<i<n(biz1—bi)(Ai—A;j) and
Optstartstouse itah/2=rj,1/2+ 3 j11<i<n(biy1—bi)Ai/2. We haves, > rn/2 sinceNi —A\j > Ni /2
fori> j. O

We need to bound the cost of MN in terms of the cost of Opt. Ireotd do so, we introduce an
intermediate flow Mopt (modified optimum) that we can readd#iate to MN and to Opt. Mopt uses
links 1 to j to routerj,1/2 and routes =r —rj;1/2 optimally across linkg + 1 tok. Let f* and f™
be the optimal flows and the flows of Mopt, respectively, atratetrs= ;- f* >rj,1/2 be the total
flow routed across the firgtlinks in the optimal flow (the subscrigtstands for small) and let

We will showt < 14 1/R; below. We next relate the cost of Mopt on links- 1 tok to the cost of Opt

on these links. To this end we scale the optimal flow on theds by a factor of, i.e., we consider the
following flow across linksj + 1 tok: on linki, j+1 <i <Kk, it routest - f;*. The total flow on the high
links (= links j+1tok) isr —rj,1/2 and hence Mopt incurs at most the cost of this flow on its high
links. Thus

> G < S GO < t? (Z fi(fi*)fi*> :
i>] i>] i>]

The cost of MN on the high links is at mosPoAR;.1,...,R« 1) times this cost by the induction
hypothesis. We can now bound the cost of MN as follows: (Kherges this on September 1st; | left
the old version in the document; the old version comes finstyew version comes then).

Cun(r) =Cn(rj+1/2) +Cun(flow f across linksj + 1 tok)

<B(Ry,.--,Ri-1)Copt(rj+1/2) +t*€PoAR 41,...,Rc 1) (Z G4(f) fi*>

< B(Rl, ey Rj_l)Copt(rs) —|—tZePoA(RJ-+1, ey Rk—l) (z i ( fl*) f|*>

i>]

<maxB(Ry,...,Rj_1),t?€PoAR;1,...,Rc_1))Copt(r)



Cun(r) =Cn(rj+1/2)+Cun(flow f across linksj + 1 tok)

< B(Ry,...,Rj-1)Copt(rj+1/2) +t?POAR11,...,Rc_1) (Z G(f) fi*>

i>]

<B(Ry,...,Rj_1) <Z£i(fi*)fi*> +t%ePoARj1,...,Re1) (Z ei(fi*)fi*>

i<] i>]

<maxB(Ry,...,Rj_1),t?ePoAR; 1, ...,Rc_1))Copt(r)
Lemma6. t <1+1/R;.

Proof. Assume that Opt usdslinks wherej+1<h<k. Thenr,/2<r <rp;1/2. Letr =r,/2+ 9.
According to Theorem 1f* =rA; /An+ (FnAj/An — %) /2 and hence

[gN Ay 1 (ThA]
— (= 5>_ Y LA
s (2 * /\h+2< An

Sinceln +rp = bp/An andlj +rj = b;j/AAj (see Theorem 1), this simplifies to

NS 1 AjS

NS bnAn—ThAj 1 [ThA;
— _J [ —— —b:A; . — 1= - — bi A A *
I's An + 2 /\h+2 An bJ J+rJ An +2((bh b]) J+rl) An + s,
whererg = 3 ((bn —bj)Aj +rj). We can now bountl
t:r—rj+1/2: /240 —rj41/2 < max rh/2—rj+1/27 1/\. .
r—rs /240 —ri—(Njd)/Nn rh/2—r} (1-2)

Next observe that

/2= 1j11/2 _ Y i+1<i<h(biza —b)A; _ Jjsacich(Biia BN
rh/2—r1g (Yj<icn(bisa—b)A) = (bn=bpA; T jracicn(bivr —bi) (A = Aj)

AY AVEE] Nj+Aj1 1

< max = = <14+ —.

T jti<i<h A = A Njr1—N; Aj_,_l - +Rj

The second term in the upper bound fas also bounded by this quantity. O
We summarize the discussion.
Lemma7. For every k and every jwith < j <k. If Aj;1 > Rj/Aj andA; <R fori < jthen
1\2
ePoARy,...,R1) < max(B(Rl,...,Rj_l), <1+ E) ePoA(Rj+1,...,Rk_1)> .
We are now ready for our main theorem.

