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Abstract

An important aspect in systems of multiple autonomous agents is the exploita-
tion of synergies via coalition formation. Additively separable hedonic games
are a fundamental class of coalition formation games in which each player has
a value for any other player and the value of a coalition to a particular player
is simply the sum of the values he assigns to the members of his coalition. In
this paper, we consider a number of solution concepts from cooperative game
theory, welfare theory, and social choice theory as criteria for desirable parti-
tions in hedonic games. We then conduct a detailed computational analysis of
computing, checking the existence of, and verifying stable, fair, optimal, and
popular partitions for additively separable hedonic games.

Keywords: Game Theory, Coalition Formation, Hedonic Games,
Computational Complexity

1. Introduction

Topics concerning coalitions and coalition formation have come under in-
creasing scrutiny of computer scientists. The reason for this may be obvious.
For the proper operation of distributed and multiagent systems, cooperation
may be required. At the same time, collaboration in very large groups may
also lead to unnecessary overhead, which may even exceed the positive effects
of cooperation. To model such situations formally, concepts from the social and
economic sciences have proved to be very helpful and thus provide the mathe-
matical basis for a better understanding of the issues involved.

Coalition formation games, as introduced by Drèze and Greenberg [18], pro-
vide a simple but versatile formal model that allows one to focus on coalition
formation. In many situations it is natural to assume that a player’s apprecia-
tion of a coalition structure only depends on the coalition he is a member of and
not on how the remaining players are grouped. Initiated by Banerjee et al. [5]
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and Bogomolnaia and Jackson [9], much of the work on coalition formation now
concentrates on these so-called hedonic games. Hedonic games are relevant in
modeling many settings such as the formation of groups, clubs and societies [9]
and online social networking [19]. The main focus in hedonic games has been
on notions of stability for coalition structures such as Nash stability, individual
stability, contractual individual stability, or core stability. Additively separable
hedonic games (ASHGs) constitute a particularly natural and succinctly repre-
sentable class of hedonic games. Each player in an ASHG has a value for any
other player and the value of a coalition to a particular player is simply the sum
of the values he assigns to the members of his coalition.

In this paper, we present a systematic investigation of stability, fairness, op-
timality, and popularity concepts in hedonic games. After presenting a cohesive
bigger picture of the relationships between these concepts, we focus on ASHGs
and characterize the complexity of computing and verifying stable, fair, optimal,
and popular partitions. Apart from examining standard stability notions, we
also analyze concepts from fair division and social choice theory in the context
of coalition formation games and examine various standard criteria from the
social sciences: Pareto optimality, utilitarian social welfare, egalitarian social
welfare, envy-freeness, and popularity.

In Section 4, we present a polynomial-time algorithm to compute a con-
tractually individually stable partition. This is the first positive algorithmic
result (with respect to one of the standard stability concepts put forward by
Bogomolnaia and Jackson [9]) for general ASHGs with no restrictions on the
preferences.

We strengthen the recent results of Sung and Dimitrov [37] by proving in
Section 5 that checking whether the core or the strict core exists is NP-hard,
even if the preferences of the players are symmetric.

In Section 6, we consider the complexity of computing welfare maximizing
partitions. We show that computing a partition with maximum egalitarian
social welfare is NP-hard. Similarly, computing a partition with maximum
utilitarian social welfare is NP-hard in the strong sense even when preferences
are symmetric and strict. In contrast, we show that it can be checked efficiently
whether there exists a partition in which each player is in one of his most favored
coalitions.

In Section 7, Pareto optimality and the related stability concept of the con-
tractual strict core (CSC) are studied. It is shown that verifying whether a
partition is in the CSC is coNP-complete, even if the partition under ques-
tion consists of the grand coalition. This is the first computational hardness
result concerning CSC stability in hedonic games of any representation. The
proof can be used to show that verifying whether the partition consisting of
the grand coalition is Pareto optimal is coNP-complete. Furthermore, check-
ing whether a given partition is Pareto optimal is coNP-complete in the strong
sense, even when preferences are strict and symmetric. By contrast, we present
a polynomial-time algorithm for computing a Pareto optimal partition when
preferences are strict. Thus, we identify a natural problem in coalitional game
theory where verifying a possible solution is presumably harder than actually
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finding one. Interestingly, computing an individually rational and Pareto opti-
mal partition is NP-hard in general.

In Section 8, we consider complexity questions regarding envy-free parti-
tions. It is observed that envy-freeness and individual rationality together can
be easily achieved. Therefore, we turn to the combination of envy-freeness and
other desirable criteria. Checking whether there exists a partition which is
both Pareto optimal and envy-free is shown to be Σp2-complete. We construct
an example which exhibits the tension between stability and envy-freeness and
use the example to prove that checking whether there exists a partition which
is both envy-free and Nash stable is NP-complete even when preferences are
symmetric.

We finally consider the notion of popularity in Section 9. Popularity has
previously been examined in resource allocation and captures the idea that any
change in the outcome requires the approval of a majority of the players. We
show that in contrast to results in matching theory and resource allocation [27,
8], the problems of computing and verifying a popular partition are intractable
for ASHGs.

ASHGs are a simple and fundamental class of coalition formation games
and many of our computational results carry over to other classes of coalition
formation games. For example, all of our computational hardness results imply
computational hardness of the equivalent questions for hedonic coalition nets—a
general representation scheme for hedonic games [19].

2. Related Work

There has been considerable work in hedonic games on identifying restric-
tions on preferences that guarantee the existence of partitions that satisfy vari-
ous notions of stability [see, e.g. 9, 12]. Sung and Dimitrov [36] presented a tax-
onomy of stability concepts which includes the contractual strict core, the most
general stability concept that is guaranteed to exist. Hedonic games encapsu-
late well-studied settings in matching theory such as stable marriage and stable
roommates problems in which only coalitions of size two are admissible [32, 25].
We refer to Hajduková [26] for a critical overview of hedonic games.

More recently, hedonic games have been examined from an algorithmic per-
spective. The focus has been on the computational complexity of comput-
ing stable or optimal partitions for different classes of hedonic games [see, e.g.
4, 17, 13, 3]. Cechlárová [13] surveyed the algorithmic problems related to sta-
ble partitions in hedonic games in various representations. Ballester [4] showed
that for hedonic games represented by individually rational list of coalitions,
the complexity of checking whether core stable, Nash stable, or individual sta-
ble partitions exist is NP-complete. He also proved that every hedonic game
admits a contractually individually stable partition. Coalition formation games
have also received attention in the artificial intelligence community where the fo-
cus has generally been on computing optimal partitions for general transferable
utility coalitional games without any combinatorial structure [see, e.g. 31, 33].
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In contrast, hedonic games are a simple class of non-transferable utility coali-
tional games. Elkind and Wooldridge [19] proposed a fully-expressive model to
represent hedonic games which encapsulates well-known representations such as
individually rational list of coalitions and additive separability.

Additive separability satisfies a number of desirable axiomatic properties [7,
20]. Moreover, ASHGs are the non-transferable utility generalization of graph
games as studied by Deng and Papadimitriou [15]. Due to their succinct and
natural representation, ASHGs have recently attracted increased interest by
computer scientists. Olsen [29] showed that checking whether a nontrivial Nash
stable partition exists in an ASHG is NP-complete if preferences are nonnega-
tive and symmetric. This result was improved by Sung and Dimitrov [37] who
showed that checking whether a core stable, strict core stable, Nash stable, or in-
dividually stable partition exists in a general ASHG is NP-hard. Dimitrov et al.
[17] obtained positive algorithmic results for subclasses of ASHGs in which each
player merely divides other players into friends and enemies. In another pa-
per, Branzei and Larson [11] examined the tradeoff between stability and social
welfare in ‘coalitional affinity games’ which are equivalent to ASHGs. Finally,
Gairing and Savani [21, 22] showed that for ASHGs with symmetric preferences,
computing partitions that satisfy some variants of individual-based stability is
PLS-complete.

3. Preliminaries

In this section, we provide the terminology and notation required for our
results.

A hedonic coalition formation game is a pair (N,%) where N is a set of
players and % is a preference profile which specifies for each player i ∈ N the
preference relation %i, a reflexive, complete, and transitive binary relation on
the set Ni = {S ⊆ N | i ∈ S}. The statement S �i T denotes that i strictly
prefers S over T whereas S ∼i T means that i is indifferent between coalitions
S and T . A partition π is a partition of players N into disjoint coalitions. By
π(i), we denote the coalition of π that includes player i.

A game (N,%) is separable if for any player i ∈ N and any coalition S ∈ Ni

and for any player j not in S we have the following: S ∪ {j} �i S if and only if
{i, j} �i {i}; S ∪ {j} ≺i S if and only if {i, j} ≺i {i}; and S ∪ {j} ∼i S if and
only if {i, j} ∼i {i}.

In an additively separable hedonic game (ASHG) (N,%), each player i ∈ N
has value vi(j) for player j being in the same coalition as i and if i is in coalition
S ∈ Ni, then i gets utility

∑
j∈S\{i} vi(j). For coalitions S, T ∈ Ni, S %i T

if and only if
∑
j∈S\{i} vi(j) ≥

∑
j∈T\{i} vi(j). Therefore an ASHG can be

represented as (N, v). We will denote the utility of player i in partition π by
uπ(i).

A preference profile is symmetric if vi(j) = vj(i) for any two players i, j ∈ N
and is strict if vi(j) 6= 0 for all i, j ∈ N . For any player i, let F (i, A) = {j ∈ A |
vi(j) > 0} be the set of friends of player i within A.
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Unless mentioned otherwise, all our results are for ASHGs. We now define
important stability concepts used in the context of coalition formation games.

• We say that a partition π is individually rational (IR) if each player does
as well as by being alone, i.e., for all i ∈ N , π(i) %i {i}. Individual
rationality is a minimal requirement of stability.

