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Abstract

Randomized mechanisms for assigning objects to individual agents have received
increasing attention by computer scientists as well as economists. In this paper, we
study a property of random assignments, called popularity, which corresponds to the
well-known notion of Condorcet-consistency in social choice theory. Our contribution
is threefold. First, we define a simple condition, which can be checked in polynomial
time, that characterizes whether two assignment problems induce the same majority
graph. Secondly, we analytically and experimentally investigate the uniqueness of
popular random assignments. Finally, we prove that popularity is incompatible with
very weak notions of both strategyproofness and envy-freeness. This settles two open
problems by Aziz et al. (2013) and reveals an interesting tradeoff between social and
individual goals in random assignment.

1 Introduction

Assigning objects to individual agents is a fundamental problem that has received consid-
erable attention by computer scientists as well as economists. In its simplest form, the
problem is known as the assignment problem, the house allocation problem, or two-sided
matching with one-sided preferences. Formally, an assignment problem concerns a set of
agents A, a set of houses H, and the agents’ (ordinal) preferences over the houses %. For
simplicity, it is often assumed that A and H are of equal size. The central question is how
to assign exactly one house to each agent. An important assumption in this setting is that
monetary transfers between the agents are not permitted.1 Possible applications include
assigning dormitories to students, jobs to applicants, rooms to housemates, processor time
slots to jobs, parking spaces to employees, offices to workers, kidneys to patients, etc.

In this paper, we focus on the notion of popularity due to Gärdenfors (1975). An as-
signment is popular if there is no other assignment that is preferred by a majority of the
agents. Popular assignments thus correspond to the well-studied notion of (weak) Con-
dorcet winners in social choice theory. Unpopular assignments are unstable in the sense
that a proposal to move to another assignment would be supported by a majority of the
agents. Unfortunately, the assignment setting is not immune to the Condorcet paradox
and there are assignment problems that do not admit a popular assignment (Gärdenfors,
1975). However, Kavitha et al. (2011) have shown that existence can be guaranteed when
allowing randomization and appropriately extending the definition of popular assignments
to popular random assignments. A random assignment is popular if there does not exist
another random assignment that is preferred by an expected majority of agents. Random-
ization is a natural and widespread technique to establish ex ante fairness in assignment. It
is, for example, easily seen that every deterministic assignment violates ‘equal treatment of
equals’ when all agents have identical preferences. As Hofstee (1990) notes, “ [. . .] if scarcity
arises, lottery is the only just procedure (barring [. . .] the dividing of goods or their denial

1Monetary transfers may be impossible or highly undesirable, as is the case if houses are public facilities
provided to low-income people. There are a number of settings such as voting, kidney exchange, or school
choice in which money cannot be used as compensation due to practical, ethical, or legal constraints (Klaus
et al., 2016; Roth, 2015; Manlove, 2013).



to everyone, neither of which is appropriate in the present context) [. . .]”.
Popular random assignments satisfy a particularly strong notion of economic efficiency

called PC-efficiency, unmatched by other common assignment rules, and can be efficiently
computed via linear programming. The formulation as a linear program allows one to easily
accommodate for additional constraints (such as equal treatments of equals or assignment
quotas) (Aziz et al., 2013). As popularity only takes into account how many agents prefer
one assignment to another, it suffices to consider the pairwise majority comparisons between
all possible assignments in order to determine popular assignments and popular random
assignments. This information can easily be captured by a weighted graph, the majority
graph, where the set of vertices equals the set of possible assignments and edge weights are
determined via majority comparisons. Such graphs are routinely studied in social choice
theory. In fact, as pointed out by Aziz et al. (2013), random assignment is ‘merely’ a special
case of the general social choice setting and popular random assignments correspond to
so-called maximal lotteries in general social choice (see, also, Brandl et al., 2016b).

In social choice theory, it is well-known that all weighted majority graphs can be induced
by some configuration of preferences (McGarvey, 1953; Debord, 1987). Majority graphs
induced by assignment problems, on the other hand, constitute only a small subclass of all
possible majority graphs. For example, it is easily seen that the number of vertices—i.e.,
the number of possible assignments—is always n! where n is the number of agents and
houses. On top of that, assignment problems impose certain structural restrictions on the
corresponding majority graphs.

Contributions. The contribution of this paper is threefold. First, we investigate the
relationship between assignment problems and majority graphs. More precisely, we define
a natural decomposition of assignment problems and show that two assignment problems
induce identical majority graphs if and only if their decompositions are rotation equivalent.
Our proof is constructive in the sense that it is possible to check whether a given majority
graph can be induced by an assignment problem. If this the case, we can provide all
assignment problems inducing the given majority graph.

We then study the uniqueness of popular random assignments. We prove that if all
agents share the same preferences, the resulting popular random assignment is unique if
there is an odd number of agents and there are infinitely many popular random assignments
if the number of agents is even. Moreover, we provide a sufficient condition for the existence
of a unique popular random assignment under unrestricted preferences. Here, computer
experiments suggest that the number of assignment problems giving rise to a unique popular
random assignment decreases exponentially with the number of agents. This is in contrast
to the general social choice setting where maximal lotteries, a generalization of popular
random assignments, are known to be almost always unique (see, e.g., Brandl et al., 2016b).

Finally, we are able to answer two open questions posed by Aziz et al. (2013). Aziz et al.
show that popularity is incompatible with strong notions of strategyproofness and envy-
freeness. We prove that theses impossibilities still hold when considering the significantly
weaker notions of weak strategyproofness and weak envy-freeness when the number of agents
is at least five and seven, respectively.

Related work. In the context of deterministic assignments, popularity was first consid-
ered by Gärdenfors (1975) who also showed that popular assignments need not always exist.
Mahdian (2006) proved an interesting threshold for the existence of popular assignments: if
there are n agents and the number of houses exceeds αn with α ≈ 1.42, then the probability
that there is a popular assignment converges to 1 as n goes to infinity. Abraham et al. (2007)
proposed a polynomial-time algorithm that can both verify whether a popular assignment
exists and find a popular assignment of maximal cardinality if it exists.



A closely related line of research considers popularity in marriage markets, i.e., two-
sided matching with two-sided preferences. In this setting, every stable matching is also
popular. Kavitha and Nasre (2009) further reduced the set of popular assignments by
considering “optimal” popular assignments. Biró et al. (2010) defined a strong variant of
popularity and provided algorithmic results for marriage markets and the more general
roommate markets. Huang and Kavitha (2011) studied marriage markets with possible
inacceptabilities and the problem of finding popular matchings of maximal cardinality. The
tradeoff between popularity and cardinality of a matching was investigated by Kavitha
(2014) who also provided bounds on the size of popular matchings. Cseh et al. (2015)
considered the complexity of finding popular matchings if one side is allowed to express
indifferences in its preferences.

Finally, popular random assignments were introduced by Kavitha et al. (2011). Aziz
et al. (2013) initiated the study of axiomatic properties such as efficiency, fairness, and
strategyproofness of popular random assignments.

The two most-studied random assignment rules in the literature are random serial dic-
tatorship (RSD) and the probabilistic serial rule (PS) (see, e.g., Bogomolnaia and Moulin,
2001), both of which may result in unpopular outcomes (Aziz et al., 2013). See Section 6
for a more detailed discussion of RSD and PS.

2 Preliminaries

An assignment problem is a triple (A,H,%) consisting of a set of agents A, a set of houses H,
|A| = |H| = n, and a preference profile % = (%1, . . . ,%n) containing preferences %a ⊆ H×H
for all a ∈ A. We assume individual preferences %a to be antisymmetric, complete and
transitive. %a is denoted as a comma-separated list, i.e., a : h1, h2, h3 means h1 %a h2 %a h3.
�a represents the strict part of %a, i.e., h �a h′ if h %a h′ but not h′ %a h. When comparing
sets of houses H,H ′, we write H %a H ′ if h %a h′ for all h ∈ H,h′ ∈ H ′.

A deterministic assignment (or matching) M is a subset of A ×H such that |M | = n
and all tuples in M are pairwise disjoint. We write M(a) = h and M(h) = a if (a, h) ∈M .
Let M(n) denote the set of all matchings of size n.

Denote by [k] the set of all natural numbers up to k, i.e., [k] = {1, . . . , k}. A random
assignment is a matrix p ∈ Rn×n with pi,j ≥ 0 for all i, j ∈ [n],

∑
i∈[n] pi,j = 1 for all

j ∈ [n], and
∑
j∈[n] pi,j = 1 for all i ∈ [n]. We interpret pi,j as the probability with which

agent ai receives house hj . Denote by R(n) the set of all random assignments of size n and
by p[i] the vector (pi,1, . . . , pi,n). Note that by the Birkhoff-von Neumann theorem, we have
that every probability distribution over deterministic assignments induces a unique random
assignment while every random assignment can be written as a probability distribution over
deterministic assignments (see, e.g., Kavitha et al., 2011).

A random assignment rule f is a function that returns a random assignment p for all
assignment problems (A,H,%).

For two deterministic assignments M,M ′ and an agent a with preferences %a we define

φ%a
(M(a),M ′(a)) =


1 if M(a) �a M ′(a),

−1 if M ′(a) �a M(a),

0 otherwise.

With slight abuse of notation, we also use φ%a
(M,M ′) = φ%a

(M(a),M ′(a)) whenever
suitable. For an assignment problem (A,H,%), denote by φ%(M,M ′) the natural extension
of φ to all agents in A, φ%(M,M ′) =

∑
a∈A φ%a

(M,M ′).



When considering random assignments, we define

φ%(p, p′) =
∑
i∈[n]

∑
j,j′∈[n]

pi,jp
′
i,j′φ%ai

(hj , hj′).

Observe that φ is skew-symmetric, i.e., φ%(M,M ′) = −φ%(M ′,M) as well as
φ%(p, p′) = −φ%(p′, p).

In the following, we formally introduce the concepts of popularity, majority graphs,
stochastic dominance, envy-freeness, and strategyproofness.

Popularity. Let (A,H,%) be an assignment problem. Then, a deterministic assignment
M is popular if φ%(M,M ′) ≥ 0 for all M ′ ∈M(n). Correspondingly, a random assignment
p is popular if φ%(p, p′) ≥ 0 for all p′ ∈ R(n). Popular deterministic assignments need not
always exist but the Minimax Theorem implies that every assignment problem admits at
least one popular random assignment (Kavitha et al., 2011).

Majority Graph. For a given assignment problem (A,H,%) we define the corresponding
majority graph G = (V,E,w) by letting the set of vertices be the set of all possible deter-
ministic assignments and setting the edge weights according to the agents’ preferences over
these assignments, i.e., V = M(n), E = M(n) ×M(n), and w(M,M ′) = φ%(M,M ′). We
consequently have that |V | = n! and |E| = 1/2n!(n!− 1).