Theorem 3. For any Kk, there is a choice of the parameterst® R,_1 such that the engineered Price of
Anarchy with these parameters is strictly less tHd8.
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Proof. We defineRy_1, thenRx_», and so on. We sd®_1 = 8. ThenePoAR« 1) =5/4 and(1+
1/R¢_1)%ePoX) = (9/8)? < 4/3. Assume now that we have already defiffad; down toR 1 so that
ePoAR;1,...,Rc1) < 4/3 and(1+ 1/R;)?ePoAR; 1,...,Rc_1) < 4/3 for j > i+ 1. We next define
Ri. We have

B(Ria"'akal)a

ePoAR,...,R1) < max 2 ,
ARG Rea) < Ma; i<k (B(Ri,...,le), (1+4) ePoAR} 1, ... Rk1)>

where the first line covers the benign case and the seconddiregs the non-benign case. We choBse

such tha{1+ 1/R)?ePoAR ;1,...,Rc 1) < 4/3. ThenB(R,...,R) < 4/3 andB(R,...,j— 1) < 4/3

by Lemma 4 and the induction step is complete. O

4 An Improved M echanism for the Case of Two Links

In this section we present a mechanism which achiefRes\= 1.192 for a network that consists of two
parallel links. The rati®n(r)/Copt(r) is maximal forr =r,. At this rate Nash still uses only the first
link and Opt uses both links. In order to avoid this maximunioréf larger than 1.192), we force MN

to use the second link earlier by increasing the latencyefitit link after some ratey, ro/2 < x; <r>

to a value abové,. In the preceding section, we increased the lateney.tn this way, we avoided a

bad ratio at,, but paid a price for very large rates. The idea for the impdosonstruction, is to increase
the latency to a finite value. This will avoid the bad ratiot &iso allows MN to use both links for large
rates. In particular, we obtain the following result.

Theorem 4. There is a mechanism for a network of two parallel links thatiaves ePoA- 1.192

Proof. Recall that the price of anarchy of Nash(#+ 4R)/(4+ 3R) whereR= a; /a,. Let Ry be such
that (44 4Rp) /(44 3Rp) = 1.192. ThenRy = 96/53. We only need to consider the cd&®e- Ry. The
latency function of the second link is unchanged and thetgtéunction of the first link is changed into

1(x), X<xq
fl(X) = fl(Xz), X1 < X< Xo (4)
El(X) X> Xo.

wherex; andx; satisfyr,/2 < x; <r, <X, and will be fixed later. In words, when either the flow in
the first link does not exceed, or is larger tharx,, the network remains unchanged. However, when
the flow in the first link is between these two values, the meisma increases the latency of this link to
l1(x2). Letr* be such that

fz(l’* — Xl) = fl(Xz).

We wiill fix x; andx, such thatr* > r».

What is the effect of this modification? Fox r/2, Opt and MN are the same ap®0ATr) = 1.
Forry/2 <r <x1, MN behaves like Nash arePoAr) increases. At = x;, MN starts to use the second
link. MN will route any additional flow on the second link unti=r*. Atr =r*, MN routesx; on the
first link andr* — x; on the second link. Beyond, MN routes additional flow on the first link until the
flow on the first link has grown tg,. This is the case at™ =r* —x; + xo. Forr > r**, MN behaves like
Nash.

Figure 2 shows the graph ePoAr). We haveePoAr) =1 forr <r,/2. Forry/2 <r < x1, ePoATr)

increases to )
aixs + byx
ePoAx,) — X1+ o
Copt(xl)

11



ePoATr)

ra/2 X1 2 r* [** f

Figure 2: The engineered price of anarchy for the constaif Section 4.