• A partition π is Nash stable (NS) if no player can benefit by moving from
his coalition to another (possibly empty) coalition, i.e., for all i ∈ N ,
π(i) %i S for all S ∈ π ∪ {∅}

• A partition π is individually stable (IS) if no player can benefit by moving
from his coalition to another existing (possibly empty) coalition while not
making the members of that coalition worse off, i.e., for all i ∈ N if there
exists a (possibly empty) coalition S 6= π(i) s.t. S �i π(i) then there
exists a j ∈ S with S �j S ∪ {i}.

• A partition π is contractually individually stable (CIS) if no player can
benefit by moving from his coalition to another existing (possibly empty)
coalition while making no member of either coalition worse off. Formally,
for every i ∈ N if there exists a (possible empty) coalition S 6= π(i) s.t.
S �i π(i) then there exists a j ∈ S with S �j S ∪ {i} or there exists a
j′ ∈ π(i) with π(i) �j′ π(i) \ {i}.

• We say that a coalition S ⊆ N strongly blocks a partition π, if each player
i ∈ S strictly prefers S to his current coalition π(i) in the partition π. A
partition which admits no blocking coalition is said to be in the core (C).

• We say that a coalition S ⊆ N weakly blocks a partition π, if each player
i ∈ S weakly prefers S to π(i) and there exists at least one player j ∈ S
who strictly prefers S to his current coalition π(j). A partition which
admits no weakly blocking coalition is in the strict core (SC).

• A partition π is in the contractual strict core (CSC) if any weakly blocking
coalition S makes at least one player j ∈ N \ S worse off when breaking
off.

We now formulate concepts from the social sciences, especially the literature
on fair division, for the context of hedonic games. For a utility-based hedonic
game (N,%) and partition π, we will denote the utility of player i ∈ N by uπ(i).

The different notions of fair, optimal, or popular partitions are defined as
follows.1

• We say that a partition π is perfect if π(i) is a most preferred coalition for
all players i ∈ N [3].

1All welfare notions considered in this paper (utilitarian, elitist, and egalitarian) are based
on the interpersonal comparison of utilities.
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Figure 1: Inclusion relationships between stability, fairness, optimality, and popularity con-
cepts for hedonic coalition formation games. For example, every Nash stable partition is also
individually stable.

• The utilitarian social welfare of a partition is defined as the sum of individ-
ual utilities of the players: uutil(π) =

∑
i∈N uπ(i). A maximum utilitarian

partition maximizes the utilitarian social welfare.

• The elitist social welfare is given by the utility of the player that is best off:
uelite(π) = max{uπ(i) | i ∈ N}. A maximum elitist partition maximizes
the utilitarian social welfare.

• The egalitarian social welfare is given by the utility of the agent that
is worst off: uegal(π) = min{uπ(i) | i ∈ N}. A maximum egalitarian
partition maximizes the egalitarian social welfare.

• A partition π of N is Pareto optimal if there exists no partition π′ of N
which Pareto dominates π, that is for all i ∈ N , π′(i) %i π(i) and there
exists at least one player j ∈ N such that j ∈ N , π′(j) �j π(j).

• Envy-freeness is a notion of fairness. In an envy-free (EF) partition, no
player has incentive to replace another player. More formally, a partition
π is envy-free if for all i, j ∈ N such that π(i) 6= π(j), it is the case that
π(i) %i (π(j) \ {j}) ∪ {i}.

• Let D(π, π′) = |P (π, π′)| − |P (π′, π)| where P (π, π′) is the set of play-
ers who strictly prefer partition π to π′. Then, partition π is popular if
D(π, π′) ≥ 0 for all other partitions π′.
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The inclusion relationships between stability concepts depicted in Figure 1
follow from their definitions.

For a given stability, optimality, or fairness property α, the following natural
computational problems can be formulated for hedonic games.

Verification: Given (N,%) and a partition π of N , does π satisfy α?
Existence: Does a partition satisfying α for a given (N,%) exist?
Computation: If a partition satisfying α for a given (N,%) exists, find one.

We consider ASHGs (additively separable hedonic games) in this paper. Un-
less mentioned otherwise, all our results are for ASHGs. Throughout the paper,
we assume familiarity with basic concepts of computational complexity [see,
e.g., 30].

Observation 1. By the definitions, it follows that there exist partitions which
satisfy maximum utilitarian social welfare, elitist social welfare, and egalitarian
social welfare respectively. Therefore, Existence trivially holds for any notion
of maximum welfare.

Similarly, the following observation indicates that Verification is easy for
a number of solution concepts.

Observation 2. It can be checked in polynomial time whether a partition is
one of following: individually rational, Nash stable, individually stable, contrac-
tual individually stable, and envy-free. For individual rationality, simply check
whether each player has a non-negative payoff. For Nash stability, individual
stability, and contractual individual stability, check for each player whether he
has an incentive to move to another coalition in the partition. Finally, for envy-
freeness, we need to check for each player whether he wants to replace another
player in another coalition.

4. Contractual individual stability

It is known that computing or even checking the existence of Nash stable or
individually stable partitions in an ASHG is NP-hard [37]. On the other hand,
a potential function argument can be used to show that at least one CIS par-
tition exists for every hedonic game [4]. The potential function argument does
not imply that a CIS partition can be computed in polynomial time. There are
many cases in hedonic games, where a solution is guaranteed to exist but com-
puting it is not feasible. For example, Bogomolnaia and Jackson [9] presented
a potential function argument for the existence of a Nash stable partition for
ASHGs with symmetric preferences. However, there are no known polynomial-
time algorithms to compute such partitions and there is evidence that there may
not be any polynomial-time algorithm [21]. In this section, we show that a CIS
partition can be computed in polynomial time for ASHGs. The algorithm is
formally described as Algorithm 1.
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Algorithm 1 CIS partition of an ASHG

Input: ASHG (N, v).
Output: CIS partition.

i← 0
R← N
while R 6= ∅ do
a ∈ R
h←

∑
b∈F (a,R) va(b)

z ← i+ 1
for k ← 1 to i do
h′ ←

∑
b∈Sk

va(b)
if (h < h′) ∧ (∀b ∈ Sk, vb(a) = 0) then
h← h′

z ← k
end if

end for
if z 6= i+ 1 then {a is latecomer}
Sz ← {a} ∪ Sz
R← R \ {a}

else {a is leader}
i← z
Si ← {a}
Si ← Si ∪ F (a,R) {add leader’s helpers}
R← R \ Si

end if
while ∃j ∈ R such that ∀i ∈ Sz, vi(j) ≥ 0 and ∃i ∈ Sz, vi(j) > 0 do
R← R \ {j}
Sz ← Sz ∪ {j} {add needed players}

end while
end while
return {S1, . . . , Si}

Theorem 1. A CIS partition can be computed in polynomial time.

Proof. Our algorithm to compute a CIS partition can be viewed as successively
giving a priority token to players to form the best possible coalition among the
remaining players or join the best possible coalition which tolerates the player.
More precisely, the algorithm works as follows. Set variable R to N , S0 to ∅,
and consider an arbitrary player a ∈ R. Call a the leader of the first coalition
Si with i = 1. Move any player j such that va(j) > 0 from R to Si. Such
players are called the leader’s helpers. Then keep moving any player from R to
Si which is tolerated by all players in Si and strictly liked by at least one player
in Si. Call such players needed players. Now increment i and take another
player a from among the remaining players R and check the maximum utility
he can get from among R. If this utility is less than the utility which can be
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obtained by joining a previously formed coalition in {S1, . . . , Si−1}, then send
the player to such a coalition where he can get the maximum utility (as long
as all players in the coalition tolerate the incoming player). Such players are
called latecomers. Otherwise, form a new coalition Si around a which is the best
possible coalition for player a taking only players from the remaining players
R. Repeat the process until all players have been dealt with and R = ∅. We
prove by induction on the number of coalitions formed that no CIS deviation
can occur in the resulting partition. The hypothesis is the following:

Consider the first k+1 formed coalitions S0, S1, . . . , Sk. Then, the following
two statements hold.

(i) There is no CIS deviation for any player in
⋃
i∈{0,...,k} Si.

(ii) There is no CIS deviation for any player in N \
⋃
i∈{0,...,k} Si to a non-

empty coalition in {S0, S1, . . . , Sk}.

Base case. Clearly, the statement is trivially satisfied if k = 0.

Induction step. Assume that the hypothesis is true. Then we prove that the
same holds for the formed coalitions S0, . . . , Sk, Sk+1. By the hypothesis, we
know that players cannot leave coalitions S0, . . . , Sk. Now consider Sk+1. The
leader a of Sk+1 is either not allowed to join one of the coalitions in {S1, . . . , Sk}
or if he is, he has no incentive to join it. Player a would already have been
member of Si for some i ∈ {1, . . . , k} if one of the following was true:

• There is some i ∈ {1, . . . , k} such that the leader of Si likes a.

• There is some i ∈ {1, . . . , k} such that for all b ∈ Si, vb(a) ≥ 0 and there
exists b ∈ Si such that vb(a) > 0.

• There is some i ∈ {1, . . . , k}, such that for all b ∈ Si, vb(a) = 0 and∑
b∈Si

va(b) >
∑
b∈F (i,N\∪k

i=1Si)
va(b) and

∑
b∈Si

va(b) ≥
∑
b∈Sj

va(b) for

all j ∈ {1, . . . , k}.

Therefore a has no incentive or is not allowed to move to another Sj for
j ∈ {1, . . . , k}. Also a will have no incentive to move to any coalition formed
after S1, . . . , Sk+1 because he can do strictly better in Sk+1. Similarly, a’s
helpers are not allowed to leave Sk+1 even if they have an incentive to. Their
movement out of Sk+1 will cause a to become less happy. Also each needed
player in Sk+1 is not allowed to leave because at least one player in Sk likes
him. Now consider a latecomer l in Sk+1. Latecomer l gets strictly less utility

in any coalition C ⊆ N \
⋃k+1
i=0 Si. Therefore l has no incentive to leave Sk+1.