Different assignment problems may induce identical majority graphs. Consider for in-
stance (A,H,%) and (A,H,%′) with A = {a1, a2, a3}, H = {h1, h2, h3}, and % and %′ as
given below.

% =
a1 : h1, h2, h3
a2 : h2, h1, h3
a3 : h1, h2, h3

%′ =
a1 : h3, h1, h2
a2 : h3, h2, h1
a3 : h3, h1, h2

For both assignment problems we obtain identical majority graphs G = (V,E,w) with
V = M(3), E = V × V and w(M,M ′) = φ%(M,M ′) = φ%′(M,M ′) for all M,M ′ ∈ V :

M132

M321

M213M312

M231

M123

2

1

1 1

1

11
2

M123 = {(a1, h1), (a2, h2), (a3, h3)}
M231 = {(a1, h2), (a2, h3), (a3, h1)}
M312 = {(a1, h3), (a2, h1), (a3, h2)}
M132 = {(a1, h1), (a2, h3), (a3, h2)}
M321 = {(a1, h3), (a2, h2), (a3, h1)}
M213 = {(a1, h2), (a2, h1), (a3, h3)}

Recall that w(M,M ′) = φ%(M,M ′) = −φ%(M ′,M) = −w(M ′,M). Edges with negative
weight as well as edges with weight zero are omitted for the sake of clarity.

Note that in order to determine which random assignments are popular for a given
assignment problem (A,H,%), it suffices to consider the corresponding majority graph G.
All information relevant for the computation—M(n) and φ%(M,M ′) = w(M,M ′) for all
M,M ′ ∈M(n)—can be obtained from G. For the majority graph given above, and thereby
for assignment problems (A,H,%) and (A,H,%′), M123 and M321 are the only popular
matchings. Any randomization between these matchings constitutes a popular random
assignment.



Stochastic Dominance. So far, agents are solely endowed with an ordinal preference
relation that allows the comparison of deterministic assignments, but not that of random
assignments. We therefore propose to extend preferences over houses to preferences over
probability distributions based on stochastic dominance (SD). We have that p[i] %SD

ai p′[i] if∑
hj∈H,hj%ai

h pi,j ≥
∑
hj∈H,hj%ai

h p
′
i,j for all h ∈ H. In this case, we say that ai weakly

SD-prefers p to p′. With slight abuse of notation, we sometimes also write p %SD
ai p′.

This preference extension is of special importance as p %SD
ai p′ if and only if p yields

more expected utility than p′ with respect to all von Neumann-Morgenstern utility functions
consistent with ai’s ordinal preferences %ai (see, e.g., Bogomolnaia and Moulin, 2001; Katta
and Sethuraman, 2006).

Given an assignment problem (A,H,%), a random assignment p ∈ R(n) is SD-efficient
if there is no p′ ∈ R(n) such that p′ %SD

a p for all a ∈ A and p′ �SD
a′ p for some a′ ∈ A.

While stochastic dominance is the most common preference extension, there are also
other natural preference extensions that can be used to define variants of efficiency, strate-
gyproofness, and envy-freeness. In particular, there is a weakening of stochastic dominance
called bilinear dominance (BD) and a strengthening of SD called pairwise comparison (PC).
We refer to Aziz et al. (2014, 2015) for more details.

Strategyproofness and Envy-freeness. Strategyproofness requires that stating one’s
true preferences is always at least as good as misrepresenting them, while envy-freeness
requires that every agent weakly prefers his allocation to that of all others.

Formally, an assignment rule f is strategyproof if for all (A,H,%), a ∈ A, and (A,H,%′)
such that %a′ = %′a′ for all a′ ∈ A\{a} we have that f(A,H,%) %SD

a f(A,H,%′). Since the
SD preference extension only yields an incomplete preference relation over lotteries, one can
also define a weaker notion of strategyproofness that merely requires that no agent benefits
by misrepresenting his preferences. (In other words, a manipulation only counts as a manipu-
lation if it leads to more expected utility for all expected utility representations of the agent’s
ordinal preferences.) f satisfies weak strategyproofness if for all (A,H,%) and a ∈ A there
is no (A,H,%′) with %a′ = %′a′ for all a′ ∈ A \ {a} such that f(A,H,%′) �SD

a f(A,H,%).
Note that what we call strategyproofness and weak strategyproofness are sometimes also
referred to as strong strategyproofness and strategyproofness in the literature.

A random assignment p ∈ R(n) satisfies envy-freeness if p[i] %SD
ai p[j] for all agents ai ∈ A

and j ∈ [n] \ {i}. Similarly as above, one can define a weaker notion of envy-freeness. p
satisfies weak envy-freeness if there is no agent ai such that p[j] �SD

ai p[i] for some j ∈ [n].

3 Decomposition of Assignment Problems

This section focuses on the question under which conditions two assignment problems induce
the same majority graph. Recall that the set of popular random assignments depends on the
majority graph only, i.e., identical induced majority graphs imply identical sets of popular
random assignments. We will provide an easily verifiable condition that holds if and only
if two assignment problems have the same majority graphs. Furthermore, given a majority
graph, it is possible to determine all assignment problems that induce this graph.

Given an assignment problem (A,H,%), we say that (A, Hk,%k)k∈[m] is a decomposition
of (A,H,%), if (i)–(iii) hold and there is no m′ > m for which (i)–(iii) can also be satisfied:

(i)
⋃̇
k∈[m]Hk = H with Hk 6= ∅ for all k ∈ [m],

(ii) h %a h′ implies h %ka h
′ for all k ∈ [m], h, h′ ∈ Hk, a ∈ A, and

(iii) h �a h′ for all h ∈ Hk, h
′ ∈ Hk′ , 1 ≤ k < k′ ≤ m, a ∈ A.



By decomposing (A,H,%), we thus partition H into nonempty subsets such that all
agents prefer houses contained in Hk to houses in Hk′ if and only if k < k′. At the same
time, agents’ preferences over houses contained in the same Hk stay the same. It is easy to
see that for every assignment problem there exists a unique decomposition. Note that if for
this decomposition it holds that m = 1, we will name it the trivial decomposition.

Let (A,H,%) and (A,H,%′) be two assignment problems and (A, Hk,%k)k∈[m] and

(A, Hk′ ,%′k
′
)k′∈[m′] their corresponding decompositions. We say that (A, Hk,%k)k∈[m]

and (A, Hk′ ,%′k
′
)k′∈[m′] are rotation equivalent if there exists d ∈ [m] such that %k =

%′((k+d−1) mod m)+1 for all k ∈ [m]. For the sake of readability, we hereafter use mod1 de-
fined by k mod1 k′ = ((k− 1) mod k′) + 1. Rotation equivalence can thus be rewritten as
%k = %′(k+d) mod1 m. Intuitively, two decompositions are rotation equivalent if they agree
on the partitioning of H, agents’ preferences within the partition’s subsets and the ordering
of those subsets modulo m.

For better illustration of the concept consider the following brief example with four
agents A = {a1, . . . , a4}, four houses H = {h1, . . . , h4} and preference profiles %, %′, and
%′′.

% =

a1 : h1, h2, h3, h4
a2 : h1, h2, h4, h3
a3 : h1, h2, h3, h4
a4 : h1, h2, h4, h3

%′ =

a1 : h2, h3, h4, h1
a2 : h2, h4, h3, h1
a3 : h2, h3, h4, h1
a4 : h2, h4, h3, h1

%′′ =

a1 : h1, h3, h4, h2
a2 : h1, h4, h3, h2
a3 : h1, h3, h4, h2
a4 : h1, h4, h3, h2

We see that H is partitioned into the sets {h1}, {h2}, {h3, h4} in all three decompositions
with agents’ preferences over the houses within those sets being identical in all cases. For
better exposition, dotted lines are added in between the components. However, only the
decompositions of (A,H,%) and (A,H,%′) are rotation equivalent.

Our first theorem links rotation equivalent decompositions to identical majority graphs.

Theorem 1. Let (A,H,%) and (A,H,%′) be two assignment problems that induce majority
graphs G and G′, respectively. Then, G = G′ if and only if the decompositions of (A,H,%)
and (A,H,%′) are rotation equivalent.

Due to space constraints, the proof of Theorem 1 is given in the Appendix. Since the
proof of the direction from left to right is constructive, it is easy to develop an algorithm
that, given a majority graph, finds all assignment problems that induce this graph. This
algorithm can also answer the question whether a given graph is induced by an assignment
problem.

Two consequences of Theorem 1 are that the set of popular (random) assignments is
invariant under component-wise rotation and that preference profiles that only admit the
trivial decomposition induce a unique majority graph.

We conclude this section with an observation regarding the number of different majority
graphs that can be induced by assignment problems of size n. Directly counting the number
of majority graphs is not possible because we lack a suitable characterization thereof. Still,
by Theorem 1, we know that two assignment problems induce identical majority graphs if
and only if their decompositions are rotation equivalent. We make use of this correspondence
and actually sum up the number of assignment problems of size n which do not have rotation
equivalent decompositions. This number can be computed to be

N(n) =
∑
i∈[n]

(−1)i+1

i

 ∑
x0,...,xi∈N0

0=x0<···<xi=n

∏
j∈[i]

(
n− xj−1
xj − xj−1

)
· ((xj − xj−1)!)n

 .



n N(n) n!n N(n)/n!n

1 1 1 1
2 3 4 0.75
3 194 216 0.898
4 329 898 331 776 0.994
5 24 841 082 904 24 883 200 000 0.998

Table 1: Number of inducible majority graphs relative to the number of assignment problems
of size n.

It turns out that N(n) is roughly equivalent to n!n. See Table 1 for the exact values of
N(n) and n!n up to n = 5. Note that the total number of assignment problems of size n is
exactly n!n, which implies that a nontrivial decomposition is impossible for a vast majority
of profiles.

As most assignment problems hence induce different majority graphs, the question re-
mains which ratio of the possible majority graphs may be induced. Regarding majority
graphs in the context of social choice, observe that the total number of directed, weighted
graphs (V,E,w) with edge weights |w(e)| ≤ n for all e ∈ E is (2n + 1)1/2 n!(n!−1). The
fraction of those graphs that can indeed be induced by an assignment problem of size n is
comparatively small, it can easily be upper-bounded by n!n/nn!. Given the many interde-
pendencies of edge weights due to the fact that agents only have preferences over n houses
but we have n! vertices, this result confirms the naive intuition that most majority graphs
cannot be induced by an assignment problem.

