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Abstract. One of the most fundamental and ubiquitous problems in mi-
croeconomics and operations research is how to assign objects to agents
based on their individual preferences. An assignment is called popular if
there is no other assignment that is preferred by a majority of the agents.
Popular assignments need not exist, but the minimax theorem implies
the existence of a popular random assignment. In this paper, we study
the compatibility of popularity with other properties that have been con-
sidered in the literature on random assignments, namely efficiency, equal
treatment of equals, envy-freeness, and strategyproofness.

1 Introduction

One of the most fundamental and ubiquitous problems in microeconomics and
operations research is how to assign objects to agents based on their individ-
ual preferences (see, e.g., [21, 4, 5]). In its simplest form, the problem is known
as the assignment problem, the house allocation problem, or two-sided match-
ing with one-sided preferences. Formally, the assignment problem concerns a set
of agents A = {a1, . . . , an} and a set of houses H = {h1, . . . hn}. Each agent
has preferences over the elements of H and the goal is to assign or allocate
exactly one house to each agent in an efficient and fair manner. An important
assumption in this setting is that monetary transfers between the agents are not
permitted.4 The assignment problem has numerous applications in a variety of
settings such the assignment of dormitories to students, jobs to applicants, rooms
to housemates, processor time slots to jobs, parking spaces to employees, offices
to workers, kidneys to patients, school seats to student applicants, etc. Clearly,
deterministic assignments may fail to satisfy even extremely mild fairness crite-
ria such as equal treatment of equals. It is therefore an established practice to
restore (ex ante) fairness by introducing randomization. Random assignments

4 Monetary transfers may be impossible or highly undesirable, as is the case if houses
are public facilities provided to low-income people. There are a number of settings
such as voting, kidney-exchange, or school choice in which money cannot be used as
compensation due to practical, ethical, or legal constraints (see, e.g., [20]).



are strongly related to fractional assignments and random assignment rules can
also be used to fractionally allocate resources to agents.

A deterministic assignment (or matching) is deemed popular if there exists
no other assignment that a majority of agents prefers to the former (see, e.g.,
[1, 3, 17, 12]). Popular assignments were first considered by Gärdenfors [10].
While popular assignments can be computed in polynomial time [1], they unfor-
tunately may not exist. Taking cue from this observation, McCutchen [17] pro-
posed two quantities—the unpopularity margin and the unpopularity factor—to
measure the unpopularity of an assignment and defined the notion of a least
unpopular assignment, which is guaranteed to exist.5 However, computing least
unpopular assignments turned out to be NP-hard. Alternatively, Kavitha et al.
[13] suggested the notion of popular random assignments. A random assignment
p is popular if there is no other assignment q such that the expected number of
agents who prefer the outcome of q to that of p is greater than n/2. Kavitha et al.
[13] showed that popular random assignments not only exist due to the minimax
theorem but can also be computed in polynomial time via linear programming.
To the best of our knowledge, axiomatic properties of popular random assign-
ments have not been studied so far. In this paper, we aim at improving our
understanding of popular random assignments by investigating which common
axiomatic properties are compatible with popularity.

Contributions. We first point out that popular random assignments can be
viewed as a special case of maximal lotteries, which were proposed in the con-
text of social choice by Fishburn [8].6 Assignment can be seen as a restricted
domain of social choice in which each alternative corresponds to an assignment.
Preferences over houses can be easily extended to preferences over assignments
by assuming that each agent only cares about the house assigned to himself and
is indifferent between all assignments in which he is assigned the same house.
We prove the following statements.

– Every popular assignment is efficient.

– There always exists a popular assignment that satisfies equal treatment of
equals. Such an assignment can furthermore be computed in polynomial
time.

– Popularity and envy-freeness are incompatible if n ≥ 3. If a popular and
envy-free assignment exists, it can be computed in polynomial time.

– There are no strategyproof popular random assignment rules if n ≥ 3.

5 The unpopularity margin of a matching is the maximum majority difference by which
it is dominated by any other matching. The unpopularity factor of a matching is the
maximum factor by which it is dominated by any other matching.