Forx; <r <r*, ePoAr) is convex. It will first decrease and reach the value one ébssimes that' is
big enough) at the rate where Opt roukg®n the first link; after this rate it will increase again. At
ePoAhas a discontinuity becauseratMN routesx; on the first link for a cost of1(x1)x; and atr* + €
it routesx; + € on the first link for a cost of;(x2) (X1 + €). Thus

Cun(r) i f(x)r _ lax)rt  Lo(r* —x)r
r—r*+ Copt(r)  r=r"+ Copt(r)  Copt(r*) Copt(r)

Forr > r*, ePoAr) decreases. Thus

(®)

2 * *
axs +bixy Lo(r* —xq)r
ePoA= max( 1 +b1xq o ) >

Copt(x1) ~ Copt(r*)

It remains to show that; < r» andr* > r, can be choséd such that the right-hand side is at most 1.192.

By Theorem 1,
a

1+R
forr >ry/2 andR=a;/ay. Also lo(r* —xp) = ap(r* —xq) + by = ap(r* — x1) + by + ayro.

We first determine the maximum < r, such thaialxi + b1x1 /Copt(X1) < 1.192 for allb;. Since
ale +b1x1/Copt(X1) is decreasing iy, thisx; is determined fob; = 0. It follows thata = x;/r> is
defined by the equation

Copt(r) = byr + (r?+Rrr —R3/4),

4R+1)a?
40R_ R+ 4a?
ForR > Ry, this equation has a unique solutiag € [1/2,1], namely
1 14R+2,/89R(R+1)
2 125R— 24 '
We turn to the second term in equation (5). For> r, it is a decreasing function df;. Substituting
b; = 0 into the second term and settifig=r* /r, yields after some computation

4B(R+1)(B—a+R)
R(432+ 4R—R)

=1.192 (6)

Qo

ePoA = (7

13The optimal choice fox; andr* is such that both terms are equal and as small as possible. eréeumable to solve
the resulting system explicitly. We will prove in the nextgen that the mechanism defined by these optimal choicelseof t
parameters; andr* is optimal.

12



For fixeda = ag and anyR > Ry, ePoA is minimized forf3 = By = RiVRy R+4a° R70) ForR> Ro,
one can prove thgly > 1, as needed. Substitutimg and 3 into ePoA yields a functlon oR. Itis easy
to see, using the derivative, that the maximum value of tmstion forR > Ry is at most 1192. O

5 A Lowe Bound for the Case of Two Links

We prove that the construction of the previous section iBr@dtamong the class of deterministic mech-
anisms that guarantee the existence of an equilibrium feryenater > 0 and that use non-decreasifig
latency functions. For the above mechanisms we showetPaf> 1.191.

As in the preceding sections, we use denote the modified latency functions. As mentioned above
we are making two assumptions about ftse an equilibrium flow must exist for every rateand?; is
non-decreasing, i.e., < X, then/;(x) < £i(x), fori = 1,2. It is worthwhile to recall the equilibrium
conditions for general latency functions (as given by Dafes-Sparrow [14]): ifX,y) is an equilibrium
for rater = x+y, thenZ,(y') > /1(x) fory € (y,r] (otherwisey’ —y amount of flow would move from
the first link to the second) ané (X) > /»(y) for X € (x,r] (otherwise,X —x amount of flow would
move from the second link to the first). Since we assume oustifums to be monotone, the condition
l2(y) > f1(x) fory € (y,r] is equivalent to liminf,y /2(y') > /1(x) provided thay < r (or equivalently,
x> 0). Since we are discussing a network of two parallel links, latter condition is in turn equivalent
to (1).

Theorem 5. The construction of Section 4 is optimal and eRPoA.191

Proof. We analyze a network with latency functiofAgx) = x and/>(x) = x/R+1= (x+R)/R, 2<
R < 4, and derive a lower bound as a function of the parantttre restriction < R < 4 will become
clear below. In a second step we cho®éseo as to maximize the lower bound; the optimal choice is
R=R"~2.1. Forr <1/2, Opt uses one link arGu(r) = r2, and forr > 1/2, Opt uses two links and
Copt(r) = (r?+Rr—R/4) /(14 R); Copt(1) = (3R+4)/(4R+4) andCy(1) = 1. ThusPoA= PoA(1) =
(4R+4)/(3R+4). ForR> 2, we havePoA(1) > 12/10=1.2.