In this context, it is worth noting that the empty graph, i.e., the majority graph with
w(e) = 0 for all e ∈ E cannot be induced by any assignment problem of size n > 2. This
can easily be seen when considering two matchings M,M ′ ∈ M(n) where M(h) = M ′(h′),
M(h′) = M ′(h′′), M(h′′) = M ′(h), and M(h′′′) = M ′(h′′′) for all h′′′ ∈ H\{h, h′, h′′}. Here,
φ%(M,M ′) ∈ {3, 1,−1,−3}. We consequently obtain that whenever n > 2, it is impossible
that all random assignments are popular, or, put differently, popularity always imposes a
restriction on the set of random assignments.

4 Uniqueness of Popular Random Assignments

We now want to have a closer look at popularity. As already briefly discussed before, popular
deterministic assignments need not always exist (Gärdenfors, 1975). When considering
random assignments instead, Kavitha et al. (2011) have shown that there always is at
least one popular random assignment. It is easy to show that the set of popular random
assignments is convex, i.e., if there are at least two different popular random assignments,
there are infinitely many.

Hence, a natural question is which preference profiles admit a unique popular random
assignment. In other words, under which circumstances does popularity already restrict the
set of desirable random assignments to a singleton?

In order to tackle this question, we first focus on the setting where all agents have
identical preferences, and completely characterize the set of popular random assignments
for arbitrary n. Such situations are not particularly unlikely, for instance if objects are
consistently evaluated by size or monetary value (see, also, Bogomolnaia and Moulin, 2002).

For this restricted case we are able to show that there is a unique popular random
assignment if n is odd and infinitely many if n is even. We will use this result to provide



a sufficient (yet not necessary) condition for uniqueness in the case of general preferences.
To get a better idea about the frequency of unique popular random assignments, we will
conclude the section by presenting the results of computer experiments.

4.1 Identical Preferences

In this subsection we consider assignment problems (A,H,%) where all n agents have iden-
tical preferences. Without loss of generality let us assume agents always prefer houses with
a lower index, i.e., hk �a hk′ for all hk, hk′ ∈ H, 1 ≤ k < k′ ≤ n, and a ∈ A. As the
preferences % only depend on the number of agents in this subsection, we simplify notation
by writing φ(p, p′) = φ%(p, p′).

The upcoming theorem builds on a left shift of probabilities. The left shift function
L(p) maps the probability an agent a receives for house hk to the probability he receives
for the next less preferred house hk+1. We define the function L : R(n)→ R(n), (L(p))i,j =
pi,(j mod n)+1.

It holds that the set of all popular random assignments consists of exactly those random
assignments, that are invariant under double application of L.

Theorem 2. Let (A,H,%) be an assignment problem where all agents have identical pref-
erences. Then, a random assignment p ∈ R(n) is popular if and only if L(L(p)) = p.

The complete proof can be found in the Appendix. The following corollary precisely
characterizes the set of popular random assignments for the case of identical preferences.

Corollary 1. Let (A,H,%) be a random assignment problem where all agents have identical
preferences. If n is odd, there exists a unique popular random assignment p, namely pi,j =
1/n for all i, j ∈ [n]. If n is even, there exist multiple popular random assignments, namely
conv(E(n)) with

E(n) = {eI ∈ R(n) : I ⊆ [n], |I| = n/2}

eIi,j =

{
2/n if either i ∈ I and j odd, or i 6∈ I and j even,

0 otherwise.

For illustration consider for instance a situation where six agents have identical pref-
erences over six houses. By Theorem 2 we know that a random assignment p ∈ R(6) is
popular if and only if L(L(p)) = p. A possible representative satisfying this condition is p
as given below.

a1 : h1, h2, h3, h4, h5, h6
a2 : h1, h2, h3, h4, h5, h6
a3 : h1, h2, h3, h4, h5, h6
a4 : h1, h2, h3, h4, h5, h6
a5 : h1, h2, h3, h4, h5, h6
a6 : h1, h2, h3, h4, h5, h6

p =



1/3 0 1/3 0 1/3 0
1/4 1/12 1/4 1/12 1/4 1/12
0 1/3 0 1/3 0 1/3
1/6 1/6 1/6 1/6 1/6 1/6
1/12 1/4 1/12 1/4 1/12 1/4
1/6 1/6 1/6 1/6 1/6 1/6


With respect to Corollary 1, we have that p = 1/2 e{1,2,6} + 1/4 e{1,2,4} + 1/4 e{1,4,5}. Also

note that |E(6)| = 20 and every convex combination over those random assignments is
popular.



4.2 Separable Assignment Problems

While we are unable to obtain a characterization of popular random assignments similar
to the one above for the case of general preferences, we can give a sufficient condition for
assignment problems, which, if satisfied, guarantees uniqueness of popular random assign-
ments.

We say that an assignment problem (A,H,%) is separable if we can partition the set of
agents A = A1∪̇ . . . ∪̇Am and the set of houses H = H1∪̇ . . . ∪̇Hm such that |Ak| = |Hk| for
all k ∈ [m] and moreover Hk �a H\Hk for all k ∈ [m], a ∈ Ak. Given a separable assignment
problem (A,H,%) we call (Ak, Hk,%k), k ∈ [m], its reduced assignment problems. Note that
%k is defined as % restricted to Ak and Hk, or, more formally, h %ka h

′ if h, h′ ∈ Hk, a ∈
Ak, h %a h′. We give an example of a separable assignment problem below.

SD-efficiency of popular random assignments implies that a random assignment p is
popular with respect to a separable assignment problem (A,H,%) if and only if for all
k ∈ [m], p restricted to Ak and Hk is popular with respect to (Ak, Hk,%k). Regarding
uniqueness, we thus obtain that a separable assignment problem has a unique popular
random assignment if and only if all its reduced assignment problems have unique popular
random assignments.

To better illustrate this statement, first observe that if all agents have different top
choices, the corresponding assignment problem is obviously separable, A and H are simply
partitioned into singletons. In this case, it is not surprising that there is a unique popular
random assignment, namely to assign to every agent his most-preferred house.

Taking cue from that observation, we now allow some agents to share their first choices,
hereby obtaining combinations of identical preferences and preferences with disjoint top
choices. For every such combination, we can repeatedly apply Corollary 1 to calculate all
popular random assignments. We remark that this yields a significant increase in the number
of settings where Theorem 2 may be applied. Consider for example an instance where
a certain group of agents consistently ranks houses of small size according to a different
criterion—e.g., price—while a second group is focused on medium size and yet another one
desires large houses.

To this end, assume an instance with eight families—the agents A = {a1, . . . , a8}—who
are interested in buying a house. There are eight houses available, H = {h1, . . . , h8}, that
differ in both the number of rooms and the price. Let houses h1, h2, h3 have five rooms,
h4, h5, h6 six rooms and h7, h8 seven rooms. Due to the number of their children, families
a1, a2, a3 need five rooms, families a4, a5, a6 need six, and a7, a8 even require seven. For
simplicity, assume that houses with a lower index are cheaper in price and preferred to
more expensive ones. Based on this assumption, we can easily determine all families’ top
preferences; they are given below on the left side.

We see that (A,H,%) is separable and together with Corollary 1 this precisely gives all
popular random assignments. It holds that a random assignment p ∈ R(8) is popular if it
is of the form depicted below with 0 ≤ λ ≤ 1.

a1 : h1, h2, h3, . . .
a2 : h1, h2, h3, . . .
a3 : h1, h2, h3, . . .
a4 : h4, h5, h6, . . .
a5 : h4, h5, h6, . . .
a6 : h4, h5, h6, . . .
a7 : h7, h8, . . .
a8 : h7, h8, . . .

p =



1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 0 λ 1− λ
0 0 0 0 0 0 1− λ λ





4.3 Experimental Results

So far, we have identified some criteria which imply that (A,H,%) admits a unique popular
random assignment. However, there are plenty of preference profiles that admit a unique
popular random assignment, although Theorem 2 cannot be applied, even when including
our observation about separable assignment problems. Consider for instance the assignment
problem (A,H,%) with n = 5 and % as depicted below. We see that neither do all agents
share identical preferences nor is (A,H,%) separable. Nevertheless, there is a unique popular
random assignment p ∈ R(5).

% =

a1 : h2, h5, h4, h3, h1
a2 : h5, h2, h4, h3, h1
a3 : h2, h1, h4, h3, h5
a4 : h2, h1, h3, h5, h4
a5 : h2, h5, h1, h3, h4

p =


0 1/7 0 5/7 1/7
0 0 1/7 1/7 5/7
2/7 3/7 1/7 1/7 0
3/7 2/7 2/7 0 0
2/7 1/7 3/7 0 1/7


Our next goal is to determine the fraction of profiles that admit a unique popular random
assignment, depending on n. We can compute this number exactly as long as n is relatively
small. However, as the number of preference profiles is (n!)n, exact computation quickly
becomes infeasible, even when exploiting symmetries with respect to both agents and houses.
Note that for instance for n = 6, we already have more than 1.3 ·1017 different profiles. The
exact number of profiles admitting a unique popular random assignment for n ≤ 4 is given
in Table 2.

n 1 2 3 4

Unique 1 2 54 35 904
Total 1 4 216 331 776
Fraction 1 0.5 0.22 0.094

Table 2: Number of profiles that admit a unique popular random assignment and the total
number of profiles for n ≤ 4.

To overcome the intractability of computing the exact fraction of profiles admitting a
unique popular random assignment but still obtain a quantitative insight, we automati-
cally sample preference profiles and verify whether they admit multiple popular random
assignments. For the sampling process, we focus on two common parameter-free stochastic
models. First, we choose each agent’s preferences uniformly at random, which is known as
the impartial culture (IC) model.

In the spatial model, we sample a point in the unit square for every a ∈ A and h ∈ H

and determine agents’ preferences by their proximity to each house, i.e., the Euclidian
distance between the corresponding points (see, e.g., Ordeshook, 1993; Austen-Smith and
Banks, 2000). For a more profound discussion of stochastic preference models please see for
instance Critchlow et al. (1991) and Marden (1995).

For both models, Table 3 summarizes the results for 10 000 samples each. Figure 1
provides a visualization where the probability that a randomly picked assignment problem
admits a unique popular random assignment is plotted on a logarithmic scale. We see
that this probability decreases exponentially in n, where the decreases are slightly more
distinctive when going from an odd n to an even one compared to from an even n to an odd
one. A possible explanation might be related to Theorem 2.



n 1 2 3 4 5 6 7

IC 1 0.49 0.25 0.11 0.044 0.020 0.0088
Spatial 1 0.43 0.26 0.14 0.078 0.040 0.027

Table 3: Fraction of preference profiles admitting a unique popular random assignment
when preferences are sampled according to either IC or the spatial model; 10 000 samples
for each n.