6 Maximal lotteries were first considered by Kreweras [14] and independently redis-
covered and studied in detail by Fishburn [8]. Interestingly, maximal lotteries or
variants thereof have been rediscovered again by economists, mathematicians, polit-
ical scientists, and computer scientists [15, 7, 9, 19]. Strategyproofness and efficiency
of maximal lotteries were recently analyzed by Aziz et al. [2].
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Related work. Random assignment rules have received enormous attention in
recent years. Most notable among these rules are random serial dictatorship
(RSD) (see e.g., [4, 16]) and the probabilistic serial rule (PS) [4]. Each of these
rules has its own merits. However, it can be easily shown that the assignment
returned by any of these rules may not be popular.

Perhaps closest to our work are the papers by Kavitha et al. [13], who in-
troduced popular random assignments, and Bogomolnaia and Moulin [4], who
outlined a systematic way of studying the properties of random assignments
and random assignment rules. In particular, Bogomolnaia and Moulin [4] popu-
larized the use of first-order stochastic dominance to formalize various notions
of envy-freeness, efficiency, and strategyproofness that we also consider in this
paper.

2 Preliminaries

An assignment problem is a triple (A,H,%) such that A = {a1, . . . , an} is a set of
agents, H = {h1, . . . , hn} is a set of houses, and %= (%1, . . . ,%n) is a preference
profile in which %i denotes an antisymmetric, complete, and transitive relation
on H representing the preferences of agent i over the houses in H.7

A deterministic assignment (or pure matching) M ⊂ A×H = M is a subset
of non-adjacent arcs in the bipartite graph G = (A

.
∪ H,A×H). If (i, h) ∈M , we

write M(i) = h. A matrix p = (pih)(i,h)∈A×H with pih ≥ 0,
∑

i∈A pih = 1 for all
h ∈ H and

∑
h∈H pih = 1 for all ai ∈ A, h ∈ H is called a random assignment (or

mixed matching). Note that the entries pi = (pi1, . . . , pin) corresponding to arcs
incident with some agent i constitute a random allocation for this agent. Further
note that every random assignment may be represented by a (not necessarily
unique) lottery over deterministic assignments and that in turn, every lottery
over deterministic assignments induces a unique random assignment. This is
known as the Birkhoff-Von Neumann theorem (see, e.g., [13]).

A natural way to compare random assignments is by means of stochastic
dominance (SD). Given two random assignments p and q, pi %SD

i qi i.e., agent i
SD-prefers pi to qi iff ∑

h∈H
h%ih

∗

pih ≥
∑
h∈H
h%ih

∗

qih for all h∗ ∈ H.

This preference extension is of particular importance because one random as-
signment is SD-preferred to another iff, for any utility representation consistent
with the ordinal preferences, the former yields at least as much expected utility
as the latter (see, e.g., [11, 6]). Since for all i ∈ A, agent i compares assign-
ment p with assignment q only with respect to his allocations pi and qi, we will
sometimes abuse the notation by writing p %SD

i q instead of pi %SD
i qi.

7 Although we assume strict preferences for the ease of exposition, all our positive
results hold for arbitrary preferences and our negative results even hold for strict
preferences.
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Finally, a random assignment rule f is a function which for each input
(A,H,%) returns a random assignment p. When A and H are clear from the
context, we simply write f(%) for f(A,H,%).

3 Desirable Properties of Random Assignment Rules

In this section, we define a number of desirable properties for random assign-
ments and random assignment rules. Properties of assignments naturally trans-
late to properties of assignment rules: We say that a random assignment rule f
satisfies property P if every assignment p returned by f satisfies P .

Popularity. In order to define popularity, we first associate a function φi with
each preference relation %i on H by letting φi : H ×H → {−1, 0, 1} such that
for all h, h′ ∈ H,

φi(h, h
′) =


+1 if h �i h

′,

−1 if h′ �i h, and

0 otherwise.

Now consider the natural extension of φi to random assignments and take the
sum over all agents. To this end, we define

φ(p, q) :=
∑
ai∈A

∑
h,h′∈H

pihqih′ φi(h, h
′)

and say that p is more popular than q if φ(p, q) > 0. A random assignment p is
popular if there is no assignment q more popular than p. It can be easily shown
that both PS and RSD fail to satisfy popularity.

