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Abstract
In many communications settings, such as wired and wireless local-area

networks, when multiple users attempt to access a communication channel
at the same time, a conflict results and none of the communications are suc-
cessful. Contention resolution is the study of distributed transmission and re-
transmission protocols designed to maximize notions of utility such as chan-
nel utilization in the face of blocking communications.

An additional issue to be considered in the design of such protocols
is that selfish users may have incentive to deviate from the prescribed be-
havior, if another transmission strategy increases their utility. The work of
Fiat et al. [8] addresses this issue by constructing an asymptotically optimal
incentive-compatible protocol. However, their protocol assumes the cost of
any single transmission is zero, and the protocol completely collapses under
non-zero transmission costs.

In this paper, we treat the case of non-zero transmission cost c. We
present asymptotically optimal contention resolution protocols that are ro-
bust to selfish users, in two different channel feedback models. Our main
result is in the Collision Multiplicity Feedback model, where after each time
slot, the number of attempted transmissions is returned as feedback to the
users. In this setting, we give a protocol that has expected cost 2n+ c logn
and is in o(1)-equilibrium, where n is the number of users.

1 Introduction

Consider a set of sources, each with a data packet to be transmitted on a shared
channel. The channel is time-slotted; that is, the transmissions are synchronized
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and can only take place at discrete steps. The packets are of fixed length and each
fits within one time slot. If only one user transmits in a given slot, the transmission
is successful. If more than one user attempts to transmit messages in the same slot,
a collision occurs, and all transmissions for that time step fail; the failed packets
will need to be retransmitted later. Typically, the goal of the system designer is
to optimize global notions of performance such as channel utilization or average
throughput. If all of the sources were under centralized control, avoiding collisions
would be simple: Simply allow one source to transmit at each time step, alternating
in a round-robin or other “fair” fashion.

What happens, though, if the transmission protocol must be executed in a dis-
tributed fashion, with minimal additional communication? Further, what happens
if each source selfishly wishes to minimize the expected time before she transmits
successfully, and will only obey a protocol if it is in her best interest? Can we still
design good protocols in this distributed, adversarial setting? What information
does each user need to receive on each time step in order for such protocols to
function efficiently?

In this game theoretic contention resolution framework, Fiat et al. [8] design
an incentive-compatible transmission protocol which guarantees that (w.h.p.) all
players will transmit successfully in time linear in the total number of users. One
of the nice features of their protocol is that it only needs a very simple feedback
structure to work: They assume only that each player receives feedback of the form
0/1/2+ after each time step (ternary feedback), indicating whether zero, one, or
more than one transmission was attempted. This positive result is actually based
on a very negative observation, that the price of anarchy [15] in this model is un-
bounded: If transmission costs are assumed to be zero, it is an equilibrium strategy
for all users to transmit on all time steps! Clearly, this is an undesirable equilib-
rium. Fiat et al. [8] construct their efficient equilibrium using this bad equilibrium
quite cleverly as a “threat”— the players agree that if not all players have exited the
game by a certain time, they will default to the always-transmit threat strategy for
a very large time interval. This harsh penalty then incentivizes good pre-deadline
behavior.

It is natural, however, to assume that players incur some transmission cost c> 0
(attributable to energy consumption; see, for example, [17, 24]) every time they
attempt a transmission, in addition to the costs they incur due to the total length of
the protocol. If the cost of transmitting is even infinitesimally non-zero, though,
the threat strategy used in [8] is no longer at equilibrium, and the protocol breaks
down. We address this here, by developing efficient contention resolution protocols
that are ε-incentive-compatible even under strictly positive transmission costs.

In this work, we consider the model of Collision Multiplicity Feedback (CMF).
After each collision, while the identity of the collided packets is lost, the number
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of the packets that participated in the collision is broadcast to all users. This in-
formation can be estimated (with small error) by a number of energy detectors.
The CMF model has gained substantial attention in the literature because it admits
significantly better throughput results than can be achieved with ternary feedback.
In this setting, we present an efficient contention resolution protocol that is robust
to selfish players. We also propose a contention resolution protocol for a perfect
information feedback model, where all players can identify which players trans-
mitted.

1.1 Our Results

There are three main technical challenges we address:

1. Separating players by developing unique ids. Our protocols differ from pre-
vious incentive-compatible contention resolution protocols in that they are
history dependent; that is, the protocol uses the transmission history in or-
der to construct a random ordering of the users. We will use algorithmic
techniques similar to those for “tree”-style protocols, originally developed
by Capetanakis [7, 6] and later further developed in the information theory
and networks literatures.

2. Developing a “threat”. Like Fiat et al. [8], we use a threat strategy to incen-
tivize good behavior. However, the threat they use collapses under nonzero
transmission costs1. On the other hand, we use a weaker threat strategy and
need to develop efficient protocols that are incentive compatible despite our
weaker punishment.

3. Detecting deviations. In order for a threat to be effective, the players need to
be able to detect and punish when one of them cheats. Our protocol employs
a system of checksums and transmissions whose purpose is to communi-
cate information on cheating—despite the fact that a “transmission” gives
no other information to the players than its presence or absence.

We address these challenges in two different feedback models, described be-
low. In each feedback model we consider, we present asymptotically optimal pro-
tocols that guarantee to each user expected average cost that is linear in the total
number of users. Our protocols are in ε-equilibrium, where ε goes to 0 as the num-
ber of players grows. This form of approximate equilibrium is a very reasonable

1Remember from the earlier description that the threat of Fiat et al. requires that all remaining
players will be transmitting in every step with probability 1 for a large number of steps. This is an
equilibrium only when the cost of a transmission is zero.
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equilibrium notion in our setting, as games with a large number of players are tech-
nically the only interesting case—if there were only a constant number of players,
one could simply play the exact time-independent equilibrium that appears in [8],
although this has exponential cost.

Perfect Information First, in Section 3, we consider the feedback model of per-
fect information, where each user finds out after each time step what subset of
sources attempted a transmission. Perfect information is a very common assump-
tion in non-cooperative game theory. Making this strong assumption allows us to
highlight the game theoretic aspects of the problem, and the insight we develop in
the context of this strong feedback model is useful in developing algorithms under
more restrictive feedback.