1 2 3 4 5 6 7

0.01

0.1

1

n

IC
Spatial

Figure 1: Probability that a randomly selected assignment problem of size n admits a unique
popular random assignment. Preferences are sampled according to either IC or the spatial
model.

The observation that the fraction of assignment problems admitting a unique popular
random assignment compared to the total number of assignment problems decreases ex-
ponentially in n stands in sharp contrast to results obtained in the social choice setting.
Recall that popular random assignments correspond directly to maximal lotteries. Maximal
lotteries are unique in many cases (Laffond et al., 1997; Le Breton, 2005) and the set of
preference profiles admitting a unique maximal lottery is open and dense (Brandl et al.,
2016b). The set of profiles that admit multiple maximal lotteries is therefore nowhere dense
and thus negligible.

5 Envy-freeness and Strategyproofness

In this section, we investigate to which extent popularity is compatible with envy-freeness
and strategyproofness. Put differently, we want to know whether for every random assign-
ment problem there exists a popular random assignment that satisfies envy-freeness and
whether there exists a random assignment rule that satisfies both popularity and strate-
gyproofness. Prior research in this direction by Aziz et al. (2013) has established the follow-
ing results. First, it was shown that there exists a profile with n = 3 for which no popular
assignment satisfies envy-freeness. Secondly, popularity was proven to be incompatible with
strategyproofness when n ≥ 3. Whether both results also hold for weak envy-freeness and



weak strategyproofness, respectively, was left as an open problem.
We are able to answer this question in the affirmative: We provide a profile with n = 5

for which no popular random assignment satisfies weak envy-freeness and that can easily
be extended to n ≥ 5. In addition, we show that no random assignment rule can satisfy
popularity and weak strategyproofness simultaneously whenever n ≥ 7.

Theorem 3. There exist assignment problems for which no popular random assignment
satisfies weak envy-freeness when n ≥ 5.

Theorem 4. No popular random assignment rule satisfies weak strategyproofness when
n ≥ 7.

Due to space constraints, the proofs for both theorems can be found in the Appendix.
The results presented in this section do not only hold for the SD-extension, but similarly

for bilinear dominance, which leads to much weaker notions of strategyproofness and envy-
freeness (see Section 2).

6 Conclusion and Discussion

We have analyzed the structure of majority graphs induced by assignment problems and
investigated the uniqueness, envy-freeness, and strategyproofness of popular random as-
signments and popular random assignment rules, respectively. It has turned out that most
assignment problems admit more than one popular random assignment and that popular-
ity does not align well with individual incentives as popularity is incompatible with weak
envy-freeness and also with weak strategyproofness. On the other hand, it is known that
popular random assignments satisfy a very strong notion of efficiency (PC-efficiency) and
even maximize social welfare according to the canonical skew-symmetric bilinear (SSB) util-
ity functions induced by the agents’ preferences (see Brandl et al., 2015). This hints at an
interesting tradeoff between social goals (such as efficiency and popularity) and individual
goals (such as envy-freeness and strategyproofness) in random assignment. For comparison,
the two most-studied assignment rules RSD and PS fail to satisfy PC-efficiency (and thus
popularity). In fact, RSD does not even satisfy SD-efficiency. On the other hand, these
rules fare better in terms of individual incentives of agents. RSD satisfies strategyproof-
ness and PS satisfies envy-freeness. This tradeoff has been observed before. For example,
Bogomolnaia and Moulin (2001) have shown that SD-efficiency and strategyproofness are
incompatible. When allowing ties in individual preferences, Katta and Sethuraman (2006)
proved that no random assignment rule simultaneously satisfies SD-efficiency, weak strate-
gyproofness, and weak envy-freeness. Recently, Brandl et al. (2016a) gave a computer-aided
proof that shows the incompatibility of SD-efficiency and weak strategyproofness in the
more general domain of social choice. It is open whether the same statement also holds
for random assignment (when agents have weak preferences). For the case of strict prefer-
ences, it would be interesting to see whether Theorem 4 can be strengthened by replacing
popularity with PC-efficiency.
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APPENDIX

A Omitted Proofs

A.1 Proof of Theorem 1

Theorem 1 states that two assignment problems induce the same majority graph if and
only if their decompositions are rotation equivalent. We first prove one direction, namely
that two assignment problems whose decompositions are rotation equivalent induce identical
majority graphs.

Lemma 1. Let (A,H,%) and (A,H,%′) be two assignment problems whose decompositions
are rotation equivalent. We then have for the induced majority graphs G and G′ that G = G′.

Proof. Let (A,H,%) and (A,H,%′) be two assignment problems whose decompositions are
rotation equivalent meaning that %k = %′(k+d) mod1 m for all k ∈ [m]. Moreover, denote by
G = (V,E,w) and G′ = (V ′, E′, w′) the induced majority graphs. We have that V = V ′

and E = E′ by definition of the majority graph, so it only remains to show that we indeed
have w = w′. Recall that w(M,M ′) = φ%(M,M ′) and by the definition of φ%(M,M ′),

φ%(M,M ′) =
∑
a∈A

φ%a
(M(a),M ′(a)).

For the sake of readability, we introduce a permutation π mapping the house h an agent
receives in M to the house h′ he receives in M ′. Formally, for two arbitrary matchings
M,M ′ ∈M(n) we define the permutation π : H→ H, π(h) = M ′(M(h)). As every agent is
assigned exactly one house, we can equivalently sum over all houses.∑

a∈A

φ%a
(M(a),M ′(a)) =

∑
h∈H

φ%M(h)
(h, π(h))

We now partition H into four subsets. For h ∈ H assume h ∈ Hk and π(h) ∈ Hk′ when
considering the decomposition of (A,H,%) and h ∈ H ′l and π(h) ∈ H ′l′ when considering
the decomposition of (A,H,%′). We distinguish whether

(i) k > l and k′ > l′,

(ii) k > l and k′ ≤ l′,

(iii) k ≤ l and k′ > l′, or

(iv) k ≤ l and k′ ≤ l′.

Obviously k = l if and only if k′ = l′. Thus, for instance k > l and l′ = k′ is technically
impossible but theoretically captured by (ii) for the sake of completeness.

The four cases correspond to different situations that may occur when the subsets of H
obtained in the decomposition of (A,H,%) rotate to match those obtained when decompos-
ing (A,H,%′). Note that by the definition of rotation equivalence, this rotation is always
‘to the right’. We say that the rotation of h ∈ Hk exceeds m if k + d > m, i.e., the mod1

function is actually applied.
In this respect, (i) prescribes that the rotation of both h and π(h) exceeds m. In case

(ii) the rotation of h exceeds m while the rotation of π(h) does not. For (iii) the converse
holds. Lastly, (iv) defines the situation where both rotations do not exceed m. To this end,



let the function δ assign to every h ∈ H the corresponding k such that h ∈ Hk, δ : H→ [m],
δ(h) = k ∈ [m] such that h ∈ Hk. Partitioning H in that way, we obtain∑

h∈H

φ%M(h)
(h, π(h)) =

∑
h∈H

δ(h)+d≤m
δ(π(h))+d≤m

φ%M(h)
(h, π(h)) +

∑
h∈H

δ(h)+d≤m
δ(π(h))+d>m

φ%M(h)
(h, π(h))

+
∑
h∈H

δ(h)+d>m
δ(π(h))+d≤m

φ%M(h)
(h, π(h)) +

∑
h∈H

δ(h)+d>m
δ(π(h))+d>m

φ%M(h)
(h, π(h)).

We now make use of some equalities in order to link % and %′. First note that if both
the rotations of h and π(h) do not exceed m, then we have that either h %M(h) π(h) and
h %′M(h) π(h) or π(h) %M(h) h and π(h) %′M(h) h. The same holds for the case where the

rotations of h and π(h) exceed m. Therefore,∑
h∈H

δ(h)+d≤m
δ(π(h))+d≤m

φ%M(h)
(h, π(h)) =

∑
h∈H

δ(h)+d≤m
δ(π(h))+d≤m

φ%′
M(h)

(h, π(h)) and

∑
h∈H

δ(h)+d>m
δ(π(h))+d>m

φ%M(h)
(h, π(h)) =

∑
h∈H

δ(h)+d>m
δ(π(h))+d>m

φ%′
M(h)

(h, π(h)).

Furthermore, we have that the number of cases where the rotation of h exceeds m but the
rotation of π(h) does not has to equal the number of cases where the rotation of π(h) exceeds
m and the rotation of h does not. Note that this equivalence holds no matter if we consider
% or %′. Consequently,∑

h∈H
δ(h)+d≤m

δ(π(h))+d>m

φ%M(h)
(h, π(h)) =−

∑
h∈H

δ(h)+d>m
δ(π(h))+d≤m

φ%M(h)
(h, π(h))

∑
h∈H

δ(h)+d>m
δ(π(h))+d≤m

φ%′
M(h)

(h, π(h)) =−
∑
h∈H

δ(h)+d≤m
δ(π(h))+d>m

φ%′
M(h)

(h, π(h)).

Employing these equalities, we obtain that∑
h∈H

δ(h)+d≤m
δ(π(h))+d≤m

φ%M(h)
(h, π(h)) +

∑
h∈H

δ(h)+d≤m
δ(π(h))+d>m

φ%M(h)
(h, π(h))

+
∑
h∈H

δ(h)+d>m
δ(π(h))+d≤m

φ%M(h)
(h, π(h)) +

∑
h∈H

δ(h)+d>m
δ(π(h))+d>m

φ%M(h)
(h, π(h))

=
∑
h∈H

δ(h)+d≤m
δ(π(h))+d≤m

φ%′
M(h)

(h, π(h)) +
∑
h∈H

δ(h)+d>m
δ(π(h))+d≤m

φ%′
M(h)

(h, π(h))

+
∑
h∈H

δ(h)+d≤m
δ(π(h))+d>m

φ%′
M(h)

(h, π(h)) +
∑
h∈H

δ(h)+d>m
δ(π(h))+d>m

φ%′
M(h)

(h, π(h))

= φ%′(M,M ′).



Note that the last equality holds by transformations similar to those at the beginning of the
proof. As φ′%(M,M ′) = w′(M,M ′) we hence deduce that w(M,M ′) = w′(M,M ′) for all

M,M ′ ∈M(n) which proves Lemma 1.