Efficiency. A deterministic assignment M is Pareto efficient if there exists no
other deterministic assignment M ′ such that M ′(ai) %i M(ai) for all ai ∈ A, and
there exists an agent ai ∈ A such that M ′(ai) �i M(ai). A random assignment
is ex post efficient if it can be represented as a probability distribution over
Pareto efficient deterministic assignments. Finally, a random assignment p is
SD-efficient if there exists no assignment q such that q stochastically dominates
p, i.e. qi %SD

i pi for all ai ∈ A and qi �SD
i pi for some ai ∈ A. It can be shown

that SD-efficiency implies ex post efficiency. Furthermore, while PS satisfies SD-
efficiency, RSD is only ex post efficient [4].

Fairness. A random assignment p satisfies equal treatment of equals if agents
with identical preferences receive identical random allocations, i.e., %i=%j im-
plies that pi = pj for any pair of agents i and j. Equal treatment of equals is
considered as one of the most fundamental requirements in resource allocation
and a “minimal test for fairness” [18]. A random assignment satisfies SD-envy-
freeness if each agent (weakly) SD-prefers his allocation to that of any other
agent. A random assignment satisfies weak SD-envy-freeness if no agent strictly
SD-prefers someone elses allocation to his. SD-envy-freeness implies equal treat-
ment of equals while weak SD-envy-freeness does not. PS is known to satisfy
SD-envy-freeness whereas RSD only satisfies weak SD-envy-freeness [4].

4



Strategyproofness. In contrast to the previous conditions, strategyproofness can
only meaningfully be defined as the property of an assignment rule rather
than that of an assignment. A random assignment rule f is SD-strategyproof
if for every preference profile %, and for all ai ∈ A and %′i, f(%i,%−i) %SD

i

f(%′i,%−i). A random assignment rule f is weakly SD-strategyproof if for ev-
ery preference profile %, there exists no %′i for some agent ai ∈ A such that
f(%′i,%−i) �SD

i f(%i,%−i). RSD is SD-strategyproof whereas PS is only weakly
SD-strategyproof. (When also allowing ties in the preferences, RSD remains SD-
strategyproof whereas PS fails to be even weakly SD-strategyproof.)

In the remainder of this paper, we investigate whether and to which extent
popularity is compatible with efficiency, fairness, and strategyproofness.

4 Efficiency

It is easy to see that popular assignments are ex post efficient. For the sake of
contradiction let us assume that there is a deterministic assignment which is in
the support of a lottery representation of some popular random assignment but
which is not Pareto optimal. This implies that the deterministic assignment is
Pareto dominated by another deterministic assignment and hence cannot be in
the support of the popular random assignment (as replacing it by the assignment
that dominates it would yield a more popular assignment).

We address SD-efficiency by first observing that popular random assignments
are a special case of maximal lotteries in general social choice [8]. A lottery p is a
maximal lottery if there exists no other lottery q for which the expected number
of agents who prefer q over p is more than the expected number of agents who
prefer p over q.

An assignment problem (A,H,%) may also be seen as a social choice prob-
lem where A is the set of agents and the alternatives to choose from are all
the different (deterministic) assignments between agents in A and houses in H.
The preferences of the agents over these alternatives can naturally be defined
according to their preferences over the houses allocated to them (which means
that agents will be indifferent between assignments that assign the same house
to them). As Kavitha et al. [13] note, popularity of a random assignment p
may also be defined in terms of its representation as a lottery over deterministic
assignments. Furthermore, for every possible such representation the “unpop-
ularity margin” is equal to that of the original assignment p. This means that
every maximal lottery induces a popular random assignment, and every lottery
that represents a popular assignment is maximal.

We now show that popular assignments are not only ex post efficient but
even SD-efficient.

Lemma 1. Let Lp = [p1 : M1, . . . , p
k : Mk] and Lq = [q1 : N1, . . . , q

k : Nl] be
lotteries over deterministic assignments that induce the fractional assignments
p and q. Then, p %SD

i q iff Lp %SD
i Lq.
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Proof. For reasons of notational convenience, we write

p(M) =

{
pj M = Mj ∈ supp(Lp)

0 M /∈ supp(Lp).

For every agent i and h∗ ∈ H we can pick some assignment N with N(i) = h to
obtain ∑

h∈H
h%ih

∗

pih =
∑

M∈M
M(i)%ih

∗

p(M) =
∑

M∈M
M%iN

p(M).

Analogously, for every agent i and assignment N , we have∑
M∈M
M%iN

p(M) =
∑

M∈M
M(i)%iN(i)

p(M) =
∑
h∈H

h%iN(i)

pih.