Let (x1,1—x;) be an equilibrium flow for rate 1 and let

r* = inf{r ; there is an equilibrium flowx, r — x) for MN with x > x; };

r* = oo if there is no equilibrium flow(x,y) with x > x;. The equilibrium conditions for flowx;, 1 — x1)
imply A A

El(X’) > @2(1— Xl) > @2(1— Xl) >1forx; < X <1 (8)
Lemmas8. If /1(x;) > 1orr* =worr* <1, ePoA> 1.2.

Proof. If El(xl) > 1, we haveCyn(1) > 1 and hencePoA> PoA(1) > 1.2.

If r* =00, ePOA) > 14 1/R. ForR< 4, thisis at least .25.

If r* < 1, there is an equilibrium flowx,y) with x > x; andr = x+y < 1. Then/;(x) > 1 by
inequality (8). Also/z(y) > 1. ThusCun(r) > r and hencePoAr) > r/Copt(r). Forr <1, we have

r r(1+R) R/4 R/4 4+ 4R
Copt(r)  r*+Rr—R/4 r2+Rr—R/4 1+R—R/4 4+3R

= PoA(1) > 1.2.

O

141t remains open whether similar arguments can be appliedtowing the lower bound for non-monotone mechanisms
with respect to User Equilibria.
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In the light of the Lemma above, we proceed undgr the assun]f)lt(xl) < 1, and hencey < 1,
and 1< r* < co. Then(xy,0) is an equilibrium flow, sincé(x;) < 1 < /,(y) for0<y < x;. Thus

2
ePOAX) > —2—. 9
A( l) - Copt(Xl) ( )
By definition ofr*, MN routes at mosk; on the first link for any rate < r* and for anye > 0 there is
anr < r*+ ¢ such thatx,r —x) with x > x; is an equilibrium flow for MN. A A
Forr < r*, any equilibrium flow(x,r — x) hasx < x3. Thus, forx' € (x,r] 2 (xg,r], ¢2(X) > £o(r —
X) > lo(r —X) > £2(r — Xp). Since this inequality holds for any< r*, we have

~

0(X) > lo(r —x1) for X € (xq,r"). (10)
Fore >0, let
Fe = {(x,y); (x,y) is an equilibrium flow withr* <x+y <r* + € andx > x; }.

Observe thaF; is non-empty by definition of*.
Lemma 9. If for arbitrarily small € > 0, there is a(x,y) € F¢ with x> r*, then ePoA> PoA(1) > 1.2.

Proof. Letr =x+y. ThenePoA> r2 /Con(r). Since this inequality holds for arbitrarily smallePoA>
(r*)2 /Copt(r*) > POA(1) = 1.2. =

We proceed under the assumption that there isgan 0 such that, contains no pai(x,y) with
X>r*,

Lemma 10. If for arbitrarily small € € (0,&), F contains either a paifx,r* —x;) or pairs (x,y) and
(u,v) with y+# v, then ePoA> l2(r* — x1)r* /OPT(r*).

Proof. Assume first thaE; contains a paifx,r* — x;) and letr = x+r* —x;. Then
Cun () = u())x -+ Co(1 —xa) (I = X1) = 21" —xa)r

sincel; () > £a(r* —xq) by (10).

Assume next thafE; contains pairgx, y) and(u,v) with y # v. Then/y(x) > £o(r* —x;) andés(u) >
l5(r* —x1) by (10). We may assumg,> v. Letr = x+y. Since(u,v) is an equilibriuméz(y') > f1(u)
fory € (v,u+v) and hencds(y) > f1(u) . Thus

Cun(r) = L1(X)X+ Lo (y)y > Lo(r* —xq)r.