We now show the converse direction, i.e., given a majority graph, we can uniquely
determine a group of decompositions of assignment problems that are rotation equivalent.
This statement and the corresponding proof will be split into three parts: First, we show
that given a majority graph G, we can compute a maximal partition of H such that all agents
have identical preferences over two houses h, h′ that are contained in different subsets of this
partition, h ∈ H,h′ ∈ H ′, H 6= H ′. We afterwards show that we can determine all agents’
individual preferences over all houses contained in the same subset H. Finally, we prove
that G implies a unique cyclic ordering of the partition’s subsets.

Lemma 2. Let G = (V,E,w) be the majority graph of an assignment problem. G uniquely

determines A, H, and the maximal partition of H =
⋃̇
k∈[m]Hk of an assignment problem

(A,H,%) inducing G, where {H1, . . . ,Hm} = H̄ are of the form that for all H 6= H ′ ∈ H̄
either H �a H ′ for all a ∈ A or H ′ �a H for all a ∈ A.

Proof. Let G = (V,E,w) be the induced majority graph of an assignment problem. First
note that A and H are implicitly defined by the vertex set V . In order to find a partition of
H into a maximal number of subsets {H1, . . . ,Hm} = H̄ such that for every pair of subsets
H 6= H ′ we have that either H �a H ′ for all a ∈ A or H ′ �a H for all a ∈ A we employ the
following algorithm:

Algorithm 1 Find a partition of H.

for all h 6= h′ ∈ H do
for all a 6= a′ ∈ A do

Select two matchings M,M ′ ∈ M(n) = V such that a = M(h) = M ′(h′), a′ =
M(h′) = M ′(h), and M(h′′) = M ′(h′′) for all h′′ ∈ H \ {h, h′}.
Set w(h, h′, a, a′) = w(M,M ′).

end for
if w(h, h′, a, a′) 6= 0 for some a 6= a′ ∈ A then
h and h′ are to be part of the same H ∈ H̄.

end if
end for

As to the correctness of Algorithm 1, note that w(h, h′, a, a′) 6= 0 for some a 6= a′ ∈ A

implies that agents a and a′ disagree on h being preferred to h′ or vice versa. Consequently,
h and h′ cannot be part of disjoint subsets of H̄. The converse, however, is not true. If
w(h, h′, a, a′) = 0 for all a 6= a′ ∈ A, all agents agree on which of h or h′ is preferred. Still,
it might be the case that a prefers some h′′ to both h and h′ while another agent a′ prefers
h and h′ to h′′. In this setting h and h′ have to be contained in the same subset of H̄, no
matter that all agents agree on one of them being better.

This case is captured in the way that Algorithm 1 indirectly gives that h and h′ have to
be part of equal subsets of H̄ by yielding that h has to be contained in the same subset as
h′′ which in turn has to be contained in the same subset as h′. If no such indirect connection
via an h′′ exists, h and h′ are placed in disjoint subsets. It is worth noting that the described
indirect connection via h′′ is not necessarily limited to a single house but might also employ
a sequence of houses h′′1 , . . . , h

′′
k .

In both cases, the algorithm constructs H̄ as claimed.2

2Note that antisymmetry of the agents’ preferences is crucial for the present proof. Antisymmetry ensures
that equality to zero implies strict preferences.



Lemma 3. Let G = (V,E,w) be the majority graph of an assignment problem where A

denotes the set of agents and H the set of houses. Furthermore, let H̄ = {H1, . . . ,Hm} be
a partition of H into the maximal number of subsets such that for all H 6= H ′ ∈ H̄ we have
that either H �a H ′ for all a ∈ A or H ′ �a H for all a ∈ A. Then G uniquely determines
(A, H,%H) for all H ∈ H̄.

Proof. Let G,A,H, H̄ be as assumed in Lemma 3. In order to determine %Ha for an arbitrary
H ∈ H̄, |H| ≥ 2, and a ∈ A employ Algorithm 2.

Algorithm 2 Determine individual preferences over the houses contained in each of the
partition’s subsets.

Step 1.
for all h 6= h′ ∈ H do

for all a 6= a′ ∈ A do
Select two matchings M,M ′ ∈ M(n) = V such that a = M(h) = M ′(h′), a′ =
M(h′) = M ′(h), and M(h′′) = M ′(h′′) for all h′′ ∈ H \ {h, h′}.
if w(M,M ′) = 2 then

Let h %a h′.
else if w(M,M ′) = −2 then

Let h′ %a h.
end if

end for
end for
Step 2.
for all h 6= h′ ∈ H left incomparable by some agent in Step 1 do

for all a 6= a′ ∈ A do
Select h′′1 , . . . , h

′′
k ∈ H such that for a and a′ individual preferences over

{h, h′′1}, {h′′1 , h′′2}, . . . , {h′′k−1, h′′k}, and {h′′k , h′} have already been devised in Step 1.
Select two matchings M,M ′ ∈M(n) = V and a′′1 , . . . , a

′′
k ∈ A such that a = M(h) =

M ′(h′), a′ = M(h′) = M ′(h′′1), a′′1 = M(h′′1) = M(h′′2), . . . , a′′k = M(h′′k) = M ′(h),
and M(h′′′) = M ′(h′′′) for all h′′′ ∈ H \ {h, h′, h′′1 , . . . , h′′k}.
if w(M,M ′)− φ%a′

(h′, h′′1)−
∑
i∈[k] φ%a′′

i

(M(a′′i ),M ′(a′′i )) = 1 then

Let h %a h′.
else if w(M,M ′)− φ%a′

(h′, h′′1)−
∑
i∈[k] φ%a′′

i

(M(a′′i ),M ′(a′′i )) = −1 then

Let h′ %a h.
end if

end for
end for

First note that for |H| = 1, determining individual preferences over all houses contained
in H is trivial. We continue with |H| ≥ 2 and the algorithm.

In Step 1, w(M,M ′) ∈ {−2, 2} occurs if agents a, a′ disagree on which of h, h′ is
more preferred. In this case, w(M,M ′) ∈ {−2, 2} holds by the antisymmetry of individual
preferences. More precisely, w(M,M ′) = 2 means that both a and a′ prefer M to M ′, i.e.,
a prefers h to h′ and a′ prefers h′ to h. For w(M,M ′) = −2, the converse holds.

However, as discussed in the proof of Lemma 2, it is possible that all agents agree on the
pairwise comparison between h and h′ and they are still contained in the same H. We easily
see that this is only possible if |H| ≥ 3 and thus implicitly |A| ≥ 3. In addition, we note
that for each pair of houses h, h′ ∈ H, Step 1 of Algorithm 2 either determines preferences
for all agents a ∈ A, or for no agent at all.



Concerning Step 2, for every pair h, h′ for which no individual preferences were fixed in
Step 1, there has to exist a sequence of houses h′′1 , . . . , h

′′
k ∈ H such that h can be compared

to h′′1 , h′′i can be compared to h′′i+1, i ∈ [k − 1] and finally h′′k can be compared to h′.
Assume no such sequence exists, then h and h′ cannot be contained in the same subset
H by Algorithm 1. By the construction of M,M ′ we have that w(M,M ′) = φ%a

(h, h′) +
φ%a′

(h′, h′′1) +
∑
i∈[k] φ%a′′

i

(M(a′′i ),M ′(a′′i )). Here, all terms but φ%a
(h, h′) are set in Step 1

and known by the choice of h′′1 , . . . , h
′′
k , and w(M,M ′) is given by G. Consequently, we can

directly compute the remaining summand that corresponds to a’s preferences over h, h′.
It is easy to see that Algorithm 2 uniquely determines complete, transitive and anti-

symmetric preferences %Ha over all houses in H for all agents a ∈ A. Applying the same
algorithm for all H ∈ H̄ gives m disjoint (A, H,%H) as claimed in Lemma 3.

Lemma 4. Let G = (V,E,w) be the majority graph of an assignment problem (A, H,%).
Furthermore, let H̄ be a partition of H into the maximal number of subsets such that for all
H,H ′ ∈ H̄ we have that either H �a H ′ for all a ∈ A or H ′ �a H for all a ∈ A.

Then, for all H,H ′ ∈ H̄, G uniquely determines transitive orderings H1 � H2 � · · · �
Hm, H = H1, and H ′1 � H ′2 � · · · � H ′m, H ′ = H ′1, with Hk �a Hk′ and H ′k �a H ′k′ for
all k < k′, a ∈ A, such that there exists d ∈ [m] for which we have that Hk = H ′(k+d) mod1 m

for all k ∈ [m].

Proof. Let G,A,H, H̄ be defined as above.
In the case that |H̄| = 1, Lemma 4 is trivially satisfied. For |H̄| = 2, there only exist two

different orderings of the subsets of H̄, each is uniquely determined if one subset is fixed as
the more preferred one. In addition, there obviously exists d ∈ {1, 2} for which the given
identities hold. We thus focus on |H̄| ≥ 3.

First, we choose H ∈ H̄ at random and show that for any two H ′ 6= H ′′ ∈ H̄ \ {H},
G determines whether H � H ′ � H ′′ or H � H ′′ � H ′. Note that this ordering is
transitive by the transitivity of individual preferences. To determine which of the two holds
we randomly select h ∈ H,h′ ∈ H ′, h′′ ∈ H ′′ and two matchings M,M ′ ∈ M(n) = V
such that a = M(h) = M ′(h′), a′ = M(h′) = M ′(h′′), a′′ = M(h′′) = M ′(h), for some
a, a′, a′′ ∈ A, and M(h′′′) = M ′(h′′′) for all h′′′ ∈ H \ {h, h′, h′′}.

It trivially holds that w(M,M ′) ∈ {−1, 1}. If w(M,M ′) = 1, two agents prefer their
assigned house in M over their house in M ′ while one agent has reversed preferences.
We conclude that H � H ′ � H ′′. If on the other hand w(M,M ′) = −1, we have that
H � H ′′ � H ′.

Repeatedly applying the above procedure for different choices of H ′ 6= H ′′ ∈ H̄ \ {H}
yields a complete ordering H = H1 � H2 � · · · � Hm.

Next, assume that for two different choices H 6= H ′ ∈ H̄ we have identified different
orderings H = H1 � H2 � · · · � Hm and H ′ = H ′1 � H ′2 � · · · � H ′m with Hk �a Hk′ and
H ′k �a H ′k′ for all k < k′, a ∈ A. Without loss of generality let H1 = H ′k′ and set d = k′− 1.
We show that if Hk = H ′(k+d) mod1 m

, then H(k+1) mod1 m = H ′(k+1+d) mod1 m
, k ∈ [m].

Hence, suppose Hk = H ′(k+d) mod1 m
for some k ∈ [m] and assume for contradiction

H(k+1) mod1 m︸ ︷︷ ︸
=H′′

6= H ′(k+1+d) mod1 m︸ ︷︷ ︸
=H′′′

.