This means that

∀h ∈ H :
∑
h∈H
h%ih

∗

pih ≥
∑
h∈H
h%ih

∗

qih iff ∀N ∈M :
∑

M∈M
M%iN

p(M) ≥
∑

M∈M
M%iN

q(M),

i.e., p %SD
i q iff Lp %SD

i Lq. ut

Theorem 1. Every popular assignment is SD-efficient.

Proof. Let p be a popular assignment. Suppose that p is SD-dominated by some
assignment q. Let Lp be a lottery representation of p and Lq a lottery represen-
tation of q. Then Lemma 1 implies that Lq SD-dominates Lp. But, as argued
above, Lp is a maximal lottery which is a contradiction to the fact that maximal
lotteries satisfy SD-efficiency (see [2]).

ut

5 Equal treatment of equals

Even though popular assignments satisfy fairness in the sense of respecting ma-
jorities of agents, they can be highly unfair on the individual level. In fact,
popular assignments may not even satisfy equal treatment of equals. This can
be seen by considering the extremely simple case of two agents with identical
preferences in which every random assignment is popular.

We will now show that a popular assignment that satisfies equal treatment
of equals always exists and that it can be computed in polynomial time. To this
end, we introduce the notion of an S-leveling:

Definition 1. Let x be a random assignment for (A,H) and S ⊂ A. The S-
leveling of x is the random assignment y given by

yah =

{
xah a /∈ S
1
|S|
∑

a∈S xah a ∈ S.
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It is easy to see that the S-leveling of a random assignment is again a random
assignment, as the sum over all edges incident to any house or agent remains
unchanged.

Lemma 2. Let x and z be random assignments for (A,H) and S ⊂ A such that
all a ∈ S have identical preferences. Let furthermore y be the S-leveling of x.
Now, the S-leveling z′ of z satisfies

φ(x, z′) = φ(y, z).

Proof. We begin by showing that
∑

a∈S (xahz
′
ah′ − yahzah′) = 0 for all h, h′ ∈ H.

Let h, h′ ∈ H. Then∑
a∈S

(xahz
′
ah′ − yahzah′) =

∑
a∈S

xahz
′
ah′ −

∑
a∈S

yahzah′ (1)

=
∑
a∈S

xah

(
1

|S|
∑
a∈S

zah′

)
−
∑
a∈S

(
1

|S|
∑
a∈S

xah

)
zah′ (2)

=
1

|S|
∑
a∈S

zah′
∑
a∈S

xah −
1

|S|
∑
a∈S

xah
∑
a∈S

zah′ (3)

= 0, (4)

where we use the definition of S-leveling in (2) and the fact that one of the factors
in each sum does not depend on a in (3). We use the definition of function φ as
defined in Section 3.

Now, we define φ∗ := φa for an arbitrary agent a ∈ S and have φ∗ = φa for
all agents in S due to their identical preferences. Using this notation, we show,
that φ(x, z′)− φ(y, z) = 0:

φ(x, z′)− φ(y, z) =
∑
a∈A

∑
h,h′∈H

xahz
′
ah′ φa(h, h′)−

∑
a∈A

∑
h,h′∈H

yahzah′ φa(h, h′)

(5)

=
∑
a∈A

∑
h,h′∈H

φa(h, h′) (xahz
′
ah′ − yahzah′) (6)

=
∑
a∈S

∑
h,h′∈H

φa(h, h′) (xahz
′
ah′ − yahzah′) (7)

=
∑

h,h′∈H

φ∗(h, h′)
∑
a∈S

(xahz
′
ah′ − yahzah′) (8)

= 0 (9)

using the fact that x and y as well as z and z′ coincide on A \ S in equation
(7), the identical preferences of agents in S in (8) and finally our first claim in
(9). ut

Theorem 2. There always exists a popular random assignment that satisfies
equal treatment of equals. Such an assignment can furthermore be computed in
polynomial time.
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Proof. Let x be a popular random assignment (the existence of which is guar-
anteed due to the minimax theorem) that does not satisfy equal treatment of
equals for a subset A′ of A and S ⊂ A′ a set of agents with identical preferences.
Denote by y the S-leveling of x, which obviously has the property of treating
these agents with identical preferences equally.