Unlike the trivial protocol under global ids, the randomized protocol that we
present is fair in the sense that all users have the same expected cost, regardless of
how each individual chooses to label them with local ids. Protocol PERFECT has
expected cost n/2+ logn and is a o(1)-equilibrium w.r.t. the number of players n.

Collision Multiplicity Next, in Section 4, we present the main result of this
work. Here, we study a model with Collision Multiplicity Feedback (CMF), (oth-
erwise known as M-ary feedback; see e.g. [25, 20, 23]), in which after each time
slot, users find out the exact number of packets which were transmitted during the
slot, but not the identities of the transmitting players. In some practical situations,
this feedback can be measured as the total energy on the channel during one slot, by
means of a number of energy detectors. Our protocol MULTIPLICITY has expected
cost 2n+ c logn, where c is the transmission cost, and is a o(1)-equilibrium.

1.2 Related Work

Contention resolution for communication networks is a well-studied problem. The
ALOHA protocol [1], given by Abramson in 1970 (and modified by Roberts [22]
to its slotted version), is one of the most famous multiaccess communication pro-
tocols. However, Aloha leads to poor channel utilization due to an unnecessarily
large number of collisions. Many subsequent papers study the efficiency of mul-
tiaccess protocols when packets are generated by some stochastic process (see for
example [12, 11, 21]). Such statistical arrival models are very useful, but cannot
capture worst-case scenarios of bursty inputs, as in [5], where batched arrivals are
modeled by all n packets arriving at the same time. To model this worst-case sce-
nario, one needs n nodes, each of which must simultaneously transmit a packet;
this is also the model we use in this work.
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One class of contention resolution protocols explicitly deals with conflict res-
olution; that is, if k ≥ 2 users collide (out of a total of n users), then a resolution
algorithm is called on to resolve this conflict (it makes sure that all the packets that
collided are successfully transmitted), before any other source is allowed to use the
channel. For example, [7, 6, 14, 26] describe tree algorithms whose main idea is
to iteratively give priority to smaller groups, until all conflicts are resolved, with
Θ(k+k log(n/k)) makespan. We use a similar splitting technique in the algorithms
we present here.

A variety of upper and lower bounds for the efficiency of various protocols have
been shown. For the binary model (transmitting players learn whether they succeed
or fail; non-transmitting players receive no feedback) when k is known, [10] pro-
vides an O(k+ logk logn) algorithm, while [18] provides a matching lower bound.
For the ternary model, [13] provides a bound of Ω(k(logn/ logk)) for all deter-
ministic algorithms. In all of the results mentioned so far in this subsection, it is
assumed that players will always follow the protocol given to them, even if it is not
in their own best interest.

The CMF model we consider in this paper was first considered by Tsybakov [25],
where he proposed a protocol with throughput 0.533. Later Pippenger [20] showed,
using a random-coding existential argument, that the capacity of the channel is 1.
Ruszinkó and Vanroose later in [23] gave a constructive proof of the same re-
sult, by designing a particular protocol reaching the throughput 1. Georgiadis and
Papantoni-Kazakos [9] considered the case when the collision multiplicity can be
estimated by energy detectors, up to an upper bound.

More recently, a variety of game theoretic models of slotted Aloha have also
been proposed and studied in an attempt to understand selfish users; see for ex-
ample [2, 16, 3]; also [17, 2] for models that include non-zero transmission costs.
Much of the prior game theoretic work only considers transmission protocols that
always transmit with the same fixed probability (a function of the number of play-
ers in the game). By contrast, we consider more complex protocols, where a
player’s transmission probability is allowed to be an arbitrary function of her play
history and the sequence of feedback she has received. Other game theoretic ap-
proaches have considered pricing schemes [27] and cases in which the channel
quality changes with time and players must choose their transmission levels ac-
cordingly [19, 28], and [4] for a related model.

As discussed above, Fiat et al. [8] study a model very similar to the one we
present here; while the feedback mechanism they assume is not as rich as ours, cru-
cially, their model does not incorporate transmission costs. The idea of a threat is
used both in [8] and in our work, as a way to incentivize the players to be obedient.
However, the technical issues involved are completely different in the two papers.
[8] uses a threat in a form of a deadline, while ours use a cheat detection mecha-
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nism to identify the fact that someone deviated from the protocol. The protocol in
Fiat et al. [8] relies for its threat on the existence of an extremely inefficient equi-
librium, where all players constantly transmit their packets for an exponentially
long period. This equilibrium is used as an artificial deadline, that is, the protocol
switches to that inefficient equilibrium after linear time. This threat is history in-
dependent, in the sense that it will take place after a linear number of time steps,
regardless of any transmission history of the players. This history-independent
threat relies critically on the absence of transmission costs. On the other hand, our
threat is history dependent and makes use of a cheat-detection mechanism: any
deviation from the protocol is identified with at least constant probability, and the
existence of a deviation is communicated to all players. In response, all players
switch their transmission strategy according to the exponential time-independent
equilibrium (all players transmit at every slot with probability Θ(1/

√
n)).

The communication allowed by the feedback models we employ is critical in
allowing us to perform cheat detection and in allowing us to communicate the pres-
ence of a cheater, so that she can be punished. Although we are not aware of lower
bound results that explicitly rule this out, we suspect that the ternary feedback
mechanism used by Fiat et al. [8] is not rich enough to allow such communication.

2 Definitions

Game structure Let N = {1,2, . . . ,n} be the set of players in the game. Ev-
ery player carries a single packet of information that she wants to send through a
common channel, and all players (and all packets) are present at the start of the
protocol. We assume that time t is discretized, divided into slots t = 1,2, . . .. At
any given slot t, a pending player i has two available pure strategies: She can either
try to transmit her packet in that slot or stay quiet. We represent the action of a
player i by an indicator variable Xit that takes the value 1 if player i transmitted
at time t, and 0 otherwise. The transmission vector Xt at time t is represented by
Xt = (X1t ,X2t , . . . ,Xnt), while the number of attempted transmissions at time t is
denoted by Yt = ∑

n
i=1 Xit . The transmission sequence X t is the sequence of trans-

mission vectors of time up to t: X t = (X1,X2, . . . ,Xt). In a (mixed) strategy pi, a
player transmits at time t with probability pit = Pr[Xit = 1]. If exactly one player
transmits in a given slot, we say that the transmission is successful, and the player
who transmitted leaves the game;2 the game then continues with the rest of the
players. If two or more players attempt to transmit at the same slot, then they all
fail and remain in the game. The game ends when all players have successfully
transmitted.