We deduce with respect to the ordering H = H1 � H2 � · · · � Hm that either Hk � H ′′ �
H ′′′, H ′′′ � Hk � H ′′, or H ′′ � H ′′′ � Hk. At the same time, regarding H ′ = H ′1 � H ′2 �
· · · � H ′m, we have that either Hk � H ′′′ � H ′′, H ′′ � Hk � H ′′′, or H ′′′ � H ′′ � Hk.

Now, consider h ∈ Hk, h
′′ ∈ H ′′, h′′′ ∈ H ′′′ and two matchings M,M ′ ∈ M(n) = V

such that a = M(h) = M ′(h′′), a′ = M(h′′) = M ′(h′′′), a′′ = M(h′′′) = M ′(h), for some



a, a′, a′′ ∈ A, and M(h′) = M ′(h′) for all h′ ∈ H \ {h, h′′, h′′′}. It is straightforward to
compute that all of Hk � H ′′ � H ′′′, H ′′′ � Hk � H ′′, and H ′′ � H ′′′ � Hk imply
w(M,M ′) = 1. On the other hand, Hk � H ′′′ � H ′′, H ′′ � Hk � H ′′′, and H ′′′ � H ′′ � Hk

all imply w(M,M ′) = −1
We conclude that H(k+1) mod1 m 6= H ′(k+1+d) mod1 m

means that 1 = w(M,M ′) = −1, a

contradiction. Thus, if Hk = H ′(k+d) mod1 m
, then H(k+1) mod1 m = H ′(k+1+d) mod1 m

, which
in total proves Lemma 4.

Lemmas 1 to 4 together imply Theorem 1:

Theorem 1. Let (A,H,%) and (A,H,%′) be two assignment problems that induce majority
graphs G and G′, respectively. Then, G = G′ if and only if the decompositions of (A,H,%)
and (A,H,%′) are rotation equivalent.

Proof. The direction from right to left follows directly from Lemma 1.
For the converse direction, Lemma 2 argues thatG uniquely determines A, H, and a maximal
partition H =

⋃̇
k∈[m]Hk with the property that for all H 6= H ′ ∈ {H1, . . . ,Hm} either

H �a H ′ for all a ∈ A or H ′ �a H for all a ∈ A. By Lemma 3, G uniquely defines preference
profiles %k for all k ∈ [m]. Finally, Lemma 4 shows that G determines m different orderings
of {H1, . . . ,Hm}, each of them giving rise to the decomposition of an assignment problem,
all of which are rotation equivalent.

We emphasize that Algorithms 1 and 2 are not optimized with respect to runtime, but
readability.

A.2 Proof of Theorem 2

Theorem 2. Let (A,H,%) be an assignment problem where all agents have identical pref-
erences. Then, the random assignment p ∈ R(n) is popular if and only if L(L(p)) = p.

The proof of Theorem 2 will be split into various lemmas to improve readability. First,
Lemmas 5 and 6 show that for every popular random assignment p, L(L(p)) = p. The
converse direction, i.e., every random assignment p that satisfies L(L(p)) = p is popular,
follows from Lemmas 7 and 8.

Lemma 5. Let n ≥ 3 and A(n) ∈ Zn×n be the matrix defined by

A(n)i,j =


−2n+ 4 if i = j,

−n+ 4 if |i− j| = 1 or (i, j) ∈ {(1, n), (n, 1)},
4 otherwise.

Then, for all x ∈ Rn we have that xTA(n)x ≤ 0, i.e., A(n) is negative semi-definite.

Proof. Let n ≥ 3 and A(n) as defined in Lemma 5. For better illustration also consider the
following representation of A(n):

A(n) =



−2n+ 4 −n+ 4 4 . . . 4 −n+ 4

−n+ 4 −2n+ 4 −n+ 4 4 . . . 4

4 −n+ 4 −2n+ 4 −n+ 4 4
...

... 4
. . .

. . .
. . . 4

4 . . . 4 −n+ 4 −2n+ 4 −n+ 4

−n+ 4 4 . . . 4 −n+ 4 −2n+ 4


.



We have that

xTA(n)x =
∑
i,j∈[n]

A(n)i,jxixj

= 4
∑
i,j∈[n]

xixj − 2n
∑

i=j∈[n]

xixj − n(x1xn + xnx1)− n
∑

i,j∈[n],|i−j|=1

xixj .

For the sake of presentation, we split the right side and consider the two resulting terms
separately. First, consider 4

∑
i,j∈[n] xixj and compute

4
∑
i,j∈[n]

xixj = 4

(
n∑
i=1

xi

) n∑
j=1

xj


= 8

(
n∑
i=1

xi

) n∑
j=1

xj

− 4

 n∑
j=1

xj

2

= 4

 n∑
j=1

xj

(x1 + xn +

n−1∑
i=1

(xi + xi+1)

)
− 4

 n∑
j=1

xj

2

= 4/n

 n∑
j=1

xj

 (nx1 + nxn) + 4/n

 n∑
j=1

xj

(n−1∑
i=1

(nxi + nxi+1)

)

− 4/n

 n∑
j=1

xj

2

− 4n−4/n

 n∑
j=1

xj

2

.

︸ ︷︷ ︸
= 4/n

∑n−1
i=1 (

∑n
j=1 xj)

2

Now, for the remaining terms, we compute

− 2n
∑

i=j∈[n]

xixj − n(x1xn + xnx1)− n
∑

i,j∈[n],|i−j|=1

xixj

=− 2n

n∑
i=1

x2i − 2nx1xn − 2n

n−1∑
i=1

xixi+1

=− n(x21 + 2x1xn + x2n)− n
n−1∑
i=1

(x2i + 2xixi+1 + x2i+1)

=− 1/n(nx1 + nxn)2 − 1/n

n−1∑
i=1

(nxi + nxi+1)2.

In order to complete the proof, we combine the final terms of both calculations, rearrange



them, and obtain

xTA(n)x =− 1/n(nx1 + nxn)2 + 4/n

 n∑
j=1

xj

 (nx1 + nxn)− 4/n

 n∑
j=1

xj

2

− 1/n

n−1∑
i=1

(nxi + nxi+1)2 + 4/n

 n∑
j=1

xj

(n−1∑
i=1

(nxi + nxi+1)

)
− 4/n

n−1∑
i=1

 n∑
j=1

xj

2

=− 1/n

nx1 + nxn − 2

n∑
j=1

xj

2

− 1/n

n−1∑
i=1

nxi + nxi+1 − 2

n∑
j=1

xj

2

(1)

≤ 0.

Lemma 6. Let (A,H,%) be an assignment problem where all agents have identical prefer-
ences. Then, for every popular random assignment p ∈ R(n) we have L(L(p)) = p.

Proof. Let (A,H,%) be an assignment problem as assumed in Lemma 6. Note that as long
as n ≤ 2, every random assignment is invariant under double application of the left shift,
so Lemma 6 trivially holds.

We thus focus on n ≥ 3. The proof is divided into two parts: First, we show that the left
shift of a random assignment p always is at least as popular as p itself, i.e., φ(L(p), p) ≥ 0.
The second step shows that φ(L(p), p) = 0 holds if and only if L(L(p)) = p which in total
proves Lemma 6.

We begin by computing

φ(L(p), p) =
∑

i,j,j′∈[n]

(L(p))i,jpi,j′φ%ai
(hj , h

′
j)

=
∑

i,j,j′∈[n]
j≤n−1

pi,j+1pi,j′φ%ai
(hj , hj′) +

∑
i,j′∈[n]

pi,1pi,j′φ%ai
(hn, hj′)

=
∑

i,j,j′∈[n]
j≤n−1
j<j′

pi,j+1pi,j′ −
∑

i,j,j′∈[n]
j≤n−1
j′<j

pi,j+1pi,j′ −
∑

i,j′∈[n]
j′<n

pi,1pi,j′ .

For the last equality we make use of the fact that φ%ai
(hj , hj′) = 1 for all j < j′,

φ%ai
(hj , hj′) = −1 for all j′ < j, and φ%ai

(hj , hj′) = 0 for j = j′. In addition, we

have that φ%ai
(hn, hj′) = −1 for all j′ < n and φ%ai

(hn, hj′) = 0 for j′ = n. We now shift
j and split the first sum.∑

i,j,j′∈[n]
j≤n−1
j<j′

pi,j+1pi,j′ −
∑

i,j,j′∈[n]
j≤n−1
j′<j

pi,j+1pi,j′ −
∑

i,j′∈[n]
j′<n

pi,1pi,j′

=
∑

i,j,j′∈[n]
2≤j≤j′≤n−1

pi,jpi,j′ +
∑
i,j∈[n]
2≤j

pi,jpi,n −
∑

i,j,j′∈[n]
3≤j

j′≤j−2

pi,jpi,j′ −
∑

i,j′∈[n]
j′≤n−1

pi,1pi,j′ . (2)



We continue with the second and the fourth sum and ignore the rest for the moment.

∑
i,j∈[n]
2≤j

pi,jpi,n −
∑

i,j′∈[n]
j′≤n−1

pi,1pi,j′ =
∑
i∈[n]

∑
j∈[n]
2≤j

pi,j


1−

∑
j′∈[n]
j′≤n−1

pi,j′

− ∑
i,j′∈[n]
j′≤n−1

pi,1pi,j′

=
∑
i∈[n]

(1− pi,1)

1−
∑
j′∈[n]
j′≤n−1

pi,j′

− ∑
i,j′∈[n]
j′≤n−1

pi,1pi,j′

=
∑
i∈[n]

1−
∑
i∈[n]

pi,1 −
∑

i,j′∈[n]
j′≤n−1

pi,j′ +
∑

i,j′∈[n]
j′≤n−1

pi,1pi,j′ −
∑

i,j′∈[n]
j′≤n−1

pi,1pi,j′

=n− 1− (n− 1)

= 0.

Now, we go back to (2) and consider the first sum.∑
i,j,j′∈[n]

2≤j≤j′≤n−1

pi,jpi,j′ =
∑

i,j,j′∈[n]
j≤j′≤n−1

pi,jpi,j′ −
∑

i,j,j′∈[n]
j=1

j′≤n−1

pi,jpi,j′

=
∑

i,j,j′∈[n]
j′≤j≤n−1

pi,jpi,j′ −
∑

i,j,j′∈[n]
j=1

j′≤n−1

pi,jpi,j′ . (3)

Note that the second equality holds because of symmetry. We go on with the third sum of
(2).