Finally, we prove that there exists no player x ∈ N \
⋃k+1
i=0 Si such that x has

an incentive to and is allowed to join Si for i ∈ {1, . . . k+1}. By the hypothesis,
we already know that x does not have an incentive or is allowed to a join a
coalition Si for i ∈ {1, . . . k}. Since x is not a latecomer for Sk+1, x either does
not have an incentive to join Sk+1 or is disliked by at least one player in Sk+1.
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Algorithm 1 may also prove useful as a preprocessing or intermediate routine
in algorithms for computing other types of stable partitions in hedonic games.

5. Core and strict core

The core and the strict core are two of the most fundamental stability con-
cepts in cooperative game theory. For transferable utility cooperative games,
both concepts coincide. For hedonic games, this is not necessarily the case. Re-
cently, Sung and Dimitrov [37] showed that for ASHGs checking whether a core
stable or strict core stable partition exists is NP-hard in the strong sense. Their
reduction relied on the asymmetry of the players’ preferences. We prove that
even with symmetric preferences, checking whether a core stable or a strict core
stable partition exists is NP-hard in the strong sense. Symmetry is a natural,
but rather strong condition, that yields more positive existence results and can
often be exploited algorithmically. For example, it is known that for ASHGs,
computing a Nash stable partition is NP-hard whereas the same problem is
PLS-complete if the preferences are symmetric [9, 21].

We first present an example of a six-player ASHG with symmetric preferences
for which the core (and thereby the strict core) is empty.

Example 1. Consider a six player symmetric ASHG adapted from an example
by Banerjee et al. [5] where

• v1(2) = v3(4) = v5(6) = 6;

• v1(6) = v2(3) = v4(5) = 5;

• v1(3) = v3(5) = v1(5) = 4;

• v1(4) = v2(5) = v3(6) = −33; and

• v2(4) = v2(6) = v4(6) = −33.

as depicted in Figure 2.
It can be checked that no partition is core stable for the game. Note that

if vi(j) = −33, then i and j cannot be in the same coalition of a core stable
partition. Also, players can do better than in a partition of singleton players.
We note that the following are the individually rational coalitions: {1, 2}, {1, 3},
{1, 5}, {1, 6}, {1, 2, 3}, {1, 3, 5}, {1, 5, 6}, {2, 3}, {3, 4}, {3, 4, 5}, {3, 5}, {4, 5}
and {5, 6}.

Consider the partition

π = {{1, 2}, {3, 4, 5}, {6}}.

Then, uπ(1) = uπ(2) = 6, uπ(3) = 10, uπ(4) = 11, uπ(5) = 9, and uπ(6) = 0.
Out of the individually rational coalitions listed above, the only weakly (and

also strongly) blocking coalition is {1, 5, 6} in which player 1 gets utility 9, player
5 gets utility 10, and player 6 gets utility 11. We note that the coalition {1, 2, 3}
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Figure 2: Graphical representation of Example 1. All edges not shown in the figure have
weight −33.

is not a weakly or strongly blocking coalition because player 3 gets utility 9.
Similarly {1, 3, 5} is not a weakly or strongly blocking coalition because both
player 3 and player 5 are worse off. One way to prevent that {1, 5, 6} is weakly
blocking is to provide some incentive for player 6 not to deviate with 1 and 5.
This idea will be used in the proof of Theorem 2.

We now define a problem that is NP-complete is the strong sense.

Name: ExactCoverBy3Sets (E3C):
Instance: A pair (R,S), where R is a set and S is a collection of subsets of R
such that |R| = 3m for some positive integer m and |s| = 3 for each s ∈ S.
Question: Is there a sub-collection S′ ⊆ S that is a partition of R?

It is known that E3C remains NP-complete even if each r ∈ R occurs in
at most three members of S [24]. We will use this assumption in the proof of
Theorem 2, which will be shown by a reduction from E3C.

Theorem 2. Checking whether a core stable or a strict core stable partition
exists is NP-hard in the strong sense, even when preferences are symmetric.

Proof. Let (R,S) be an instance of E3C where r ∈ R occurs in at most three
members of S. We reduce (R,S) to an ASHG with symmetric preferences (N, v)
in which there is a player ys corresponding to each s ∈ S and there are six
players xr1, . . . , x

r
6 corresponding to each r ∈ R. These players have preferences

over each other in exactly the way players 1, . . . , 6 have preferences over each
other as in Example 1.

So, N = {xr1, . . . , xr6 | r ∈ R} ∪ {ys | s ∈ S}. We assume that all preferences
are symmetric. The player preferences are as follows:

• For i ∈ R,
vxi

1
(xi2) = vxi

3
(xi4) = vxi

5
(xi6) = 6;

vxi
1
(xi6) = vxi

2
(xi3) = vxi

4
(xi5) = 5; and

vxi
1
(xi3) = vxi

3
(xi5) = vxi

1
(xi5) = 4;

11



x16 x26 x36 x46 x56

· · ·

ys1 ys2 · · ·

Figure 3: Graphical representation of an ASHG derived from an instance of E3C in the proof
of Theorem 2. Symmetric utilities other than −33 are given as edges. Thick edges indicate
utility 10 1

4
and dashed edges indicate utility 1/2. Each hexagon at the top looks like the one

in Figure 4.
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Figure 4: Graphical representation of the ASHG from Example 1 as used in the proof of
Theorem 2. All edges not shown in the figure have weight −33.

• For any s = {k, l,m} ∈ S,
vxk

6
(xl6) = vxl

6
(xk6) = vxk

6
(xm6 ) = vxm

6
(xk6) = vxl

6
(xm6 ) = vxm

6
(xl6) = 1/2;

and
vxk

6
(ys) = vxl

6
(ys) = vxm

6
(ys) = 101

4 ;

• vi(j) = −33 for any i, j ∈ N for valuations not defined above.

We prove that (N,P ) has a non-empty strict core (and thereby also a non-
empty core) if and only if there exists an S′ ⊆ S such that S′ is a partition of
R.

Assume that there exists an S′ ⊆ S such that S′ is a partition of R. Then
we prove that there exists a strict core stable (and thereby core stable) partition
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π where π is defined as follows:

{{xi1, xi2}, {xi3, xi4, xi5} | i ∈ R} ∪ {{ys} | s ∈ S \ S′}
∪ {{ys ∪ {xi6 | i ∈ s}} | s ∈ S′}.

For all i ∈ R, uπ(xi1) = uπ(xi2) = 6, uπ(xi3) = 10, uπ(xi4) = 11, uπ(xi5) = 9,
and uπ(xi6) = 1/2 + 1/2 + 10 1

4 = 11 1
4 > 11.

Also uπ(ys) = 3 · (10 1
4 ) = 303

4 for all s ∈ S′ and uπ(ys) = 0 for all s ∈ S \S′.
We see that each player’s utility is non-negative. Therefore there is no incentive
for any player to deviate and form a singleton coalition. From Example 1 we also
know that the only possible strongly blocking (and weakly blocking) coalition is
{xi1 xi5, xi6} for any i ∈ R. However, xi6 has no incentive to be part {xi1, xi5, xi6}
because uπ(xi6) = 11 1

4 and vxi
6
(xi5) + vxi

6
(xi1) = 6 + 5 = 11. Also xi1 and xi5

have no incentive to join π(xi6) because their new utility will become negative
because of the presence of the ys player. Assume for the sake of contradiction
that π is not core stable and xi6 can deviate with a lot of xj6s. But, xi6 can only

deviate with a maximum of six other players of type xj6 because i ∈ R is present
in a maximum of three elements in S. In this case xi6 gets a maximum utility
of only 1. Therefore π is in the strict core (and thereby the core).

We now assume that there exists a partition which is core stable. Then we
prove that there exists an S′ ⊆ S such that S′ is a partition of R. For any
s = {k, l,m} ∈ S, the new utilities created due to the reduction gadget are
only beneficial to ys, xk6 , xl6, and xm6 . We already know that the only way the
partition is core stable is if xi6 can be provided disincentive to deviate with xi5
and xi1. The claim is that each xi6 needs to be in a coalition with exactly one
ys such that i ∈ s ∈ S and exactly two other players xj6 and xk6 such that
{i, j, k} = s ∈ S. We first show that xi6 needs to be with exactly one ys such
that i ∈ s ∈ S. Player needs to be with at least one such ys. If xi6 is only with
other xj6s, then we know that xi6 gets a maximum utility of only 6 · 1/2 = 3.

Also, player xi6 cannot be in a coalition with ys and ys
′

such that i ∈ s and
i ∈ s′ because both ys and ys

′
then get negative utility. Each xi6 also needs to

be with at least 2 other players xj6 and xk6 where j and k are also members of

s. If xi6 is with at least three players xj6, xk6 and xk6 , then there is one element
among a ∈ {j, k, l} such that a /∈ s. Therefore ys and xa6 hate each other and
the coalition {ys, xi6, x

j
6, x

k
6 , x

k
6} is not even individually rational. Therefore for

the partition to be core stable each xi6 has to be with exactly one ys such that
i ∈ s and and least 2 other players xj6 and xk6 where j and k are also members of
s. This implies that there exists an S′ ⊆ S such that S′ is a partition of R.

We now turn to the problem of verifying core or strict core stable partitions.
For ASHGs, the problem of testing the core membership of a partition is coNP-
complete [35]. The same reduction in [35] can also be used to prove that testing
strict core membership of a partition is coNP-complete even if preferences are
symmetric.

Theorem 3. Verifying whether a partition is strict-core stable is coNP-complete,
even if preferences are symmetric and vi(j) ∈ {1,−n} for all i 6= j.
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6. Maximizing social welfare

In this section, we examine the complexity of maximizing social welfare in
ASHGs. We first observe that computing a maximum utilitarian partition for
strict and symmetric preferences is NP-hard because it is equivalent to the
NP-hard problem of maximizing agreements in the context of correlation clus-
tering [6].

Theorem 4. Computing a maximum utilitarian partition is NP-hard in the
strong sense, even when preferences are symmetric and strict and vi(j) ∈ {−1,+1}
for all i, j ∈ N .