2Alternatively, we can assume the player transmits with pit = 0 on all subsequent rounds.
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Feedback At every time step t, the actual transmission vector is Xt . However,
individual players do not have access to this complete information. Instead, after
playing at step t, each player i receives some feedback Iit that is a function of Xt .
The feedback is symmetric, i.e., every player who receives feedback gets the same
information, i.e., I jt = Ikt = It . At any time step t, a player’s selected action is a
(randomized) function of the entire sequence of actions she has taken so far and the
history Hit =(Ii1, . . . , Ii(t−1)) of the feedback that she has received from the channel.
For convenience, we define a player i’s personal history hit = (Xi1,Xi2, . . . ,Xit) as
the sequence of actions she took.

We distinguish between two different feedback structures: (1) Perfect informa-
tion: After each time step t, all players receive as feedback the identities of the
players who attempted a transmission, i.e., Iit = Xt ,∀i ∈ N. However, there are
not shared global ids for the players; each player potentially has a different local
ordering on the player set, so, for example, the concept of the “lexicographically
first player” has no common meaning. (2) Collision Multiplicity Feedback (CMF):
After each time step t, all players receive as feedback the cardinality of the set of
players who attempted a transmission, but do not find out their identities. Here,
Iit = Yt = ∑

n
j=1 X jt ,∀i ∈ N.

Transmission protocols We define fit , a decision rule for player i at time t, as
a function that maps a pair (hi(t−1),Hi(t−1)) to a probability pit . A protocol fi

for player i is simply a sequence of decision rules fi = fi1, fi2, · · · . A protocol
is symmetric or anonymous and is denoted by f = f1 = . . . = fn iff the decision
rule assigns the same probabilities to all players with the same personal history. In
other words, if hit = h jt for two players i 6= j, it holds that fi,t+1(hit ,Hit) = pi(t+1) =

p j(t+1) = f j,t+1(h jt ,H jt).3

Individual utility Given a transmission sequence XT wherein all players even-
tually transmit successfully, define the latency or success time Si of agent i as
argmint(Xit = 1,X jt = 0, ∀ j 6= i). The cost to player i is made up of costs for the
time-to-success and transmission costs: Ci(XT ) = Si + c∑t≤Si Xit . Given a trans-
mission sequence XT of actions so far, a decision rule f induces a probability dis-
tribution over sequences of further transmissions. In that case, we write E f

i (X
T ) for

the expected total cost incurred by a sequence of transmissions that starts with XT

and then continues based on f . In particular, for X0 := /0, E f
i (X

0) is the expected
cost of the sequence induced by f .

3Notice that since the feedback is symmetric, hit = h jt implies Hit = H jt .
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Equilibria The objective of every player is to minimize her expected cost. We
say that a protocol f is in equilibrium if for any transmission sequence X t the
players cannot decrease their cost by unilaterally deviating; that is, for all players
i, E f

i (X
t) ≤ E( f ′i , f−i)

i (X t), for all f ′i , t. Similarly, we say that a protocol f is in an

ε-equilibrium if for any transmission history X t E f
i (X

t)≤ (1+ ε)E( f ′i , f−i)
i (X t), for

all f ′i , t.

Social utility We are interested in providing the players with a symmetric pro-
tocol that is in equilibrium (or ε-equilibrium, for some small ε > 0) such that the
average expected cost4 E f

i (X
0) of any player i is low.

3 Perfect Information

In this section we consider the perfect information setting, where in every time
slot t, every user i receives feedback Iit = Xt , the exact vector of transmissions in
t. It is important to note that although in this setting each player can distinguish
between her opponents, we do not assume that the players have globally visible
id numbers.5 Instead, we assume that each player has a set of local id numbers
to distinguish among her opponents, but one player’s local labeling of all other
players may be independent of another’s. Unlike global ids, local ids do not pose
very hard implementation constraints; for instance, in sensor networks or ad-hoc
mobile wireless networks, users may be able to derive local ids for the other players
based on relative topological position.

The main idea of the protocol we present here is to generate unique, random
ids for each player based on her transmission history. Next, with the use of those
random ids, the players are synchronized in a fair manner, and can exit the game
within short time.

As mentioned earlier, this section is presented with transmission costs c as
some negligible, nonzero ε , rather than treating general nonzero costs. This greatly
simplifies the presentation of this section and allows us to focus on the main ideas
that the more complicated protocol of Section 4 is based on. No such assumption
on c will be made when describing the protocol for the more restricted (and thus
more challenging) feedback model. Further, in Section 4.2 we discuss how non
negligible transmission costs can be incorporated into this protocol as well.

4Since we are interested in symmetric protocols, then the average expected cost is equal to the
expected cost of any player, and hence the social utility coincides with the individual utility.

5In fact, if the identities of the players were common knowledge, then simply transmitting in
lexicographic order would be incentive-compatible and achievable.
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3.1 Protocol PERFECT

Protocol PERFECTworks in rounds. In each round k there is exactly one split slot
and some `k ≥ 0 leave slots. In a split slot, all pending players (i.e., the players that
are still in the game) transmit with probability 1/2, independently of each other and
their personal history. We define the id idi(k) of player i, after the kth split slot has
taken place, as a binary string of length k that represents the transmission history
of player i only on the split slots. When, after some round k, a player i manages to
obtain a unique id, i.e., idi(k) 6= id j(k), for all i 6= j, she will be assigned a leave
slot. During a leave slot a single prescribed player transmits with probability 1,
while all other players stay quiet. Such a player has a successful transmission and
exits the game.