−
∑

i,j,j′∈[n]
3≤j

j′≤j−2

pi,jpi,j′ =−
∑

i,j,j′∈[n]
3≤j≤n−1
j′≤j−2

pi,jpi,j′ −
∑

i,j′∈[n]
j′≤n−2

pi,npi,j′

=−
∑

i,j,j′∈[n]
3≤j≤n−1
j′≤j−2

pi,jpi,j′ −
∑

i,j′∈[n]
j′≤n−2

1−
∑
j∈[n]
j≤n−1

pi,j

 pi,j′

=−
∑

i,j,j′∈[n]
3≤j≤n−1
j′≤j−2

pi,jpi,j′ −
∑

i,j′∈[n]
j′≤n−2

pi,j′

︸ ︷︷ ︸
=n−2

+
∑

i,j,j′∈[n]
j≤n−1
j′≤n−2

pi,jpi,j′

= 2− n−
∑

i,j,j′∈[n]
3≤j′≤n−1
j≤j′−2

pi,jpi,j′ +
∑

i,j,j′∈[n]
j≤j′≤n−2

pi,jpi,j′ +
∑

i,j,j′∈[n]
j′≤n−2

j′+1≤j≤n−1

pi,jpi,j′

= 2− n−


∑

i,j,j′∈[n]
j≤n−2

j≤j′−2≤n−3

pi,jpi,j′ +
∑

i,j,j′∈[n]
j≤n−2
j′=n

pi,jpi,j′

+
∑

i,j,j′∈[n]
j≤j′≤n−2

pi,jpi,j′

+


∑

i,j,j′∈[n]
j′≤n−2

j′+1≤j≤n−1

pi,jpi,j′ +
∑

i,j,j′∈[n]
j≤n−2
j′=n

pi,jpi,j′


= 2− n−

∑
i,j,j′∈[n]
j≤n−2
j≤j′−2

pi,jpi,j′ +
∑

i,j,j′∈[n]
j≤j′≤n−1

pi,jpi,j′ −
∑

i,j,j′∈[n]
j≤n−1
j′=n−1

pi,jpi,j′

+
∑

i,j,j′∈[n]
j′≤n−2
j′+1≤j

pi,jpi,j′ (4)

= 2− n+
∑

i,j,j′∈[n]
j≤n−2
j′=j+1

pi,jpi,j′ +
∑

i,j,j′∈[n]
j≤n−1
j′=j

pi,jpi,j′ +
∑

i,j,j′∈[n]
j<j′≤n−1

pi,jpi,j′

−
∑

i,j,j′∈[n]
j≤n−1
j′=n−1

pi,jpi,j′ (5)

In the last step we combine the first and the fourth sum of (4) to form the first sum of (5)
and simultaneously split the second sum of (4) into two parts, namely the second and third
sum of (5).



At this point, we recall (2) and combine (3) and (5) in order to obtain

φ(L(p), p) = 2− n+
∑

i,j,j′∈[n]
j≤n−1
j′=j

pi,jpi,j′ +

 ∑
i,j,j′∈[n]
j<j′≤n−1

pi,jpi,j′ +
∑

i,j,j′∈[n]
j′≤j≤n−1

pi,jpi,j′


+

∑
i,j,j′∈[n]
j≤n−2
j′=j+1

pi,jpi,j′ −
∑

i,j,j′∈[n]
j≤n−1
j′=n−1

pi,jpi,j′ −
∑

i,j,j′∈[n]
j=1

j′≤n−1

pi,jpi,j′

= 2− n+
∑
i,j∈[n]
j≤n−1

p2i,j +
∑
i∈[n]

j,j′∈[n−1]

pi,jpi,j′ +
∑
i,j∈[n]
j≤n−2

pi,jpi,j+1 −
∑
i,j∈[n]
j≤n−1

pi,jpi,n−1

−
∑
i,j∈[n]
j≤n−1

pi,jpi,1. (6)

For the second sum of (6) we calculate

∑
i∈[n]

j,j′∈[n−1]

pi,jpi,j′ =
∑
i∈[n]

 ∑
j∈[n−1]

pi,j

 ∑
j′∈[n−1]

pi,j′


=
∑
i∈[n]

(1− pi,n) (1− pi,n)

=
∑
i∈[n]

(
1− 2pi,n + p2i,n

)
=n− 2 +

∑
i∈[n]

p2i,n. (7)

For the fourth sum of (6) we calculate

−
∑
i,j∈[n]
j≤n−1

pi,jpi,n−1 = − 1 +
∑
i∈[n]

pi,n−1pi,n (8)

and similarly for the fifth sum

−
∑
i,j∈[n]
j≤n−1

pi,jpi,1 = − 1 +
∑
i∈[n]

pi,1pi,n. (9)

We furthermore have that

0 = 2− 4n/2n

= 2− 1/2n
∑
i∈[n]

4

∑
j∈[n]

pi,j

∑
j′∈[n]

pi,j′

 . (10)



The last step is to recombine (6) and our calculations (7), (8), (9), and (10).

φ(L(p), p) = 2− n+ n− 2− 1− 1 + 2− 1/2n
∑
i∈[n]

4

∑
j∈[n]

pi,j

∑
j′∈[n]

pi,j′



+

 ∑
i,j∈[n]
j≤n−1

p2i,j +
∑
i∈[n]

p2i,n

+

 ∑
i,j∈[n]
j≤n−2

pi,jpi,j+1 +
∑
i∈[n]

pi,n−1pi,n

+
∑
i∈[n]

pi,1pi,n

= − 1/2n

 ∑
i,j,j′∈[n]

4pi,jpi,j′ −
∑
i,j∈[n]

2np2i,j −
∑
i,j∈[n]
j≤n−1

2npi,jpi,j+1 −
∑
i∈[n]

2npi,1pi,n


= − 1/2n

∑
i∈[n]

p[i]A(n) pT[i].

Here, A(n) is the matrix defined in Lemma 5. As A(n) is negative semidefinite by Lemma 5,
we deduce that φ(L(p), p) ≥ 0, i.e., the left shift L(p) of a random assignment p is always
at least as popular as p itself.

In order to show that φ(L(p), p) = 0 if and only if L(L(p)) = p we recall Equation 1 in
the proof of Lemma 5. We see that

∑
i∈[n] p[i]A(n) pT[i] = 0 holds if and only if

npi,1 + pi,n − 2
∑
j∈[n]

pi,j = 0 for all i ∈ [n] and

npi,j + pi,j+1 − 2
∑
j′∈[n]

pi,j′ = 0 for all i ∈ [n], j ∈ [n− 1].

These equations imply that for all i, j ∈ [n] it has to hold that

npi,j + npi,(j+1) mod1 n − 2
∑
j′∈[n]

pi,j′ =npi,(j+1) mod1 n + npi,(j+2) mod1 n − 2
∑
j′∈[n]

pi,j′

⇔ pi,j = pi,(j+2) mod1 n.

This is equivalent to L(L(p)) = p.
Put differently, if L(L(p)) 6= p then φ(L(p), p) > 0. So, for every random assignment p

with L(L(p)) 6= p there exists another random assignment which is strictly more popular.
We deduce that no random assignment p with L(L(p)) 6= p can be popular meaning that
every popular random assignment p also has to satisfy L(L(p)) = p. This finishes the proof
of Lemma 6.

We now show the converse direction, i.e., every random assignment p which satisfies
L(L(p)) = p is popular.

First consider odd n ∈ N. Note that repeated application of L(L(p)) = p directly implies
that pi,1 = pi,3 = · · · = pi,n = pi,2 = · · · = pi,n−1 for all i ∈ [n]. Consequently, pi,j = 1/n for
all i, j ∈ [n]. Recall that popular random assignments are guaranteed to exist and satisfy
L(L(p)) = p by Lemmas 5 and 6. We deduce that p with pi,j = 1/n for all i, j ∈ [n] is the
unique popular random assignment if all agents have identical preferences and the number
of agents is odd.



When taking even n into account, we first define the set of extremal random assignments
E(n):

E(n) = {eI ∈ R(n) : I ⊆ [n], |I| = n/2}

eIi,j =

{
2/n if either i ∈ I and j odd, or i 6∈ I and j even

0 else

E(n) thus consists of random assignments eI with eIi,j ∈ {0, 2/n} for all i, j ∈ [n] where for
every agent probabilities alternate throughout his preference list.

The remaining proofs are structured as follows: In Lemma 7 we first show that all
assignments eI ∈ E(n) are popular. Next, we show in Lemma 8 that all p ∈ R(n) that
satisfy L(L(p)) = p can be represented as convex combination of random assignments in
E(n). Using the convexity of the set of popular random assignments, we get that every
p ∈ R(n) that satisfies L(L(p)) = p is popular as well for even n, which completes the proof.

Lemma 7. Let (A,H,%) be an assignment problem where all agents have identical prefer-
ences. Furthermore assume that the number of agents is even. Then, all extremal random as-
signments eI ∈ E(n) are popular, i.e., we have that φ(eI , q) ≥ 0 for all eI ∈ E(n), p ∈ R(n).

Proof. Let (A,H,%) be an assignment problem of size n where all agents have identical
preferences and let n be even. Furthermore, choose eI ∈ E(n) and p ∈ R(n) arbitrarily. We
have that

φ(eI , p) =
∑

i,j,j′∈[n]

eIi,jpi,j′φi(hj , hj′)

=
∑

i,j,j′∈[n]
i∈I

eIi,jpi,j′φi(hj , hj′) +
∑

i,j,j′∈[n]
i6∈I

eIi,jpi,j′φi(hj , hj′)

By assumption, we have that φi(hj , hj′) = 1 if j < j′, φi(hj , hj′) = −1 if j > j′ and
φi(hj , hj′) = 0 if j = j′. For the case that i ∈ I recall that eIi,j = 2/n for odd j and eIi,j = 0

for even j. Consequently, there are n/2 entries in the ith row of eI larger than zero, out of
which bj′/2c correspond to houses preferred to hj′ while bn−j′/2c = n/2 − dj′/2e correspond
to houses less preferred than hj′ . In total, this gives∑

i,j,j′∈[n]
i∈I

eIi,jpi,j′φi(hj , hj′) =
∑

i,j′∈[n]
i∈I

2/n (bj′/2c − (n/2− dj′/2e)) pi,j′

= 2/n
∑

i,j′∈[n]
i∈I

(j′ − n/2)pi,j′ .

If on the other hand i 6∈ I, we have that eIi,j = 0 for odd j and eIi,j = 2/n for even j.
Following similar arguments as before, we here have bj′−1/2c non-negative entries in the ith
row of eI that correspond to houses preferred to hj′ and bn−j′+1/2c = n/2− dj′−1/2e entries
corresponding to houses less preferred than hj′ . Thus, we have that∑

i,j,j′∈[n]
i 6∈I

eIi,jpi,j′φi(hj , hj′) =
∑

i,j′∈[n]
i6∈I

2/n (bj′−1/2c − (n/2− dj′−1/2e)) pi,j′

= 2/n
∑

i,j′∈[n]
i 6∈I

(j′ − 1− n/2)pi,j′ .