The problem of verifying a maximum utilitarian partition is also computa-
tionally intractable.

Theorem 5. Verifying a maximum utilitarian partition is coNP-complete in
the strong sense.

Proof. We prove Theorem 4 by a reduction from the MaxCut problem. Before
defining the MaxCut problem, recall that a cut is a partition of the vertices
of a graph into two disjoint subsets. The cut-set of the cut is the set of edges
whose end points are in different subsets of the partition. In a weighted graph,
the weight of the cut is the sum of the weights of the edges in the cut-set. Then,
MaxCut is the following problem:

Name: MaxCut
Instance: An undirected weighted graph G = (V,E) with a weight function
w : E → R+ and an integer k.
Question: Does there exist a cut of weight at least k in G?

It is well known that MaxCut is a NP-complete problem. It can also be
shown that the following verification problem is also NP-hard: given a feasible
edge cut, decide whether the edge cut is a maxcut. This follows from a gen-
eral argument by Schulz [Page 20, 34] concerning the optimization of a linear
function over a 0/1-polytope.

We present a polynomial-time reduction from MaxCut to the problem of
verifying a maximum utilitarian partition. It also serves as a polynomial-time
reduction from VerifyMaxCut to the problem of verifying a maximum utili-
tarian partition.

Consider an instance I of MaxCut with a connected undirected graph G =
(V,E) and positive weights w(i, j) for each edge (i, j). Let W =

∑
(i,j)∈E w(i, j).

We show that if there is there a polynomial-time algorithm for verifying a max-
imum utilitarian social welfare partition, then we have a polynomial-time algo-
rithm for verifying a MaxCut.

Consider the following method which in polynomial time reduces I to an
ASHG (N, v) with |V | + 2 players N = {m1, . . . ,m|V |, s1, s2}. For any two
players mi and mj , vmi

(mj) = vmj
(mi) = −w(i, j). For any player mi and

player sj , vmi
(sj) = vsj (mi) = W . Also vs1(s2) = vs2(s1) = −W (|V |+ 1).
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Then, it is easy to prove that (A,B) is a maxcut if and only if partition
π′ = {{s1 ∪ {mi | i ∈ A}}, {s2 ∪ {mi | i ∈ B}}} is a maximum utilitarian
partition for game (N, v).

In contrast, computing and verifying a maximum elitist partition is much
easier.

Theorem 6. A maximum elitist partition can be computed or verified in poly-
nomial time.

Proof. Recall that for any player i, F (i,N) = {j ∈ N | vi(j) > 0}. Let
f(i) =

∑
j∈F (i,N) vi(j). Both F (i,N) and f(i) can be computed in linear time.

Let k ∈ N be the player such that f(k) ≥ f(i) for all i ∈ N . Then π =
{{{k}∪F (k,N)}, N \{{k}∪F (k,N)}} is a partition which maximizes the elitist
social welfare. As a corollary, we can verify whether a partition π has maximum
elitist social welfare by computing a partition π∗ with maximum elitist social
welfare and comparing uelite(π) with uelite(π

∗).

We now turn our attention to maximum egalitarian partition. Just like max-
imizing the utilitarian social welfare, maximizing the egalitarian social welfare
is computationally hard.

Theorem 7. Computing a maximum egalitarian partition is NP-hard in the
strong sense.

Proof. We provide a polynomial-time reduction from the NP-hard problem
MaxMinMachineCompletionTime [16, 38]:

Name: MaxMinMachineCompletionTime
Instance: A set of m identical machines M = {M1, . . . ,Mm}, a set of n inde-
pendent jobs J = {J1, . . . , Jn} where job Ji has processing time pi.
Output: Allot jobs to the machines such that the minimum processing time
(without machine idle times) of all machines is maximized.

Let I be an instance of MaxMinMachineCompletionTime and let P =∑n
i=1 pi. From I we construct an ASHG (N, v) with N = {i | Mi ∈ M} ∪ {si |

Ji ∈ J} and the preferences of the players are as follows: for all i = 1, . . .m and
all j = 1, . . . , n let vi(sj) = pj and vsj (i) = P . Also, for 1 ≤ i, i′ ≤ m, i 6= i′ let
vi(i
′) = −(P + 1) and for 1 ≤ j, j′ ≤ n, j 6= j′ let vsj (vsj′ ) = 0. Each player i

corresponds to machine Mi and each player sj corresponds to job Jj .
Let π be the partition which maximizes uegal(π). We show that players

1, . . . ,m are in separate coalitions and each player sj is in π(i) for some 1 ≤
i ≤ m. We can do so by proving two claims. The first claim is that for
i, j ∈ {1, . . .m} such that i 6= j, we have that i /∈ π(j). The second claim is that
each player sj is in a coalition with some player i. Let π be the partition which
maximizes uegal(π). We show that players 1, . . . ,m are in separate coalitions and
each player sj is in π(i) for some 1 ≤ i ≤ m. We do so by proving two claims.
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The first claim is that for i, j ∈ {1, . . .m} such that i 6= j, we have that i /∈ π(j).
Assume there exist exactly two players i and j for which this is not the case.
Then we know that uπ(i) = −(P + 1) +

∑
sj∈π(i) pj . Since

∑
sj∈π(i) pj ≤ P ,

we know that uπ(i) = uπ(j) < 0, uπ(a) ≥ 0 for all a ∈ N \ {i, j} and thus
uegal(π) < 0. However, if i deviates and forms a singleton coalition in new
partition π′, then uπ′(i) = 0 and uπ′(j) ≥ 0 and the utility of other players has
not decreased. Therefore, uegal(π

′) ≥ 0, which is a contradiction.
The second claim is that each player sj is in a coalition with a player i.

Assume this was not the case so that there exists at least one such player sj .
Since we already know that all is are in separate coalitions, then uπ(a) > 0 for
all a ∈ N \ {sj} and uegal(π) = uπ(sj) = 0. Then sj can deviate and join π(i)
for any 1 ≤ i ≤ m to form a new partition π′. By that, the utility of no player
decreases and uπ′(sj) > 0. If this is done for all such sj , we have uegal(π

′) > 0
for the new partition π′ which is a contradiction.

A job allocation Alloc(π) corresponds to a partition π where sj is in π(i)
if job Jj is assigned to Mi for all j and i. Note that the utility uπ(i) =∑
sj∈π(i) vi(sj) =

∑
sj∈π(i) pj of a player corresponds to the total completion

time of all jobs assigned to Mi according to Alloc(π). Let π∗ be a max-
imum egalitarian partition. Assume that there is another partition π′ and
Alloc(π′) induces a strictly greater minimum completion time. We know that
uπ∗(sj) = uπ′′(sj) = P for all 1 ≤ j ≤ n and uπ∗(i) ≤ P for all 1 ≤ i ≤ m. But
then from the assumption we have uegal(π

′) > uegal(π
∗) which is a contradic-

tion.

Theorem 8. Verifying a maximum egalitarian partition is coNP-complete.

Proof. Both MaxMinMachineCompletionTime and computing a maximum
egalitarian partition do not appear to be problems which involve the optimiza-
tion of a linear function over a 0/1-polytope. Nonetheless Deuermeyer et al. [16]
observed that MaxMinMachineCompletionTime is NP-hard by a reduction
from integer partition—a well-known NP-complete problem.

Name: Partition
Instance: A set of k positive integer weights A = {a1, . . . , ak} such that∑
ai∈A ai = W .

Question: Is it possible to partition A, into two subsets A1 ⊆ A, A2 ⊆ A so
that A1 ∩A2 = ∅ and A1 ∪A2 = A and

∑
ai∈A1

ai =
∑
ai∈A2

ai = W/2?

The problem Partition is equivalent to the following optimization problem
over a 0/1 polytope: compute a subset S ⊆ A such that

∑
a∈S a ≥ W/2 and

which minimizes
∑
a∈S a. Therefore, we can again utilize the general argument

by Schulz [Page 20, 34] concerning the optimization of a linear function over a
0/1-polytope that if computing an optimal solution is NP-hard, then verifying
the optimality of the feasible solution is as hard. It follows that verifying a
maximum egalitarian partition is coNP-complete.
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Recall that a partition π is perfect if π(i) is a most preferred coalition for all
players i.

Theorem 9. For separable hedonic games, the existence of a perfect partition
can be checked in polynomial time. Moreover, a perfect partition can be verified
in polynomial time.

Proof. The idea behind the algorithm is to build up coalitions and ensure that
a player i and F (i,N), all the player i likes, are in the same coalition. While
ensuring this, if there is a player j and a player j′ ∈ E(j) (disliked by j), then
return ‘no.’ In each step, either a player gets all the players he likes or it is
found that some player be in the same coalition as a player he strictly dislikes.

For a given partition π, it can easily be checked whether for all i ∈ N ,
π(i) %i S for all S ∈ Ni. This is only possible if F (i,N) ⊆ π(i) \ {i} and
π(i) ∩ E(i) = ∅.

7. Contractual strict core and Pareto optimality

In this section, we present a number of results concerning CSC stability and
Pareto optimality. The complexity of Pareto optimality has already been con-
sidered in several settings such as house allocation [see, e.g., 2]. Bouveret and
Lang [10] examined the complexity of Pareto optimal allocations in resource
allocation problems. Although the resource allocation model with additive util-
ities has some similarities with ASHGs, there are some distinct differences. The
problem of computing Pareto optimal allocations is already trivial in resource
allocation: give each object to the agent who values it the most. In the con-
text of coalition formation, the question is more interesting. Furthermore, our
hardness results for the grand coalition (Theorem 11) or symmetric preferences
(Theorem 12) have no equivalent in the context of resource allocation.

Firstly, we prove that verifying whether a partition is CSC stable is coNP-
complete. Interestingly, coNP-completeness holds even if the partition in ques-
tion consists of the grand coalition. The proof of Theorem 10 is by a reduction
from the following weakly NP-complete problem.