The protocol is given as Protocol 3.1. We will now describe what happens in a
round in more detail. Consider the beginning of round k+ 1, for k ≥ 0. The first
slot s is a split slot. Let nT be the total number of players that transmitted in s.
Every player observes the actions of all other players in slot s, and updates their
ids: The id of player j is updated by appending “1” or “0” at the end of id j(k),
depending on whether j transmitted in s or not. If there are players that obtained
unique ids within slot s then they must be assigned leave slots. Let Uk+1 be the set
containing those players. The order in which those players will be assigned leave
slots depends on the number nT of players that transmitted in s: The players in
Uk+1 are assigned leave slots in order of increasing id if nT is even, and in order of
decreasing id otherwise. All players in Uk+1 will transmit successfully and exit the
game.6

6A player i who is currently assigned a leave slot, keeps transmitting until she succeeds. This
technical detail ensures that the protocol will not collapse if some other player j tries to transmit at
that slot. This might happen only in the case that j deviates from the protocol and transmits in the
leave slot assigned to i.
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Protocol 3.1 PERFECT
Require: Code for player i, at the beginning of round k+1:

N′ : set of all players still in the game (pending players)
id j(k) : id of player j ∈ N′ w.r.t. the first k split slots

1: Transmit in current split slot s with probability 1/2
2: nT := #players that transmitted in slot s
3: for j ∈ N′ do
4: X j(k+1) := 1 if j transmitted in s, 0 otherwise
5: id j := id j(k) ·X j(k+1) {Update the id’s of all players, appending X j(k+1)

(denoted by “·”) }
6: Uk+1 := { j ∈ N′ : id j 6= idk, for all k ∈ N′,k 6= j}
7: if |Uk+1| > 0 then {There are players that obtained a unique id with the last

split}
8: if nT is even then {Sort Uk+1 in increasing or decreasing order according

to the value of nT}
9: sort Uk+1, in increasing order of id j

10: else
11: sort Uk+1, in decreasing order of id j

12: for j ∈Uk+1 do {Players in Uk+1 are assigned leave slots}
13: if i = j then {i is the player that is assigned the current leave slot}
14: Transmit in current slot si with probability 1
15: else {another player is assigned the current leave slot}
16: Stay quiet in current slot s j with probability 1

[End of round k+1]

The order in which the players in Uk+1 are assigned leave slots is not fixed,
so as to avoid giving incentive to a player to strategically create an id, instead of
obtaining a random one. If the players in Uk+1 were always assigned leave slots
in order of increasing id, then players would have incentive to remain quiet in split
slots, as this would result in an id of smaller value (they append a “0” to their id)
than if they transmitted (they would append a “1” to their id). To avoid this, the
protocol prescribes the order to be increasing or decreasing with equal probability
(since nT is equally likely to be even or odd); this way the players have nothing to
gain by choosing any specific id.

Fixing a player i, any player j (including i) is equally likely to obtain a unique
id in any round k, regardless of whether i transmits or stays quiet during the split
slot of round k. Therefore, i cannot reduce the expected number of rounds she
needs until she obtains a unique id, nor the expected number of players that will
be assigned leave slots before she does. Also, due to the assumption of arbitrarily
small transmission cost c, player i has no incentive to deterministically stay quiet
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during a split so as to save on the transmission costs she incurs. Therefore, if no
player could succeed during a split slot (i.e, have a successful transmission due to
being the single player transmitting in a split), then the expected cost of i would
have been exactly the same, whether i transmits or stays quiet in a split. (Player i
has no reason to deviate from the protocol in a leave round, as this can only increase
her total cost.) The possibility of players succeeding during a split, creates an
imbalance between the expected costs a player has per step when she transmits and
when she stays quiet during the split. However, the following Theorem suggests
that the maximum gain over all possible deviations is very small.

Theorem 3.1. Protocol PERFECT is a o(1)-equilibrium. Moreover, the expected
total cost of a player i is Ei(X0) = n/2+ logn.

Regarding the expected cost, note that player i is expected to obtain a unique id
in logn rounds and the players are equally likely to be assigned the k-th leave slot,
for all 1≤ k ≤ n. The next section is devoted to the proof of Theorem 3.1.

3.2 Analysis of Protocol PERFECT

In order to prove Theorem 3.1 we will need to bound the ratio of the minimum
expected cost a player can achieve by any sequence of deviations over the cost she
incurs if she follows the protocol. First, Lemma 3.2 will bound the maximum gain
a player can have by deviating from the protocol in a single step. More precisely, it
is shown that staying quiet during a split slot is a better strategy than transmitting,
for any pending number of players n′ ≥ 2. The idea behind this lies in the way
that the protocol is constructed: if it were not for the possibility of players exiting
during a split slot, the expected cost of any player i would be exactly the same,
regardless of whether i transmits in split slots, or stays quiet. In other words,
we would have had an exact equilibrium. However, for each split slot t, there
is some positive (but small) probability that among the n′ pending players, only
a single player transmits in t. That player not only obtains a unique id in t, but
also has a successful transmission during the split. When this is the case, the rest
of the pending players need not wait for a leave slot to be assigned to her, as she
already exits the game during the split. We can show that it is actually beneficial
for a player to stay quiet, hoping that someone else will succeed during the split,
instead of transmitting in the hope that she will be the unique player doing so (see
Lemma 3.2 for more details). As a result, a player minimizes her expected cost if
she stays quiet with probability 1 in all split slots and follows the protocol during
leave slots (Corollary 3.3). This is what the proof of Theorem 3.1 is based on.

The next lemma shows that the optimal strategy for any player is to always stay
quiet in split slots.
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Lemma 3.2. Let t be some split slot, in the beginning of which there are n′ >
2 pending players and let i be one of them. Consider the expected future costs
(starting from the beginning of t) ET ,EQ of i if she transmits, or if she stays quiet
in t with probability 1, respectively, and follows the protocol in all subsequent slots.
Then,

ET − n′−1
2n′−1 < EQ < ET .

Proof. Let N′ be the set of pending players at the beginning of t, with |N′| = n′.
Consider some player i ∈ N′, and let Gi be the group of i at the beginning of slot t
(i.e., the set of players – including i – that share the same id as i at the beginning
of slot t). In order to simplify the presentation, we will assume that |Gi| > 2. The
case |Gi| = 2 can be treated separately in a similar manner. Note that it cannot be
the case that |Gi| = 1, as that would imply that i has obtained a unique id before
the split slot t, contradicting the fact that i was pending at t.