We have now shown th&yn(r) > ¢2(r* — xq)r for r’s greater thanm* and arbitrarily close ta*.
ThusePoA> lo(r* —xq)r* /OPT(r). O

We proceed under the assumption that there ispan 0 such that, contains no paifx,y) with
X >r*, no pair(x,r* —x;) and no two pairs with distinct second coordinate. In otherdspthere is a
Yo < r* — Xz such that all pairs iffrg, have second coordinate equalto

Let (Xo,Yo0) € Fg,- Thenyp < r* —xq. Let(x,y) be an equilibrium for rate = (r* +x; +yo)/2. Then
r=2r'+yo—(r*—xy))/2<r*and henc& < x;. Thusy=r—x>r—x; = (r* —xa1+¥o)/2 > yp and
r —yo > X1. Consider the paifr — yo,Yo). Its rate is less thari and its flow across the first link is— yp
which is larger tharx;. Thus it is not an equilibrium by the definition of. Therefore there is either an
X' € (r —yo,r] with Z1(X") < l2(yo) or ay’ € (yo,r] with Z2(y") < 1(r —yo). We now distinguish cases.
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Assume the former. Sinde,y) is an equilibrium, we havé;(x) > Z»(y) for all X € (x,x+Y] and
inparticular forx”; observe that —yg > x sincer —x=y > yq. Thus@z(yo) > @z(y), a contradiction to
the monotonicity o».

Assume the latter. Sindeo,Yo) is an equilibrium, we havé,(y') > f1(xo) for all y € (Yo, %o+ Yol
and inparticular foy’”. Thus/:(r — yo) > /1(Xo), a contradiction to the monotonicity é; observe that
r —yo < Xp sincer < r* < Xg + Yo.

2 * *
ePoA> min (1.2,minmax< X ,min <M>>> (11)

Proof. If Xy > 1 orr* <1 orr* = o, we haveePoA> 1.2. So assume; < 1 and 1< r* < . The
argument preceding this Lemma shows that the hypothesiglmrd.emma 9 or 10 is satisfied. In

the former caseePoA> 1.2. In the latter caseePoA> max( X ZZ(r**Xl)r*). This completes the

Lemma 11.

Copt(X1)?  Copt(r*)
proof. O

It remains to bound

2 * * 2 * *
. X3 _ Oo(r —xq)r . X3 A (R+1)(rF —x1+R)
minmax| ——,MN——————— | = mMIinmax min 12
x1<1 ( Opt(xl) ’ r<>1 Copt(r*) x1 <1 Copt(xl) ’r*zl R(4(r*)2 +4Rr+ — R) ( )

from below. We prove a lower bound of1B1. The termx{/Copt(xl) is increasing inx;. Thus
there is a unique value; € [1/2,1] such that the first term is larger thanl@1 for x; > a;. |If
the minimizingx; is larger thana; we have established the bound. The second term is minimized

for r* = max(1, (R+ \/R2+4R2x1 —4Rx§) /(4%1)). Sincex; < 1 and henceé < x;, we have(R+

\/ R2 4+ 4R — 4R%)/(4x)) > 2R/4 > 1 and hence* = <R+ \/ R2 + 4Rx; — 4R>§) /(4%1). The sec-
ond term is decreasing ixy and hence we may substitute by a; for the purpose of establishing a
lower bound. We now specialiZeto 21/10. For this value oRandx; = o

lo(r* —aq)r*
" Cop(r) v+ (Re /RET4REG,—4Ra?) (4ar) andR—21/10 = 1191

This completes the proof of the lower bound.

We next argue that the construction of Section 4 is optimgjudions (5) of Section 4 fdy; =0
and Equation (12) agree. Hence our refined solution is optima O

6 Open Problems

Clearly the ultimate goal is to design coordination mecéiasi that work for general networks. In the
case of parallel links that we studied, we showed that ouhamrgism approaches' 3, as the number of
links k grows. It is still an open problem to show a bound of the forf84 a, for some strictly positive
a. A possible approach could be to use the ideas of Section dth&napproach would be to define the
benign case more restrictively. AssumiRg= 8 for all i, we would call the following latencies benign:
(1(X) = x, and/;(x) = 1+ -i+x/8 fori > 1 and small positive. However, Opt starts using theth
link shortly after /2 and hence uses an extremely efficient link for small rates.

Also, our results hold only for affine original latency fuimets.What can be said for the case of more
general latencies, for instance polynomials? On the maienteal side, it would be interesting to study
whether our lower bound construction of Section 5 can benebeté to modified latency functiorfsthat
do not need to satisfy monotonicity.
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