Name: Partition
Instance: A set of k positive integer weights A = {a1, . . . , ak} such that∑
ai∈A ai = W .

Question: Is it possible to partition A, into two subsets A1 ⊆ A, A2 ⊆ A so
that A1 ∩A2 = ∅ and A1 ∪A2 = A and

∑
ai∈A1

ai =
∑
ai∈A2

ai = W/2?

Theorem 10. Verifying whether the partition consisting of the grand coalition
is CSC stable is weakly coNP-complete.

Proof. The problem is clearly in coNP because a partition π′ resulting by a CSC
deviation from {N} is a succinct certificate that {N} is not CSC stable. We
prove NP-hardness of deciding whether the grand coalition is not CSC stable

17



z1

zi

zk x1

x2 y2

y1
W
2

W
2

−W

W
2

W
2

−W

ai

ai

...

...

Figure 5: Graphical representation of the ASHG in the proof of Theorem 10. For all i ∈
{1, . . . , k}, an edge from x1 and x2 to zi has weight ai. All other edges not shown in the
figure have weight zero.

by a reduction from Partition. We can reduce an instance of I of Partition
to an instance I ′ = ((N, v), π) where (N, v) is an ASHG defined in the following
way:

• N = {x1, x2, y1, y2, z1, . . . , zk};

• vx1
(y1) = vx1

(y2) = vx2
(y1) = vx2

(y2) = W/2;

• vx1(zi) = vx2(zi) = ai, for all i ∈ {1, . . . , k};

• vx1
(x2) = vx2

(x1) = −W ;

• vy1(y2) = vy2(y1) = −W ;

• va(b) = 0 for any a, b ∈ N for which va(b) is not already defined; and

• π = {N}.

We see that uπ(x1) = uπ(x1) = W , uπ(y1) = uπ(y2) = −W , uπ(zi) = 0
for all i ∈ {1, . . . , k}. We show that π is not CSC stable if and only if I is a
‘yes’ instance of Partition. Assume I is a ‘yes’ instance of Partition and
there exists an A1 ⊆ A such that

∑
ai∈A1

ai = W/2. Then, form the following
partition

π′ = {{x1, y1} ∪ {zi | ai ∈ A1}, {x2, y2} ∪ {zi | ai ∈ N \A1}}

Hence,

• uπ′(x1) = uπ′(x1) = W ;

• uπ′(y1) = uπ′(y2) = 0; and

• uπ(zi) = 0 for all i ∈ {1, . . . , k}.
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The coalition C1 = {x1, y1} ∪ {zi | ai ∈ A1} can be considered as a coalition
which leaves the grand coalition so that all players in N do as well as before and
at least one player in C1, i.e., y1 gets strictly more utility. Also, the departure
of C1 does not make any player in N \ C1 worse off.

Assume that I is a ‘no’ instance of Partition and there exists no A1 ⊆ A
such that

∑
ai∈A1

ai = W/2. We show that no CSC deviation is possible from
π by considering all different possibilities for a CSC blocking coalition C:

(i) x1, x2, y1, y2 /∈ C,

(ii) x1, x2 /∈ C and there exists y ∈ {y1, y2} such that y ∈ C,

(iii) x1, x2, y1, y2 ∈ C,

(iv) x1, x2 ∈ C and |C ∩ {y1, y2}| ≤ 1,

(v) there exists x ∈ {x1, x2} and y ∈ {y1, y2} such that x, y ∈ C, {x1, x2}\x *
C, and {y1, y2} \ y * C

We show that in each of the cases, C is a not a valid CSC blocking coalition.

(i) If C is empty, then there exists no CSC blocking coalition. If C is not
empty, then x1 and x2 gets strictly less utility when a subset of {z1, . . . , zk}
deviates.

(ii) In this case, both x1 and x2 gets strictly less utility when y ∈ {y1, y2}
leaves N .

(iii) If {z1, . . . , zk} ⊂ C, then there is no deviation as C = N . If there exists a
zi ∈ {z1, . . . , zk} such that zi /∈ C, then x1 and x2 get strictly less utility
than in N .

(iv) If |C ∩ {y1, y2}| = 0, then the utility of no player increases. If |C ∩
{y1, y2}| = 1, then the utility of y1 and y2 increases but the utility of x1
and x2 decreases.

(v) Consider C = {x, y}∪S where S ⊆ {z1, . . . , zk}. Without loss of general-
ity, we can assume that x = x1 and y = y1. We know that y1 and y2 gets
strictly more utility because they are now in different coalitions. Since
I is a ‘no’ instance of Partition, we know that there exists no S such
that

∑
a∈S vx1

(a) = W/2. If
∑
a∈S vx1

(a) > W/2, then uπ(x2) < W . If∑
a∈S vx1

(a) < W/2, then uπ(x1) < W .

Thus, if I is a ‘no’ instance of Partition, then there exists no CSC deviation.

From the proof of Theorem 10, it can be seen that π is not Pareto optimal
if and only if I is a ‘yes’ instance of Partition.

Theorem 11. Verifying whether the partition consisting of the grand coalition
is Pareto optimal is coNP-complete.
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We show that checking whether a partition is Pareto optimal is hard even
under severely restricted settings.

Theorem 12. The problem of checking whether a partition is Pareto optimal
is coNP-complete in the strong sense, even when preferences are symmetric and
strict.

Proof. The problem is clearly in coNP as another partition which Pareto dom-
inates the given partition π is a witness that π is not Pareto optimal. The
reduction is from the NP-complete problem E3C (EXACT-3-COVER) to decid-
ing whether a given partition is Pareto dominated by another partition or not.
Recall that in E3C, an instance is a pair (R,S), where R = {1, . . . , r} is a set
and S is a collection of subsets of R such that |R| = 3m for some positive integer
m and |s| = 3 for each s ∈ S. The question is whether there is a sub-collection
S′ ⊆ S which is a partition of R.

It is known that E3C remains NP-complete even if each r ∈ R occurs in
at most three members of S [24]. Let (R,S) be an instance of E3C. (R,S)
can be reduced to an instance ((N, v), π), where (N, v) is an ASHG defined in
the following way. Let N = {ws, xs, ys | s ∈ S} ∪ {zr | r ∈ R}. The players
preferences are symmetric and strict and are defined as follows (as also depicted
in Figure 6):

• vws(xs) = vxs(ys) = 3 for all s ∈ S;

• vys(ws) = vys(ws
′
) = −1 for all s, s′ ∈ S;

• vys(zr) = 1 if r ∈ s and vys(zr) = −7 if r /∈ s;

• vzr (zr
′
) = 1/(|R| − 1) for any r, r′ ∈ R; and

• va(b) = −7 for any a, b ∈ N and a 6= b for which va(b) is not already
defined.

The partition π in the instance ((N, v), π) is {{xs, ys}, {ws} | s ∈ S}}∪{{zr |
r ∈ R}}. We see that the utilities of the players are as follows: uπ(ws) = 0 for
all s ∈ S; uπ(xs) = uπ(ys) = 3 for all s ∈ S; and uπ(zr) = 1 for all r ∈ R.

Assume that there exists S′ ⊆ S such that S′ is a partition of R. Then we
prove that π is not Pareto optimal and there exists another partition π′ of N
which Pareto dominates π. We form another partition π′ = {{xs, ws} | s ∈
S′} ∪ {{ys, zi, zj , zk} | s ∈ S′ ∧ i, j, k ∈ s} ∪ {{xs, ys}, {ws} | s ∈ (S \ S′)}}.
In that case, uπ′(w

s) = 3 for all s ∈ S′; uπ′(w
s) = 0 for all s ∈ S \ S′;

uπ(xs) = uπ(ys) = 3 for all s ∈ S; and uπ(zr) = 1 + 2/(|R| − 1) for all r ∈ R.
Whereas the utilities of no player in π′ decreases, the utility of some players in
π′ is more than in π. Since π′ Pareto dominates π, π is not Pareto optimal.

We now show that if there exists no S′ ⊆ S such that S′ is a partition of
R, then π is Pareto optimal. We note that −7 is a sufficiently large negative
valuation to ensure that if va(b) = vb(a) = −7, then a, b ∈ N cannot be in
the same coalition in a Pareto optimal partition. For the sake of contradiction,
assume that π is not Pareto optimal and there exists a partition π′ which Pareto
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Figure 6: A graph representation of an ASHG derived from an instance of E3C. The (symmet-
ric) utilities are given as edge weights. Some edges and labels are omitted: All edges between

any ys and zr have weight 1 if r ∈ s. All zr
′
, zr
′′

with r′ 6= r′′ are connected with weight
1

|R|−1
. All missing edges have weight −7.

dominates π. We will see that if there exists a player i ∈ N such that uπ′ > uπ,
then there exists at least one j ∈ N such that uπ′ < uπ. The only players whose
utility can increase (without causing some other player to be less happy) are
{xs | s ∈ S}, {ws | s ∈ S} or {zr | r ∈ R}. We consider these player classes
separately. If the utility of player xs increases, it can only increase from 3 to 6
so that xs is in the same coalition as ys and ws. However, this means that ys

gets a decreased utility. The utility of ys can increase or stay the same only if it
forms a coalition with some zrs. However in that case, to satisfy all zrs, there
needs to exist an S′ ⊆ S such that S′ is a partition of R.

Assume the utility of a player ws for s ∈ S increases. This is only possible
if ws is in the same coalition as xs. Clearly, the coalition formed is {ws, xs}
because coalition {ws, xs, ys} brings a utility of 2 to ys. In that case ys needs
to form a coalition {ys, zi, zj , zk} where s = {i, j, k}. If ys forms a coalition

{ys, zi, zj , zk}, then all players ys
′

for s′ ∈ (S \ {s}) need to form coalitions of

the form {ys′ , zi′ , zj′ , zk′} such that s′ = {i′, j′, k′}. Otherwise, their utility of
3 decreases. This is only possible if there exists a set S′ ⊆ S of R such that S′

is a partition of R.
Assume that there exists a partition π′ that Pareto dominates π and the

utility of a player uπ′(z
r) > uπ(zr) for some r ∈ R. This is only possible if each

zr forms the coalition of the form {zr, zr′ , zr′′ , ys} where s = {r, r′, r′′}. This
can only happen if there exists a set S′ ⊆ S of R such that S′ is a partition
of R. Thus we have proved that π is not Pareto optimal if and only if (R,S) is
a ‘yes’ instance.