Let X be the space of all possible transmission vectors Xt for time step t.
W.l.o.g., we will restrict Xt ,X only to the n′ pending players. With slight abuse
of notation we refer to Xt both as the transmission vector, and the event that the
transmission vector Xt is observed. We define:

AT := {Xt ∈ X : Xit = 1 and X jt = 0,∀ j ∈ Gi, j 6= i}
and AQ := {Xt ∈ X : Xit = 0 and X jt = 1,∀ j ∈ Gi, j 6= i}.

In other words, AT is the set of all events such that i transmits in t and obtains a
unique id, while AQ is the set of all events such that i stays quiet in t, and obtains a
unique id. We also define,

BT := {Xt ∈ X : Xit = 1 and ∃ j ∈ Gi, j 6= i,s.t. X jt = 1,}
and BQ := {Xt ∈ X : Xit = 0 and ∃ j ∈ Gi, j 6= i,s.t. X jt = 0,}.

BT and BQ thus contain all possible transmission vectors such that i does not obtain
a unique id in t: BT contains those in which i transmits in t; BQ contains those in
which i stays quiet in t. The sets AT ,AQ,BT ,BQ constitute a partition of X .

For any event x ∈ X , let E[x] be the expected future cost of i at the end of slot
t given that x was observed at t. Also, for ease of notation, let Pr[x] correspond to
the probability that event x occurs, given that Xit = 1 if x ∈ AT ⋃BT , and given that
Xit = 0 if x ∈ AQ⋃BQ. We now define

ET
1 = ∑

a∈AT

Pr[a] ·E[a], ET
2 = ∑

b∈BT

Pr[b] ·E[b],

EQ
1 = ∑

a∈AQ

Pr[a] ·E[a], EQ
2 = ∑

b∈BQ

Pr[b] ·E[b].
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Then ET = ET
1 +ET

2 and EQ = EQ
1 +EQ

2 .
At a high level, the approach we take below is to pair up outcomes with equal

probability in order to bound the expected gain from deviating from the protocol.

Case 1: Player i obtains a unique id in t, i.e., AT ⋃AQ happens.
We will first consider the events in which i obtains a unique id at t and at the

same slot either all other players are quiet, or they all transmit. In order for i to
obtain a unique id at t, she must single herself out, in the first case by transmitting,
in the second by being quiet. Let aT ∈ AT , aQ ∈ AQ be precisely the events that at
t all players in N′ \ {i} stay quiet and i transmits, and that all players in N′ \ {i}
transmit and i stays quiet, respectively.

The two events aT ,aQ have the same probability of occurring, in particular,

Pr[aT ] = Pr[aT |Xit=1] = Pr[aQ|Xit=0] = Pr[aQ] =
1

2n′−1 .

However, if aT is observed, then player i has a successful transmission during
the split slot t, i.e., there is no need for i to wait for a leave slot to be assigned to
her. In this case, the future expected cost of i at the end of t is E[aT ] = 0. On the
other hand, if aQ is observed, and given our assumption that that n′ > 2, all players
but i had a collision during t, and no player exits during the split slot t. Player i
obtains a unique id and she will be assigned a leave slot. Since |Gi| > 2, i is the
only player from her group (and the only player in general in N′) that obtained a
unique id. Therefore, she is the only player in N′ to be assigned a leave slot. The
expected future cost of i after t in this case is E[aQ] = 1.

For all a1 ∈ AT \ {aT}, i still obtains a unique id at t, but she does not have
a successful transmission during the split; this time, there were more players that
transmitted in t (but of course no player from Gi other than i). In this case, player
i will wait for a leave slot to be assigned to her. Also, for all a2 ∈ AQ \ {aQ}, no
player exits during the split slot t: i is the only player of her group to stay quiet in
t; therefore, there are at least two players from Gi that transmitted in t, meaning
that no player could succeed during t; there could be other players that obtained a
unique id, but they will also have to wait for a leave–slot. All players in N \ {i}
transmit in t with probability 1/2. The order in which leave slots are assigned, is
equally likely to be increasing or decreasing. Therefore, for each a1 ∈ AT \ {aT},
there is a2 ∈ AQ \{aQ} (in a one-to-one correspondence), such that Pr[a1] = Pr[a2]
and E[a1] = E[a2]. (Namely, a2 is the event in which each player in N′ plays the
opposite in t than what she does in a1.) Thus,
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ET
1 = ∑

a∈AT

Pr[a] ·E[a] = 1
2n′−1 ·0+ ∑

a∈AT \{aT }
Pr[a] ·E[a],and

EQ
1 = ∑

a∈AQ

Pr[a] ·E[a] = 1
2n′−1 ·1+ ∑

a∈AQ\{aQ}
Pr[a] ·E[a].

Therefore,

ET
1 −EQ

1 =− 1
2n′−1 (1)

Case 2: Player i does not obtain a unique id in t, i.e., BT or BQ happens.
For each j ∈ N′ \{i} let bQ

j ∈ BQ be the event that all players but j were quiet
in t ( j is the only player in N′ that transmitted in t). This player also exits during
t, and thus i does not have to wait for a leave slot for j. Similarly let bT

j ∈ BT , for
all j ∈ N′ \ {i}, be the event that all players but j transmitted in t. ( j is the only
player in N′ that stayed quiet in t). In this case no player exits during the split slot
t; Since |N′| > 2 (by assumption), and all players but j transmitted, there were at
least 2 players (including i) that transmitted – and had a collision– in t. Therefore,
all players that obtain a unique id during t must be assigned a leave slot.

Again,

Pr[bT
j |Xit = 1] = Pr[bQ

j |Xit = 0] =
1

2n′−1 .

Also E[bQ
j ] = E[bT

j ]−1, since when bQ
j occurs, i has to wait for one leave slot

less than when bT
j occurs; apart from that the events bT

j ,b
Q
j are again symmetric.

Let BT ′ = {bT
1 , · · · ,bT

i−1,b
T
i+1, · · · ,bT

n′−1}, BQ′ = {bQ
1 , · · · ,b

Q
i−1,b

Q
i+1, · · · ,b

Q
n′−1}.