In total, we obtain

φ(eI , p) = 2/n

 ∑
i,j′∈[n]
i∈I

(j′ − n/2)pi,j′ +
∑

i,j′∈[n]
i 6∈I

(j′ − 1− n/2)pi,j′



= 2/n

 ∑
i,j′∈[n]

(j′ − n/2)pi,j′ −
∑

i,j′∈[n]
i 6∈I

pi,j′


= 2/n

∑
j′∈[n]

(j′ − n/2)− n/2


= 2/n (1/2n(n+ 1)− n/2n− n/2)

= 0.

Hence, every extremal random assignment is popular.

Lemma 8. Let (A,H,%) be an assignment problem where all agents have identical prefer-
ences. Furthermore assume that the number of agents is even. Then, all random assignments
p ∈ R(n) that satisfy L(L(p)) = p can be represented as convex combinations of extremal
random assignments.

Proof. Let (A,H,%) be an assignment problem of size n where all agents have identical
preferences and let n be even. Furthermore, let p ∈ R(n) be a random assignment that
satisfies L(L(p)) = p. We show that there exist m ≤ 2n, λ ∈ Rm, and a sequence (Ik)k∈[m]

with Ik ⊆ [n], |Ik| = n/2 for all k ∈ [m] such that λk ≥ 0 for all k ∈ [m],
∑
k∈[m] λk = 1 and∑

k∈[m] λke
Ik = p.

To this end, let p be a random assignment such that L(L(p)) = p and determine m, λ,
and (Ik)k∈[m] with the help of Algorithm 3.

Algorithm 3 Find m extremal random assignments together with positive weights such
that the convex combination equals p.

Set p0 = p, k = 0.
while pk 6= 0 do

Set k = k + 1
Choose Ik ⊆ [n] such that |Ik| = n/2 and pk−1i,1 ≥ p

k−1
i′,1 for all i ∈ Ik, i′ ∈ [n] \ Ik.

Set λk = n/2 min
i∈Ik,i′∈[n]\Ik

{pk−1i,1 , pk−1i′,2 }.

Set pk = pk−1 − λkeIk .
end while

In order to see that Algorithm 3 works as claimed first note that by L(L(p)) = p we
have that pi,1 = pi,3 = · · · = pi,n−1 and pi,2 = pi,4 = · · · = pi,n for all i ∈ [n]. As this also
holds for all eI ∈ E(n) it suffices to consider the first two columns of all pk. We directly
obtain pi,1 + pi,2 = 2/n for all i ∈ [n] and correspondingly pki,1 + pki,2 = pki′,1 + pki′,2 for all
k and i, i′ ∈ [n]. Furthermore,

∑
i∈[n] pi,1 =

∑
i∈[n] pi,2 = 1 by the definition of a random

assignment.
We begin by arguing that for all pk we have that pk ≥ 0 implying that also λk ≥ 0.

Next, we show that Algorithm 3 indeed terminates after m ≤ 2n steps with pm = 0 and∑
k∈[m] λk = 1.



For k = 0, pk ≥ 0 trivially holds by p being a random assignment. For k > 0, note that
λk = n/2 min

i∈Ik,i′∈[n]\Ik
{pk−1i,1 , pk−1i′,2 }. Thus, for i ∈ Ik,

pki,1 = pk−1i,1 − λke
Ik

= pk−1i,1 − 2/n · n/2 min
i′∈Ik,i′′∈[n]\Ik

{pk−1i′,1 , p
k−1
i′′,2}

= pk−1i,1 − min
i′∈Ik,i′′∈[n]\Ik

{pk−1i′,1 , p
k−1
i′′,2}

≥ 0

and pki,1 = pk−1i,1 ≥ 0 for i ∈ [n] \ Ik. Similarly, for i ∈ [n] \ Ik,

pki,2 = pk−1i,2 − λke
Ik

= pk−1i,2 − 2/n · n/2 min
i′∈Ik,i′′∈[n]\Ik

{pk−1i′,1 , p
k−1
i′′,2}

= pk−1i,2 − min
i′∈Ik,i′′∈[n]\Ik

{pk−1i′,1 , p
k−1
i′′,2}

≥ 0

and pki,2 = pk−1i,2 ≥ 0 for all i ∈ Ik. Consequently, for all k we have that pk ≥ 0 and also
λk ≥ 0.

To see that indeed λk > 0 for all k assume for contradiction that there ex-
ists k′ such that λk′ = 0. We deduce that for k′, min

i∈Ik′ ,i′∈[n]\Ik′
{pk

′−1
i,1 , pk

′−1
i′,2 } = 0.

Set imin ∈ [n], jmin ∈ {1, 2} such that the minimum is achieved for pk
′−1
imin,jmin

, i.e.,

pk
′−1
imin,jmin

∈ arg min
i∈Ik′ ,i′∈[n]\Ik′

{pk
′−1
i,1 , pk

′−1
i′,2 } and in addition let j′min = 3− jmin. By the gen-

eral definition of Ik we have that pk
′−1
i,1 ≥ pk

′−1
i′,1 for all i ∈ Ik′ , i′ ∈ [n]. As we have that

pk
′−1
i,1 + pk

′−1
i,2 = pk

′−1
i′,1 + pk

′−1
i′,2 for all i, i′ ∈ [n], we trivially also have the dual condition

pk
′−1
i′,2 ≥ pk

′−1
i,2 for all i′ ∈ [n] \ Ik′ , i ∈ [n]. The identical argument additionally gives that

if pk
′−1
imin,jmin

= 0 then by pk
′−1 6= 0 we obtain that pk

′−1
imin,j′min

> 0. Let pk
′−1

1,1 + pk
′−1

1,2 = α.

We now have
∑
i∈[n] p

k−1
i,jmin

< n/2α while simultaneously
∑
i∈[n] p

k′−1
i,j′min

> n/2α. Recall that

on the other hand
∑
i∈[n] pi,1 =

∑
i∈[n] pi,2 and by the definition of E(n) consequently also∑

i∈[n] p
k′−1
i,1 =

∑
i∈[n] p

k′−1
i,2 , a contradiction. Hence, no such k′ can exist and we have that

λk > 0 for all k.
Now, observe that in the kth iteration of Algorithm 3 all

pk−1imin,jmin
∈ arg min

i∈Ik,i′∈[n]\Ik
{pk

′−1
i,1 , pk

′−1
i′,2 } are set to zero. As this happens with at

least one entry pk−1i,j of the first two columns per iteration and at most once per pk−1i,j , the

algorithm terminates after m ≤ 2n iterations.3∑
k∈[m] λk = 1 follows trivially from pi,1 + pi,2 = 2/n for all i ∈ [n], eIi,1 + eIi,2 = 2/n for

all i ∈ [n], I ⊆ [n], |I| = n/2, and pmi,1 + pmi,2 = (pi,1 + pi,2)−
∑
k∈[m] λk

(
eIki,1 + eIki,2

)
= 0.

A.3 Proof of Theorem 3

Theorem 3. There exist assignment problems for which no popular random assignment
satisfies weak envy-freeness when n ≥ 5.

3It can even be argued that in the mth iteration of Algorithm 3 all pmi,1 and pm
i′,2, i ∈ Im, i′ ∈ [n] \ Im

are set to zero simultaneously. Hence, m ≤ n+ 1.



Proof. Consider the assignment problem (A,H,%) with five agents A = {a1, . . . , a5}, five
houses H = {h1, . . . , h5}, and

% =

a1 : h1, h2, h3, h4, h5
a2 : h1, h2, h3, h4, h5
a3 : h1, h2, h3, h4, h5
a4 : h4, h1, h2, h3, h5
a5 : h1, h4, h2, h5, h3

.

With the aid of a computer or by solving several inequalities, it can be shown that for all
popular random assignments p ∈ R(n), pi,j = 1/3 for all i, j ∈ [3].

Consequently, only a4 and a5 are competing for houses h4 and h5. Even though they
share the strict preference h4 � h5, a4 ranks h4 higher and h5 lower in comparison to a5.
We compute that popularity of p implies 2/3 ≤ p5,5 ≤ 1. Thus, every popular random
assignment p is of the form

p =


1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
0 0 0 λ 1− λ
0 0 0 1− λ λ


with 2/3 ≤ λ ≤ 1. For all such assignments p, a5 SD-prefers a4’s allocation to his own.

Note that similar profiles can also be constructed for all n ≥ 5.

A.4 Proof of Theorem 4

Theorem 4. No popular random assignment rule satisfies weak strategyproofness when
n ≥ 7.

Proof. Consider the assignment problem (A,H,%) with seven agents A = {a1, . . . , a7},
seven houses H = {h1, . . . , h7}, and

% =

a1 : h1, h2, h3, h6, h4, h5, h7
a2 : h1, h2, h3, h6, h4, h5, h7
a3 : h1, h2, h3, h6, h4, h5, h7
a4 : h4, h5, h1, h2, h3, h6, h7
a5 : h4, h5, h1, h2, h3, h6, h7
a6 : h1, h6, h4, h3, h5, h2, h7
a7 : h1, h4, h6, h7, h2, h5, h3

.

With the aid of a computer or by solving several inequalities, one can compute the vertices
of the convex polytope containing all popular random assignments p. For all those, we
deduce that 1/2 ≤ p7,7 = 1 − p7,6 ≤ 1. Put differently, a7 receives h7 with probability at
least 1/2 and h1 to h5 with probability 0.

Now, let a7 alter his preferences in a way such that h6 shall be his most preferred house
while h7 becomes the least preferred one leaving everything else unchanged, i.e.,

a′7 : h6, h1, h4, h2, h5, h3, h7.

For the new assignment problem (A,H,%′) with %′a = %a for all a ∈ A\{a7} we once more
compute all popular random assignments p′. Now, we obtain that 0 ≤ p′7,7 = 1− p′7,6 ≤ 2/5.
Hence, in all random assignments p′ ∈ R(7) that are popular with respect to (A,H,%′), a7



receives h6 with strictly more probability than in p while getting h7 less frequently. We see
that a7 prefers his new allocation to the one he would have received before, p′[7] �

SD
a7 p[7].

Introducing additional agents and houses such that each agent ak has house hk as first
preference, k ≥ 8, allows us to construct preference profiles for n ≥ 8, each admitting the
same manipulation beneficial for a7. Thus, no random assignment rule can satisfy popularity
and weak strategyproofness at the same time when n ≥ 7.