The fact that checking whether a partition is Pareto optimal is coNP-complete
has no obvious implications on the complexity of computing a Pareto optimal
partition. In fact there is a simple polynomial-time algorithm to compute a
partition which is Pareto optimal for strict preferences.
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Theorem 13. For strict preferences, a Pareto optimal partition can be com-
puted in polynomial time.

Proof. The statement follows from an application of serial dictatorship [1]. Se-
rial dictatorship is a well-known mechanism in resource allocation in which an
arbitrary player is chosen as the ‘dictator’ who is then given his most favored
allocation and the process is repeated until all players or resources have been
dealt with. In the context of coalition formation, serial dictatorship is well-
defined if preferences of players over coalitions are strict. Serial dictatorship
is also well-defined for ASHGs with strict preferences as the dictator forms a
coalition with all the players he strictly likes who have been not considered as
dictators or are not already in some dictator’s coalition. The resulting partition
π is such that for any other partition π′, at least one dictator will strictly prefer
π to π′. Therefore π is Pareto optimal.

A standard criticism of Pareto optimality is that it admits inherently unfair
allocations. To address this criticism, the algorithm can be modified to obtain
less lopsided partitions. Whenever an arbitrary player is selected to become
the dictator among the remaining players, choose a player that does not get
extremely high elitist social welfare among the remaining players. Nevertheless,
even this modified algorithm may output an partition that fails to be individu-
ally rational.

We know that the set of partitions which are both Pareto optimal and in-
dividually rational is non-empty. Repeated Pareto improvements on an indi-
vidually rational partition consisting of singletons leads to a Pareto optimal
and individually rational partition. We show that computing a Pareto optimal
and individually rational partition for ASHGs is weakly NP-hard. To prove the
statement, we utilize ideas from the following theorem.

Theorem 14. Computing a CSC stable and individually rational partition is
weakly NP-hard.

Proof. Consider the decision problem SubsetSumZero in which an instance
consists of a set of k integer weights A = {a1, . . . , ak} and the question is
whether there exists a non-empty S ⊆ A such that

∑
s∈S s = 0?

Name: SubsetSumZero
Instance: A set of k integer weights A = {a1, . . . , ak}
Question: Does there exist a non-empty S ⊆ A such that

∑
s∈S s = 0?

Since SubsetSum for positive integers is NP-complete, it follows that Sub-
setSumZero is also NP-complete.2 Therefore, MaximalSubsetSumZero,
the problem of finding a maximal cardinality subset S ⊆ A such that

∑
s∈S s = 0

is NP-hard.

2We note that in any instance of SubsetSum all zeros in the set A can be omitted to obtain
an equivalent problem. Reduce SubsetSum to SubsetSumZero by adding ak+1 = −W to A.
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We prove the theorem by a reduction from MaximalSubsetSumZero. Re-
duce an instance of I of MaximalSubsetSumZero to an ASHG (N, v) defined
in the following way:

• N = {x, y1, y2} ∪ Z where Z = {zi | i ∈ {1, . . . , k};

• vx(y1) = vx(y2) = k + 1; vx(zi) = 1 for all i ∈ {1, . . . , k};

• vy1(zi) = −vzi(y1) = −vy2(zi) = vzi(y2) = ai for all i ∈ {1, . . . , k}; and

• va(b) = 0 for any a, b ∈ N for which va(b) is not already defined.

First, we show that in an individually rational partition π, no player except
x gets positive utility, i.e., uπ(b) = 0 for all b ∈ N \ {x}. Assume that w.l.o.g
y1 gets positive utility in π. This implies there exist a subset Z ′ = Z ∩ π(y1)
such that

∑
z∈Z′ vy1(z) > 0. Then there exists z ∈ Z ′ such that vy1(z) > 0

which means that vz(y1) < 0. Due to individual rationality, y2 ∈ π(z) = π(y1).
But if y1 ∈ π(y2), then uπ(y2) =

∑
z∈Z′ −vy1(z) < 0 and π is not individually

rational.
Assume that there exists a zi ∈ Z such that uπ(zi) > 0. Then without loss

of generality vzi(y1) > 0 and due to individual rationality y1 ∈ π(zi). Again due
to individual rationality, y1 needs to be with another zj such that vy1(zj) > 0.
And again due to individual rationality, zj needs to be with y2. This means,
that for each zl ∈ π(zi) ∩ Z, uπ(zl) = al − al = 0.

We show that in every CSC stable and individually rational partition π, we
have y1, y2 ∈ π(x). For any other partition π′, in which this does not hold,
uπ′(x) ≤ 2k + 1 < 2k + 2 = uπ(x).

Consider an S ⊆ A and let πSz be any partition of {zi | ai ∈ A \ S}. The
claim is that π is a CSC stable and individually rational partition if and only if
π is of the form {{x, y1, y2} ∪ {zi | ai ∈ S}} ∪ πSz where S ⊆ A is the maximal
subset such that

∑
s∈S s = 0.

Assume that S ⊆ A is not a maximal subset such that
∑
s∈S s = 0. If∑

s∈S s 6= 0, there exists a y ∈ {y1, y2} such that uπ(y) < 0. If S is not maximal
then there is a larger set S′ and a corresponding partition π′ = {{x, y1, y2}∪{zi |
ai ∈ S′}} ∪ πS′z with uπ(x) = |S| < |S′| = uπ′(x) and uπ(b) = uπ′(b) for
all b ∈ N \ {x}. For any other S′ ⊆ A such that |S′| > |S|, we know that∑
s′∈S′ s

′ 6= 0 which implies that there is a y ∈ {y1, y2} which gets negative
utility.

The same proof can be used to show the following:

Corollary 1. Computing a Pareto optimal and individually rational partition
is weakly NP-hard.

8. Envy-freeness
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Envy-freeness is a desirable property in resource allocation, especially in cake
cutting settings. Lipton et al. [28] proposed envy-minimization in different ways
and examined the complexity of minimizing envy in resource allocation settings.
Bogomolnaia and Jackson [9] mentioned envy-freeness in hedonic games but
focused on stability.

Envy-freeness resembles Nash stability in which no player has an incentive
to move to another coalition. However, one can produce simple examples to
show that envy-freeness does not imply Nash stability and Nash stability does
not imply envy-freeness.

Example 2. A partition that satisfies envy-freeness may not be Nash stable.
Take the game (N, v) where N = {1, 2} and where v is specified by v1(2) =
v2(1) = 1. Then the partition π = {{1}, {2}} satisfies envy-freeness but it
is not Nash stable. Similarly, a Nash stable partition may not satisfy envy-
freeness. Take the game (N, v) where N = {1, 2, 3} where v is specified by:
v1(2) = 1, v1(3) = −1, v2(3) = v3(2) = 2 and v2(1) = v3(1) = 0. Consider the
partition π = {{1}, {2, 3}} which is Nash stable. However, π does not satisfy
envy-freeness because player 1 is envious of player 3 and would prefer to replace
it to be with player 2.

Unlike Nash stability, we already know that envy-freeness can be easily
achieved.

Observation 3. The partition of singletons is envy-free and individually ratio-
nal.

Therefore, in conjunction with envy-freeness, we seek to satisfy other prop-
erties such as stability or Pareto optimality. For symmetric ASHGs, it is known
that Nash stable partitions always exist and they correspond to partitions for
which the utilitarian social welfare is a local optimum [see, e.g., 9]. We now
show that for symmetric ASHGs, there may not exist any partition that is both
envy-free and Nash stable.

Example 3. Consider an ASHG (N, v) where N = {1, 2, 3} and v is defined
as follows: v1(2) = v2(1) = 3, v1(3) = v3(1) = 3 and v2(3) = v3(2) = −7. Then
there exists no partition which is both envy-free and Nash stable.

1

2

3

3

−7

3

Figure 7: Graphical representation of the ASHG in Example 3. No partition is both envy-free
and Nash stable.
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We use the game in Example 3 as a gadget to prove the following.3

Theorem 15. Checking whether there exists a partition which is both envy-free
and Nash stable is NP-complete in the strong sense, even when preferences are
symmetric.

Proof. The problem is clearly in NP since envy-freeness and Nash stability can
be verified in polynomial time. We reduce the problem from E3C. Let (R,S) be
an instance of E3C where R is a set and S is a collection of subsets of R such that
|R| = 3m for some positive integer m and |s| = 3 for each s ∈ S. We will use the
fact that E3C remains NP-complete even if each r ∈ R occurs in at most three
members of S. (R,S) can be reduced to an instance (N, v) where (N, v) is an
ASHG defined in the following way. Let N = {ys | s ∈ S} ∪ {zr1 , zr2 , zr3 | r ∈ R}.
We set all preferences as symmetric. The players preferences are as follows:

• for all r ∈ R, vzr1 (zr2) = vzr2 (zr1) = 3, vzr1 (zr3) = 3 and vzr2 (zr3) = vzr3 (zr2) =
−7;

• for all s = {i, j, k} ∈ S, vzi1(zj1) = vzi1(zk1 ) = vzj1
(zk1 ) = 1/10 and vys(zi1) =

vys(zj1) = vys(zk1 ) = 28/10; and

• for all a, b ∈ N for which valuations have not been defined, va(b) = vb(a) =
−7.

We note that −7 is a sufficiently large negative valuation to ensure that if
va(b) = vb(a) = −7, then a and b will get negative utility if they are in the same
coalition. We show that there exists an envy-free and Nash stable partition for
(N, v) if and only if (R,S) is a ‘yes’ instance of E3C.