Again, for each b1 ∈ BT \BT ′ , there is b2 ∈ BQ \BQ′ , such that Pr[b1] = Pr[b2]
and E[b1] = E[b2]. Thus,

EQ
2 = ∑

b∈BQ

Pr[b] ·E[b]

= ∑
j∈N′\{i}

Pr[bQ
j ] ·E[b

Q
j ] + ∑

B∈BQ\ BQ′
Pr[b] ·E[b],
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and

ET
2 = ∑

b∈BT

Pr[b] ·E[b]

= ∑
j∈N′\{i}

Pr[bT
j ] ·E[bT

j ] + ∑
b∈BT \BT ′

Pr[b] ·E[b]

= ∑
j∈N′\{i}

1
2n′−1

(
E[bQ

j ]+1
)
+ ∑

b∈BQ\BQ′
Pr[b] ·E[b]

= ∑
b∈BQ

Pr[b] ·E[b] + n′−1
2n′−1

Therefore,

ET
2 −EQ

2 =
n′−1
2n′−1 (2)

From Eq. 1, 2 we obtain than

ET −EQ = ET
1 −EQ

1 +ET
2 −EQ

2 =
n′−2
2n′−1 .

This shows that staying quiet is a better strategy for any split slot t. Also, the
decrease in the future expected cost player i has by being quiet, is n′−2

2n′−1 <
n′−1
2n′−1 .

Corollary 3.3. Let X t be any transmission sequence up to time t, and let i be a
player that is still pending at the end of time slot t. It is an optimal strategy for i to
stay quiet in all split slots s > t (and to follow the protocol during leave slots). For
each split slot in which i stays quiet the expected cost of i decreases by less than
n′−1
2n′−1 , where n′ is the number of pending players in the beginning of s.

Proof. Let Gis denote the group that i belongs to at the beginning of some split
slot s > t. The split slot s will result to splitting the players in Gis \ {i} into two
new groups, and each of which will have, in expectation, the same size. Therefore,
i will join a group whose expected size is the same, whether she transmits in the
split or not. Moreover, i has no effect on how groups other than her own split. In
particular, i’s action cannot (in expectation over the actions of the other players)
affect the number of players that obtain a unique id in any split slot (and thus exit
the game).

As a result, if it were not for the possibility that players exit during split slots,
(and given our assumption that the transmission cost is arbitrarily small), i would
have no reason to explicitly choose to deterministically stay quiet during a split
over transmitting, or the other way around. Note that we can repeat the steps of
the proof of Lemma 3.2, bounding the total gain of a player who defects and stays
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silent in multiple split slots by computing her future cost at each deviation with
respect to any sequence incorporating future deviations rather than following the
protocol. Therefore, it is beneficial for i to be quiet in every future split slot. The
bound on the gain then also follows from Lemma 3.2.

We are now ready to prove Theorem 3.1.

of Theorem 3.1. Consider any given transmission sequence X t , for some time slot
t, and any player i who is still pending at t. Let Ai(X t) = t+c∑τ≤t Xiτ be the actual
cost that i has already incurred up to time t (remember that here we have made
the assumption that the transmission cost c is negligible). Let Ri(X t) be the total
expected cost of i, including both her cost so far and her future cost if she follows
the protocol from time t + 1 until she exits the game. Similarly, let Qi(X t) be the
total expected cost of i, including both her cost so far and her future cost if she
always stays quiet during future split–slots (and behaves according to the protocol
in leave–slots).

We define FR
i as the expected future cost for following the protocol and FQ

i
the future cost for “staying quiet in all splits” (i.e. FR

i ,FQ
i measure the expected

cost from time t +1 until i exits the game). Therefore, Ri(X t) = Ai(X t)+FR
i , and

Qi(X t) = Ai(X t)+FQ
i . Corollary 3.3 implies that Qi(X t) is the minimum possible

expected total cost player i can incur, allowing deviations from the protocol. There-
fore, in order to show that protocol PERFECT is a o(1)–equilibrium, it suffices to
show that

Ri(X t)

Qi(X t)
= 1+o(1).

If the number of players that have already transmitted successfully up to time t
(and thus exited the game) is at least n−

√
n, then Ai(X t) ≥ n−

√
n. On the other

hand, FQ
i ≥ 0, while FR

i ≤ log
√

n+
√

n ≤ 2
√

n. (In the worst case all pending
players at t share the same id as i, and i will need in expectation log

√
n steps to

obtain a unique id; similarly, in the worst case, i will be assigned a leave slot last,
after all

√
n remaining players.) This means that

Ri(X t)

Qi(X t)
=

Ai(X t)+FR
i

Ai(X t)+FQ
i

≤ Ai(X t)+2
√

n
Ai(X t)

= 1+
2
√

n
n−
√

n
= 1+

2√
n−1

= 1+o(1).

Assume now that the pending number of players at t, is more than
√

n. Since
FQ

i < FR
i , and Ai(X t)≥ 0,

Ri(X t)

Qi(X t)
=

Ai(X t)+FR
i

Ai(X t)+FQ
i

≤ FR
i

FQ
i

=
FR

i

FR
i −DQ

= 1+
DQ

FR
i −DQ

, (3)
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where DQ is the expected decrease in the total expected cost of player i if she
always stays quiet in split slots after time t. (Remember that Corollary 3.3 implies
that the best a player can do to reduce her total expected cost is to stay quiet in each
split slot.) Thus, all we need to show is that DQ

FR
i −DQ

= o(1).
Let m be the number of pending players in total at time t, let mi be the number

of pending players that share the same id as i at time t, and let S denote the expected
number of split slots that i must participate in until he obtains a unique id and exits
the game. Note that S = Θ(logmi). Also, let xk be the expected number of players
that exit the game within k rounds (after slot t), with x0 = 0. We remark on the
fact that the values of S, xk remain the same whether i follows the protocol or stays
quiet during splits.

The expected gain that i has by staying quiet in the split slot of round k+1 is
bounded by (Lemma 3.2) m−xk−1

2m−xk−1 . If ki is the last round that i participates in, then
let x be the expected number of players that exit the game in all rounds after slot t
and before round ki begins. Then the expected cost of i if he follows the protocol is
S+ x. Also, the total expected gain that i may have by staying quiet in every split
round he participates in, is bounded by m−x−1

2m−x−1 S. Now, the right hand side of Eq. 3
is bounded by

1+
m−x−1
2m−x−1 S

S+ x− m−x−1
2m−x−1 S

.