Suppose for contradiction that there is a random assignment z more popular
than y, that is φ(z, y) > 0. Using Lemma 2, we obtain a random assignment z′

with φ(z′, x) > 0. Hence, z′ is more popular than x which yields a contradiction
to our assumption that x was popular.

We thus obtain a random assignment (y) that does not satisfy equal treat-
ment of equals for a strictly smaller subset A′ \ S of A. Applying this argument
iteratively, we finally obtain a random assignment that satisfies equal treatment
of equals. ut

To efficiently compute a popular assignment that satisfies equal treatment of
equals, consider LP3 by Kavitha et al. [13] which computes a popular random
assignment. With at most O(n2) extra constraints, it can be ensured that agents
with same preferences get the same allocations. For each ai, aj such that %i=%j ,
we can impose the condition that x(ai, hk) = x(aj , hk) for all hk ∈ H. This
ensures the equal treatment to equals condition.

6 Envy-freeness

In this section, we investigate to which extent popularity is compatible with
envy-freeness. There are popular assignments that fail to satisfy even weak
SD-envy-freeness (again, consider the case with two agents who have identi-
cal preferences). The question that we are interested in is whether, for every
preference profile, there exists at least one popular assignment that satisfies SD-
envy-freeness or weak SD-envy-freeness.

Theorem 3. There exists an instance of a random assignment problem with
n = 3 for which no popular assignment satisfies SD-envy-freeness.

Proof. Consider the following assignment problem with three agents and three
houses.

a1 : h1, h2, h3

a2 : h1, h2, h3

b : h2, h1, h3

As noted in Section 3, any assignment that satisfies SD-envy-freeness must also
satisfy equal treatment of equals. We now show that the unique popular assign-
ment that satisfies equal treatment of equals is as follows:

pa1h1
= 1/2, pa1h2

= 0, pa1h3
= 1/2,

pa2h1
= 1/2, pa2h2

= 0, pa2h3
= 1/2,

pbh1
= 0, pbh2

= 1, pbh3
= 0.
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Consider an assignment p which satisfies equal treatment of equals. Denote by
p1 := pa1h1

= pa2h1
and p2 := pa1h2

= pa2h2
. Note that, in particular, as

p is popular it has to be at least as popular as the pure assignment M1 =
{(b, h2), (a1, h1), (a2, h3)}. Hence, p must fulfil φ(M1, p) = 1 + p2 − 2p1 ≤ 0
which means that p1 ≥ 1/2 + p2/2. Secondly, 1 ≥ pa1h1

+ pa2h1
= 2p1 which

means that p1 ≤ 1/2.
The only assignment that satisfies the constraints p1 ≥ 1/2 +p2/2, p1 ≤ 1/2,

p1 ≥ 0, and p2 ≥ 0 is the one for which p1 = 1/2 and p2 = 0. In this assignment
p, the allocations of a1, a2 do not SD-dominate the allocation of b according to
the preference of a1 and a2. Therefore the only popular assignment satisfying
equal treatment of equals does not satisfy SD-envy-freeness. ut

Despite this negative result, an SD-envy-free popular random assignment can
be computed in polynomial time whenever it exists. For each pair of agents a, b,
we need the constraint that pa %SD

a pb. This can be encoded easily by considering
at most as many partial sums as the number of houses n.∑

h∈H
h%ah

∗

pah ≥
∑
h∈H

h%ah
∗

pbh for all h∗ ∈ H.

There are O(n2) such constraints.
Regarding weak SD-envy-freeness, the alternative characterization of the SD

relation in terms of utility functions mentioned in Section 2 might help. This
characterization allows us to ensure weak SD-envy-freeness by adding constraints
to the linear program used to compute popular assignments as follows: An as-
signment p is not strictly preferred to an assignment q by agent i, if there exists
some utility function u for which the expected utility of q is greater than that
of p. This can be expressed by adding variables to represent the utility function
u (for each agent). However, we have shown that the resulting feasible region is
non-convex, which implies that this representation hardly leads to an efficient
algorithm to compute such an assignment. This assessment does of course not
preclude the existence of such an assignment.

7 Strategyproofness

Finally, we examine how popular assignment rules fare in terms of strategyproof-
ness. It turns out that popularity is incompatible with SD-strategyproofness.