Assume that there exists S′ ⊆ S such that S′ is a partition of R. Then
there exists a partition π = {{ys, zi1, z

j
1, z

k
1} | s = {i, j, k} ∈ S′} ∪ {{zr2}, {zr3} |

r ∈ R} ∪ {{s} | s ∈ S \ S′}. It is easy to see that partition π is Nash stable
and envy-free. Players zr1 and zr3 both had an incentive to be with each other
when they are singletons. However, each zr1 now gets utility 3 by being in a
coalition with zr

′

1 , zr
′′

1 and ys where s = {r, r′, r′′} ∈ S. Therefore zr1 has no
incentive to be with zr3 and zr3 has no incentive to join {zr′1 , zr

′

1 , z
r′′

1 , ys} because
vzr3 (zr

′

1 ) = vzr3 (zr
′′

1 ) = vzr3 (ys) = −7. Similarly, no player is envious of another
player.

Assume that there exists no partition S′ ⊆ S of R such that S′ is a partition
of R. Then, there exists at least one r ∈ R such that zi1 is not in the coalition of
the form {zr1 , zr

′

1 , z
r′′

1 , ys} where s = {r, r′, r′′} ∈ S. Then the only individually
rational coalitions which zr1 can form and get utility at least 3 are the following
{zr1 , zr3}, {zr1 , zr2}. In the first case, zr1 wants to deviate to {zr3}. In the second
case, zr2 is envious and wants to replace zr3 . Therefore, there exists no partition
which is both Nash stable and envy-free.

3Example 3 and the proof of Theorem 15 also apply to the combination of envy-freeness
and individual stability [9].
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While the existence of a Pareto optimal partition and an envy-free partition
is guaranteed, we show that checking whether there exists a partition which is
both envy-free and Pareto optimal is hard.

Theorem 16. Checking whether there exists a partition which is both Pareto
optimal and envy-free is Σp2-complete.

Proof. The problem has a ‘yes’ instance if there exists an envy-free partition
that Pareto dominates every other partition. Therefore the problem is in the
complexity class NPcoNP = Σp2.

We prove hardness by a reduction from a problem concerning resource al-
location (with additive utilities) [14]. A resource allocation problem is a tu-
ple (I,X,w) where I is a set of agents, X is a set of indivisible objects and
w : I × X → R is a weight function. An a : I → 2X is an allocation if for all
i, j ∈ I such that i 6= j, we have a(i) ∩ a(j) = ∅. The resultant utility of each
agent i ∈ I is then

∑
x∈a(i) w(i, x). It was shown by de Keijzer et al. [14] that

the problem ∃-EEF-ADD of checking the existence of an envy-free and Pareto
optimal allocation is Σp2-complete.

Now, consider an instance (I,X,w) of ∃-EEF-ADD and reduce it to an
instance (N, v) of an ASHG where N = I∪X and v is specified by the following
values:

• vi(xj) = w(i, xj) and vxj (i) = 0 for all i ∈ I, xj ∈ X;

• vxk
(xj) = vxj

(xk) = 0 for all xj , xk; and

• vi(j) = vj(i) = −W ·|I∪X| for all i, j ∈ I where W =
∑
i∈I,xj∈X |w(i, xj)|.

It can then be shown that there exists a Pareto optimal and envy-free par-
tition in (N, v) if and only if (I,X,w) is a ‘yes’ instance of ∃-EEF-ADD. It
is clear that for any Pareto optimal partition π, there exist no i, j ∈ I ⊂ N
such that i 6= j and j ∈ π(i). Assume that this were not the case and
there exist i, j ∈ I ⊂ N such that i 6= j and j ∈ π(i). Then i and j both
get negative value because

∑
k∈π(i) vi(k) =

∑
k∈(π(i)\{j}) vi(k) − W < 0 and∑

k∈π(i) vj(k) =
∑
k∈(π(i)\{i}) vj(k) −W < 0. Then i and j can be separated

to form singletons to get another partition π′, where the value of every other
player k ∈ (N \ {i, j}) gets the same value while i and j get at least zero value.
Therefore there is a one-to-one correspondence between any such partition π
and allocation a where a(i) = π(i) \ {i}. It now easy to see that π is Pareto
optimal and envy-free in G if and only if a is a Pareto optimal and envy-free
allocation.

The results of this section show that, even though envy-freeness can be
trivially satisfied on its own, it becomes much more delicate when considered in
conjunction with other desirable properties.
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9. Popularity

In this section, we consider the complexity of verifying and checking the
existence of popular partitions for additively separable hedonic games (ASGHs).
If a change in an outcome requires the approval of the majority, then popularity
can also be considered a notion of stability. The idea of using popularity in
matching theory was initiated by Gärdenfors [23]. Popular matchings were
then studied in the context of assignment problems (in which objects, posts or
houses) are allocated among agents such that each agent receives at most one
object [see e.g., 27]. Biró et al. [8] considered popular outcomes in the context
of marriage games and roommate games.

The following is an example of an ASHG which does not admit a popular
partition.

Example 4. Consider the following ASHG: N = {a1, a2, a3, b1, b2} such that
vai(b1) = 2 and vai(b2) = 1 for all i = 1, 2, 3; vbi(aj) = 1 for all i = 1, 2 and
j = 1, 2, 3; and vx(y) = −4 for all other x and y. Then, there exists no popular
partition. For example in {{a1, b1}, {a2, b2}, {a3}}, a2 and a3 can both strictly
improve their utility.

a1 a2 a3

b1 b2

2 2 2 1 1 1

Figure 8: A graphical representation of the ASHG in Example 4 with the utilities of the ai
for the bj . All upward edges (bj , ai) have weight 1 while all still unspecified edges have utility
−4. For this ASHG, no popular partition exists.

In fact not only may an ASHG not admit a popular partition but checking
whether there exists a popular partition is NP-hard.

Theorem 17. Checking whether there exists a popular partition is NP-hard.

Proof. The reduction is from E3C to deciding whether there exists a popular
partition. Let (R,S) be an instance of E3C where R is a set and S is a collection
of subsets of R such that |R| = 3m for some positive integer m and |s| = 3 for
each s ∈ S. (R,S) can be reduced to an instance (N, v), where (N, v) is an
ASHG defined in the following way.

Let N = {ar1, ar2, ar3, br1, br2 | r ∈ R} ∪ {ys, zs1, zs2 | s ∈ S} and v be as follows:

• vari (br1) = 2 and vari (br2) = 1 for all i = 1, 2, 3 and r ∈ R;

• vbri (arj) = 1 for all i = 1, 2, j = 1, 2, 3 and r ∈ R;
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• var3(ar
′

3 ) = 1/10 for all r, r′ ∈ s ∈ S;

• var3(ys) = 4/5 and vys(ar3) = 0 for all s ∈ S and r ∈ R such that r ∈ s;

• vys(zs1) = vys(zs2) = 1/2, vzs1 (ys) = vzs2 (ys) = 1/2 and vzs1 (zs2) = vzs2 (zs1) =
0 for all s ∈ S; and

• vx(y) = −4 for all other x and y.

We show that there exists a popular partition of (N, v) if and only if (R,S)
is a ‘yes’ instance of E3C.

Assume (R,S) is a ‘yes’ instance of E3C. Then, there exists S′ ⊆ S such that
S′ is a partition of R. The following partition π is then popular: {{ar1, br1 | r ∈
R}} ∪ {{ar2, br2 | r ∈ R}} ∪ {{ys, a

ri
3 , a

rj
3 , a

rk
3 } | s = {i, j, k} ∈ S′} ∪ {{ys, zs1, zs2} |

s ∈ N \ S′}} ∪ {{zs1, z2} | s ∈ S′}. In π, any player ar1 cannot become happier.
Any player ar2 can become happier but only at the expense of another player
ar1. A player ar3 can become happier but if he does then one or more of the
following players become less happy: ar1; ar2; yss; ar

′

3 s. All yss get utility one.
Although each ys can get a utility of more than one, it can only do so at the
expense of zs and at least one ar3 such that r ∈ s. Each zs in {{zs1, z2} | s ∈ S′}
can improve and get a utility of one by being with its corresponding ys but only
at the expense of some ar3s who are with ys in π. Therefore π is popular.

Assume that there exists a popular partition π. Then, we show that (R,S)
is a ‘yes’ instance of E3C. The only type of player from among ar1, a

r
2, a

r
3 to

benefit from the new players created in the reduction is ar3. Each ar3 needs to
be with at least two ar

′

3 s and at least one likable ys to get a payoff of at least
4/5 + 2(1/10) = 1. If ar3 is only with likable ar

′

3 s, it can get a maximum utility
of 6 · 1/10 = 6/10 which is not enough. If ar3 is with at least two likable yss and
between zero to six likable ar

′

3 s, in a coalition S, then in each case, at least |S|
players (including some zs1 and zs2s) improve their utilities and less than |S| − 1
players get less utility if the unhappy yss join their corresponding zs1 and zs2s.
If ar3 is with one likable ys and at least three likable ar

′

3 s in a coalition T , then
ys and at least one ar

′

3 in T get negative utility. A partition π′ in which all
coalitions are exactly the same but ys moves away from T and joins zs1 and zs2
is more popular than π. Therefore each ar3 needs to be with exactly two likable
ar
′

3 s and exactly one likable ys in partition π. But this means that there exists
an S′ ⊆ S such that S′ is a partition of R. This completes the proof.

An interesting open problem is whether natural restricted classes of ASHGs
always admit a popular partition. We now turn our attention to the problem of
verifying a popular partition. Whereas verifying a popular allocation is already
known to be polynomial-time solvable for roommate games [8], we show that
the same problem is coNP-complete for ASHGs.

We introduce the following notation for the proof: DS(π, π′) = |PS(π, π′)| −
|PS(π′, π)| where S ⊆ N and PS(π, π′) is the set of players in S who strictly
prefer allocation π to π′.

Theorem 18. Verifying whether a partition is popular is coNP-complete.
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Proof. Let the partition in question be π. The problem is clearly in coNP as a
partition which is more popular than π is polynomial-time certificate that π is
not popular.