If x≥ m
2 , then

Ri(X t)

Qi(X t)
< 1+

m−x−1
2m−x−1 S

S+ x−S
= 1+

(m− x−1)S
2m−x−1x

< 1+
S
x
= 1+o(1),

since x≥ m
2 = Ω(

√
n). If on the other hand x < m

2 , then

Ri(X t)

Qi(X t)
< 1+

m−x−1
2m−x−1 S

S− m−x−1
2m−x−1 S

< 1+
m/2−1
2m/2−1

1− m/2−1
2m/2−1

= 1+o(1).

4 Collision Multiplicity Feedback

In this section, we present the main result of the paper, Protocol MULTIPLICITY.
This protocol works under the CMF channel model, in which, after each slot t,
all players are informed about the number of attempted transmissions, i.e., Yt =

∑i∈N Xit . This information can be provided by a number of energy detectors, and it
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is broadcast to all users. CMF is a well-studied and important feedback model in
information theory, with many nice theoretical results (see e.g. [25, 20, 9, 23]).

Here we give an overview of the main ideas of Protocol MULTIPLICITY and we
will describe it in detail in Section 4.1. Protocol PERFECT presented in Section 3.1
crucially relies on users knowing how each player acts at every time step, and thus
does not work under this feedback model. Instead, we design a different o(1)-
equilibrium protocol that overcomes this difficulty and has expected average cost
2n+c logn. Recall that in Protocol PERFECT the id of a player is a string denoting
all the random choices the player had to make during split slots. For every time t,
the players are partitioned into groups according to their ids, i.e., all the players in
the same group share the same id. Moreover, all players perform a split at the same
time, regardless of the group they belong to. The protocol MULTIPLICITY that we
present here, again uses the idea of randomly generated ids, but here, each group
splits separately, in a sequential manner. Each split is followed by a validation slot,
whose aim is to verify that the split has been performed “correctly”.

In the CMF model, the players have an incomplete view of history. This might
give incentive to some players to “cheat” and pretend to belong to a different group
(of smaller size), in order to exit the game sooner. We discourage such a behavior
using a “threat”: if any deviation from the protocol is observed, then all players
switch their transmission strategy according to a costly equilibrium strategy. Fi-
nally, a cheat-detecting mechanism is needed. The validation slots accomplish
exactly this task; the cheating is noted by all players if some validation step fails.
In that case, all the players get punished by switching to an exponential-cost time-
independent equilibrium protocol (punishment protocol):

The punishment protocol Fiat, Mansour and Nadav [8] show that, for trans-
mission cost c = 0 and k pending players, the time-independent symmetric proto-
col where every player transmits with probability p = Θ(1/

√
k) is in equilibrium.

It gives average packet latency eΘ(
√

k), and thus switching to this protocol can be
used as a high-cost punishment for detected defections. For our punishment pro-
tocol, we adapt this protocol to the general case of transmission cost c ≥ 0: the
transmission probability becomes pc = Θ(1/

√
k(1+ c)) and the expected cost is

(1+ c)eΘ(
√

k/(1+c)).

4.1 Protocol MULTIPLICITY

The protocol works in rounds. Every round consists of a sequence of split and
validation slots such that each player participates in exactly one split slot in each
round. We say that a player participates in a split slot s, if the protocol requires the
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player to decide randomly whether she will transmit in s or not.7

Assume that at the end of round k ≥ 0, there are Mk different groups (each
group consists of players that have the same transmission history with respect to
the split slots they have participated in).8 Let G j,k be the jth group. The players
do not know which players belong to group G j,k, but they will be aware of the size
|G j,k| of the group.

Consider round k+1. At the beginning of the round, the players decide, using
(as in the perfect information setting) the parity of the total number xk of players
that transmitted during all the split slots of round k, whether groups will split in
increasing or decreasing order of ids. According to this order, every group will
perform a split, followed by a validation. Let G j,k be the current group performing
a split and validation.

Split slot When it is group G j,k’s turn, all players that belong to this group (and
only these players) will transmit with probability 1/2. All players (regardless of
whether they belong in G j,k or not) note the number nT, j of the members of G j,k
that transmitted in this slot. These nT, j players will form one of the new subgroups
of G j,k.

Validation slot The immediately next slot is a validation slot. All players of G j,k
that transmitted in the previous split slot must now stay quiet, while those that did
not, must now transmit. This second set of players will form the other subgroup of
G j,k. Again all players can see their number nQ, j.

Right after the validation step has happened (and before the next group’s turn
comes), all players check if the members of G j,k were properly split into the two
new subgroups, by checking that the sum of the sizes of the two subgroups equals
|G j,k|. If that is true, this group is properly divided, and the next group will split.

If the check failed, then there is some player that deviated from the protocol:
Either one of the members of G j,k did not transmit in any of the split or validation
slots of group G j,k (or even transmitted in both slots); or, some player that did not
belong in G j,k transmitted in either of these two slots. All players note therefore
the fact that someone has deviated, and they all switch to the punishment protocol.

We note that since now each group splits separately, there is no longer the need
for explicit leave-slots. A user that obtains a unique id in round k will transmit
successfully when her group G j,k performs a split if she is the only one to transmit
(i.e., if she was the only member of G j,k to append a ’1’ to her id); or she will
transmit successfully when her group performs the validation step if she was the

7As opposed to a player that the protocol instructs to stay quiet during s with probability 1.
8At round 0 all players belong to the same group, i.e., M0 = 1.
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only from G j,k that stayed quiet in the split (i.e., she was the only member of G j,k
to append a ‘0’ to her id).

If all players of a group G j,k transmitted during their corresponding split, the
validation that normally follows will be skipped. The reason is that if all players of
G j,k transmitted in the split, no one would transmit in the validation slot. All play-
ers would know that this slot should be empty, which would provide an incentive
to “attack”, i.e., transmit during that slot, disobeying the protocol.

4.2 Analysis

Theorem 4.1. The expected cost of Protocol MULTIPLICITY for any player is 2n+
c logn.