Theorem 4. For n ≥ 3, there are no SD-strategyproof popular randomized as-
signment rules.

Proof. Consider an assignment problem with three agents and three houses and
the following preferences.

a1 : h1, h3, h2

a2 : h1, h2, h3

a3 : h1, h2, h3
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We show that there exists some utility function for agent a1, compatible
with his preferences, which allows him to obtain a higher expected utility if he
misreports his preferences. In light of the equivalence mentioned in Section 2,
this means that agent a1 does not SD-prefer his original outcome to that which
she may achieve by misreporting.

The set of all deterministic assignments is as follows:

M123 = {{a1, h1}, {a2, h2}, {a3, h3}}, M312 = {{a1, h3}, {a2, h1}, {a3, h2}},
M231 = {{a1, h2}, {a2, h3}, {a3, h1}}, M132 = {{a1, h1}, {a2, h3}, {a3, h2}},
M321 = {{a1, h3}, {a2, h2}, {a3, h1}}, M213 = {{a1, h2}, {a2, h1}, {a3, h3}}.

Then consider the matrix corresponding to the pairwise weighted majority
comparisons. An entry in the matrix denotes the number of agents who prefer
the row assignment to the column assignment minus number of agents who
prefer the column assignment to the row assignment. An assignment is popular
if and only if it is a maximin strategy of the symmetric two-player zero-sum
game represented by the matrix. It can be checked using an LP solver that each
maximin strategy only randomizes over M312 and M321.

Since a1 gets h3 in both M312 and M321, a1 gets h3 with probability one in
every popular assignment.

M123 M312 M231 M132 M321 M213

M123 0 −1 +1 0 0 0

M312 +1 0 +1 0 0 +2

M231 −1 −1 0 +2 −2 0

M132 0 0 −2 0 −1 +1

M321 0 0 +2 +1 0 +1

M213 0 −2 0 −1 −1 0

Now if a1 misreports his preferences as h1, h2, h3, the new preference profile
is as follows.

a1 : h1, h2, h3

a2 : h1, h2, h3

a3 : h1, h2, h3

Then, the pairwise majority margins are shown in the matrix below.

M123 M312 M231 M132 M321 M213

M123 0 −1 +1 0 0 0

M312 +1 0 −1 0 0 0

M231 −1 +1 0 0 0 0

M132 0 0 0 0 −1 +1

M321 0 0 0 +1 0 −1

M213 0 0 0 −1 +1 0

10



It can be shown that a maximin strategy is a probability distribution over
the following two strategies [M123 : 1/3;M312 : 1/3;M231 : 1/3] and [M132 :
1/3;M321 : 1/3;M213 : 1/3]. Hence the induced popular assignment for any
lottery corresponding to a maximin strategy is one which specifies a probability
of 1/3 of each agent getting each object. Thus a1 gets h1, h2, and h3 each with
probability 1/3. Now, let us assume that ua1

(h1) +ua1
(h2) > 2ua1

(h3). Then a1
gets utility (ua1

(h1) + ua1
(h2) + ua1

(h3))/3 > 3ua1
(h3)/3 = ua1

(h3). ut

An important open question is whether there are weakly SD-strategyproof
popular random assignment rules. Related questions have recently also been an-
alyzed in the more general context of social choice where it was shown that pop-
ularity is incompatible with weak SD-strategyproofness, but compatible with
a significantly weaker version of weak SD-strategyproofness called weak ST-
strategyproofness [2].

8 Conclusion

Kavitha et al. [13] have recently shown that every assignment problem admits a
popular random assignment which can furthermore be computed in polynomial
time using linear programming. In this paper, we investigated which common
axiomatic properties are compatible with popularity. Results were mixed. It
turned out that a particularly desirable aspect of popularity is that many con-
ditions can be formalized as linear constraints that can be simply plugged into
the linear program for computing popular random assignments. Furthermore,
all properties considered in this paper (including popularity) do not require the
asymmetry or transitivity of the agents’ preferences. By contrast, two of the
most studied random assignment rules, PS and RSD, are only defined for transi-
tive preferences and many axiomatic results concerning these rules even require
linear preferences.

A number of interesting questions arise from our study. Two of the most
important ones are whether there always exists a weakly SD-envy-free popular
random assignment and whether there exists a popular random assignment rule
that satisfies weak SD-strategyproofness.
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