The reduction is from E3C to the problem ((N, v), π) of deciding whether
partition π is popular for game (N, v). For an instance (R,S), let Z = {1, . . . , |R|+
|S|} and the sets in S are assumed to have a natural ordering so that S =
{s1, . . . , s|S|}. Then, N is defined as follows: N = {ai | i ∈ Z} ∪ {bi | i ∈
Z} ∪ {cr | r ∈ R} ∪ {di,j | i ∈ S, j ∈ Z}.

We will refer to {ai | i ∈ Z} by A, {bi | i ∈ Z} by B, {cr | r ∈ R} by
C, and {di,j | si ∈ S, j ∈ Z} by D. Let γ(i) = {j 6= i | i, j ∈ s ∈ S} and
β(i) = {j | i ∈ sj ∈ S}. We will refer to {dk,j | sk ∈ S, j ∈ Z} by Dk. The
preferences v are defined as follows:

• vai(bi) = 0 for all i ∈ Z;

• vb1(a1) = |Z| · |R|+ 1;

• vbi(ai) = |Z| · |R| for all i ∈ Z;

• vb(c) = 1 for all a ∈ A and b ∈ B;

• vb(b′) = |R| for all b, b′ ∈ B;

• vci(cj) = 1 if i, j ∈ s ∈ S and vci(cj) = 0 otherwise;

• vck(b) = |Z|3−|γ(k)|
|Z| if b ∈ B;

• vck(di,j) = (|Z|3 − 2)/|Z| if k ∈ si ∈ S;

• vdi,j (ck) = 0 if k ∈ si ∈ S;

• vdi,j (di,j′) = 1 j 6= j′ and i ∈ {1, . . . , |S|}; and

• vx(y) = −|Z|5 for all other x and y.

The value of −|Z|5 is a sufficiently large negative value so that if vx(y) =

−|Z|5, then x and y get negative utility whenever they they are together in the
same coalition.

The partition π in question is defined as π = {{a} | a ∈ A}∪{B∪C}∪{Dm |
m ∈ {1, . . . , |S|}} so that

• uπ(a) = 0 for all a ∈ A;

• uπ(b) = |Z| · |R| for all b ∈ B;

• uπ(c) = |Z|3 for all c ∈ C; and

• uπ(d) = |Z| − 1 for all d ∈ D.
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We show that π is not popular if and only if (R,S) is a ‘yes’ instance of
E3C. If (R,S) is a ‘yes’ instance of E3C, and there exists an S ⊆ S, a proper
partitioning of N , then the following partition π′ is more popular than and in
fact a Pareto improvement over π:

π′ = {{ai, bi} | i ∈ Z} ∪ {{Dm ∪ {ci | i ∈ sm}} | sm ∈ S′}
∪ {{Dm} | sm ∈ S \ S′}.

In partition π′, the players get utility as follows:

• uπ′(a) = 0 for all a ∈ A;

• uπ′(b) = |Z||̇R| for all b ∈ B \ {b1};

• uπ′(b1) = |Z| · |R|+ 1;

• uπ′(c) = |Z|3 for all c ∈ C; and

• uπ′(d) = |Z| − 1 for all d ∈ D.

We now show that if π is not popular, then (R,S) is a ‘yes’ instance of E3C.
If π is not popular, then there exists another partition π′′ 6= π′ which is more
popular than π. Then, it follows that there exists at least one coalition C ∈ π′′
such that DS(π, π′′) > 0. If {a1, b1} ∈ π′′, then a1 is indifferent between π and
π′′ but b1 strictly prefers π′′ to π′. We prove that {a1, b1} is the only possible
coalition in which a majority of players prefers π′′ to π. To prove the claim, we
show that for any coalition S ∈ π′′, if there is a player i ∈ S such that i prefers
π′′ to π, then DS(π, π′′) < 0.

(i) Consider the case that a ∈ A strictly prefers π′′ to π. But this is not
possible since no player in A can improve because it does not like any
one.

(ii) Let bi ∈ B \ {b1} be a player who prefers π′′ to π. Then π′′(bi) = {i} ∪X
where X ⊆ B ∪C ∪ {ai} If there exists an x ∈ N \ ((B \ {i})∪C ∪ {ai}),
such that x ∈ π′′(bi), then uπ′′(bi) < 0. If X ⊂ B ∪ C, then bi does not
prefer π′′ to π. Therefore X contains ai and at least one element from
((B \{i})∪C. But then, every player in π′′(bi)\{bi} gets negative utility
and prefers π to π′′.

(iii) Let ci ∈ C be a player who is happier in π′′ compared to π. Then,
π′′(ci) \ {ci} ⊆ C ∪B ∪ {dk,j | k ∈ β(i)}). If this were not that case, then
ci gets negative utility. Note that ci likes the following different types of
sets of players: {cj | j ∈ γ(i)} (there are between two to six players of
this type), Dk where i ∈ sk ∈ S (there are between one to three sets of
this type), and B.

Player ci may prefer π′′ to π if π′′(ci) contains sufficient number of players
from the sets of players outlined above. We will show that if ci prefers π′′

to π, then Dπ′′(ci)(π, π
′′) < 0.
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We know that players from different sets Dk and Dk′ will get negative
utility if they are in the same coalition.

Similarly, if players from B and Dk are together in π′′(ci), they will all
get negative utility.

Also, let us say that j /∈ sk but j ∈ γ(i). Then if cj is in π′′(ci) along with
players from Dk, then cj and all the players in Dk get negative utility.
Therefore, the best ci can do is to be with i) B and {cj | j ∈ γ(i)} together
or ii) one of the sets Dk along with those cjs such that j ∈ sk ∈ S. In

either case, ci is indifferent between π and π′′ as its gets utility |Z|3 in
both partitions.

(iv) No player in d ∈ D can prefer another partition π′′ to π as d is already in
a coalition with all the player he likes.

If π′′ is more popular than π, we already know that {a1, b1} ∈ π′′. In order to
ensure that π′′ is more popular than π, each player N \{b1} should be indifferent
between π and π′′. This is because we already know that no player x ∈ N \{b1}
can be strictly happier in π′′ without making the majority of the players in
π′′(x) strictly less happy.

We know that players in B are not together in the same coalition in π′′. Since
players in B cannot be together it must be that each bi is with its corresponding
ai. Similarly, since players in C cannot be together with players in B any
more, they must utilize their positive valuation for players in some set Dm. We
already saw that each ci must be in a coalition with players in Dm and two other
players cj and ck where {i, j, k} = sm ∈ S. Therefore, we have shown that there
exists a subset D′ ⊆ {D1, . . . D|S|} such that each set Da in D′ hosts three
players {ci, cj , ck} from C such that {i, j, k} = sa ∈ S. Therefore, there exists
a partition S′ ⊆ S of N and (R,S) is a ‘yes’ instance of E3C. This completes
the proof.

10. Conclusion and Discussion

We presented a number of new computational results concerning stable, fair,
optimal, and popular partitions of ASHGs. Both new and existing results are
summarized in Table 1. We saw that considering CSC deviations facilitates
arguments about more complex Pareto optimal improvements. As a result, we
present similar computational results for CSC stability and Pareto optimality. It
was shown that under various restrictions of preferences, verifying, checking the
existence, and computing stable, fair, optimal and popular partitions is compu-
tationally intractable. On a more positive note, we proposed a polynomial-time
algorithm for computing a contractually individually stable (CIS) partition. It
is also seen that the existence of a perfect partition can be checked efficiently,
and that under strict preferences, a Pareto optimal partition can be computed
efficiently.

There are some interesting contrasts in the results. For example, whereas a
Pareto optimal partition can be computed in polynomial time when preferences
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are strict, checking whether a given partition is Pareto optimal is coNP-complete
even in the restricted setting of strict and symmetric preferences. Even though
the existence of an envy-free partition and the existence of a Nash stable par-
tition are guaranteed under symmetric preferences, checking the existence of a
partition which satisfies both properties simultaneously is computationally hard.
Finally, verifying popular outcomes is coNP-complete whereas the same prob-
lem is computationally easy for house allocation and even the stable roommate
setting.

A number of new questions arise as a result of our study. The complexity of
computing a Pareto optimal partition for ASHGs with unrestricted preferences
is still open. We note that Algorithm 1 for computing a CIS partition may very
well return a partition that fails to satisfy individual rationality, i.e., players
may get negative utility. It is an open question how to efficiently compute a
CIS partition that is guaranteed to satisfy individual rationality. Furthermore,
the complexity of computing a CSC stable partition which is not necessarily IR
is still open.

We highlighted the logical relationships between different stability, fairness,
optimality, and popularity concepts from cooperative game theory, social choice
and welfare theory. It will be interesting to examine these relationships in other
domains, in particular with respect to strategic issues. Other directions for
future research include approximation algorithms to compute maximum utili-
tarian or egalitarian social welfare for different representations of hedonic games.
Finally, there is scope for further work on the dynamics of deviations in various
classes of hedonic games.
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[13] Cechlárová, K., 2008. Stable partition problem. In: Encyclopedia of Algo-
rithms. Springer, pp. 885–888.

34



[14] de Keijzer, B., Bouveret, S., Klos, T., Zhang, Y., 2009. On the complexity
of efficiency and envy-freeness in fair division of indivisible goods with
additive preferences. In: Proceedings of the 1st International Conference
on Algorithmic Decision Theory. pp. 98–110.

[15] Deng, X., Papadimitriou, C. H., 1994. On the complexity of cooperative
solution concepts. Mathematics of Operations Research 12 (2), 257–266.

[16] Deuermeyer, B. L., Friesen, D. K., Langston, M. A., 1982. Scheduling to
maximize the minimum processor finish time in a multiprocessor system.
SIAM Journal on Algebraic and Discrete Methods 3, 190–196.

[17] Dimitrov, D., Borm, P., Hendrickx, R., Sung, S. C., 2006. Simple priorities
and core stability in hedonic games. Social Choice and Welfare 26 (2), 421–
433.
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