Proof. The expected number of split-slots required for a player to obtain a unique
id, is logn. Consider a round k. Every player will transmit exactly once during
this round (either in the split slot corresponding to her group, or in the validation
slot immediately following that split). If Mk−1 is the number of groups that have
formed by the end of round k− 1, then the duration of round k is at most 2Mk−1
slots, where Mk−1 ≤ 2k−1. Therefore the total expected cost for i is bounded by
2n+ c logn.

Theorem 4.2. Protocol MULTIPLICITY is a o(1)-equilibrium.

Proof. First, we will show that no player has an incentive to cheat. We say that a
player “cheats” if she transmits during a slot she was not supposed to or did not
transmit when she was expected to do so. If a player belonging to group G j,k,
for some j,k, did not transmit at the split slot of G j,k, nor at the corresponding
validation slot, then the sum nT, j + nQ, j will be found less than |G j,k|. This will
make all players switch to the (high cost) punishment protocol. Similarly, if a
player transmits to the validation slot of group G j,k when she was not supposed to,
then nT, j +nQ, j > |G j,k|.

The remaining case is when a player i /∈ G j,k cheats by transmitting during
the split slot9 of group G j,k. Assume that i cheats when there are n′ ≤ n pending
players in total. She will get caught with probability at least 1/4 (if G j,k is of
minimum size, i.e. 2).10 In that case she will have expected future cost (1 +

9Validation slots only happen if there is at least one player from G j,k that is supposed to transmit
in them. Thus, a player cannot have a successful transmission by attacking a validation slot.

10If none of the members of G j,k transmitted during the split slot, then i has a successful trans-
mission. If all members but one transmitted, then the cheating does not get caught (and i only had
a failed transmission). In this case, it looks as if all members of G j,k transmitted, and the validation
slot is skipped. In all other cases, i gets caught.
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c)eΘ(
√

n′/(1+c)), worse than the corresponding cost of following the protocol, i.e.,
O(n′). Therefore, the expected cost of i becomes larger if she deviates instead of
following the protocol.

We note that a player cannot gain by deterministically choosing to stay quiet
during a split she participates in. She cannot save on the transmission cost c, as
she would have to transmit during the validation slot anyway. Moreover, staying
quiet or transmitting in the split does not affect the number of rounds a player must
wait until she obtains a unique id: Consider a player i belonging to some group
G j,k. All other players from G j,k transmit during the corresponding split slot with
probability 1/2; the expected sizes of the two new groups to be formed are the
same and i has exactly the same probability of obtaining a unique id, whether she
transmits in the split, or stays quiet.

On the other hand, splits always happen before the corresponding validations.
If i obtains a unique id during round k, then she exits the game earlier if she was
the only player of her group transmitting at the split, than if she were the only
quiet player. This implies that “always transmit” gives a smaller expected (future)
cost. It is therefore the optimal strategy. Nevertheless, if pτ is the probability for a
player that transmits during split slots to succeed at the time step τ , then pτ is also
the probability for a player that stays quiet during split slots to succeed at the time
step τ + 1 (since validation slots occur immediately after split slots). Let X t be
any transmission history, and suppose that t +1 is a split slot that i participates in
(otherwise i’s optimal strategy is to behave according to the protocol). Let A(X t) =
t+∑τ≤t Xiτ be the actual cost incurred by i until time t, and let T (X t),Q(X t) be the
total expected cost of player i if she always transmits, stays quiet, respectively, in
all future split slots she participates in. Then,

T (X t)−A(X t) = ∑
∞
τ=t+1 τ pτ

Q(X t)−A(X t) = ∑
∞
τ=t+1(τ +1)pτ = ∑

∞
τ=t+1(τ pτ + pτ) = T (X t)−A(X t)+1,

and therefore, Q(X t)
T (X t) =

T (X t)+1
T (X t) = 1+o(1).

Q(X t) is an upper bound on the total expected cost of the protocol: Staying
quiet in split slots is always worse than transmitting; according to the protocol a
player stays quiet only in half (in expectation) of the future split slots she partici-
pates in. Thus, Protocol MULTIPLICITY is a o(1)-equilibrium.

Protocol PERFECT with non-negligible transmission cost Going back to the
perfect information protocol, we can now easily adapt protocol PERFECT for the
case that c is non-negligible. All we have to do, is add a validation slot after each
split (all players that do not transmit during the split, must transmit during the val-
idation). The punishment protocol is used again to force players to transmit in
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exactly one of the split and validation slots of each round. As in Protocol MULTI-
PLICITY, this way a player cannot decrease her transmission costs by staying quiet
in a split. The analysis becomes similar to the analysis of Protocol MULTIPLICITY.
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Protocol 4.1 MULTIPLICITY
Require: Code for player i, at the beginning of round k+1:

G1,k,G2,k, . . . ,GMk,k : groups formed by the end of round k in order of
increasing id

indexi : index of the group of player i in the sorted (ac-
cording to the id
corresponding to each group) sequence of groups
at the end of round k

xk : #players that transmitted in total in all the split
slots of round k.

1: for j in increasing order if xk is even, in decreasing order if xk is odd do
2: if j 6= indexi then
3: Stay quiet in current split slot s {Group G j,k performs a split}
4: nT, j := #players that transmitted in slot s
5: if nT, j 6= |G j,k| then {The validation only happens if not all players

of G j,k transmitted}
6: Stay quiet in current validation slot s′ {Group G j,k validates the

number of its members that stayed quiet in the previous slot}
7: nQ, j := #players that transmitted in slot s′

8: else {nT, j = |G j,k| holds}
9: nQ, j := 0

10: else {Now is the turn of i’s group}
11: Transmit in current split slot s with probability 1/2
12: nT,indexi := #players that transmitted in slot s
13: if nT,indexi 6= |Gindexi,k| then {The validation only happens if not all

players of group Gindexi,k transmitted}
14: if i transmitted in s then
15: Stay quiet in current validation slot s′

16: else
17: Transmit in current validation slot s′

18: nQ,indexi := #players that transmitted in slot s′

19: else {nT,indexi = |Gindexi,k| holds}
20: nQ,indexi := 0
21: if nT, j +nQ, j 6= |G j,k| then {A player tried to “cheat”}
22: Switch to the punishment protocol

[End of round k+1]
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