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ABSTRACT
Making commitments, e.g., through promises and threats, enables a
player to exploit the strengths of his own strategic position as well
as the weaknesses of that of his opponents. Which commitments
a player can make with credibility depends on the circumstances.
In some, a player can only commit to the performance of an ac-
tion, in others, he can commit himself conditionally on the actions
of the other players. Some situations even allow for commitments
on commitments or for commitments to randomized actions. We
explore the formal properties of these types of (conditional) com-
mitment and their interrelationships. So as to preclude inconsis-
tencies among conditional commitments, we assume an order in
which the players make their commitments. Central to our analy-
ses is the notion of an extortion, which we define, for a given order
of the players, as a profile that contains, for each player, an optimal
commitment given the commitments of the players that committed
earlier. On this basis, we investigate for different commitment types
whether it is advantageous to commit earlier rather than later, and
how the outcomes obtained through extortions relate to backward
induction and Pareto efficiency.

General Terms
Economics, Theory

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

Keywords
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1. INTRODUCTION
On one view, the least one may expect of game theory is that

it provides an answer to the question which actions maximize an
agent’s expected utility in situations of interactive decision making.
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A slightly divergent view is expounded by Schelling when he states
that “strategy [. . . ] is not concerned with the efficient application of
force but with the exploitation of potential force” [9, page 5]. From
this perspective, the formal model of a game in strategic form only
outlines the strategic features of an interactive situation. Apart from
merely choosing and performing an action from a set of actions,
there may also be other courses open to an agent. E.g., the strategic
lie of the land may be such that a promise, a threat, or a combination
of both would be more conductive to his ends.

The potency of a promise, however, essentially depends on the
extent the promisee can be convinced of the promiser’s resolve to
see to its fulfillment. Likewise, a threat only succeeds in deterring
an agent if the latter can be made to believe that the threatener is
bound to execute the threat, should it be ignored. In this sense,
promises and threats essentially involve a commitment on the part
of the one who makes them, thus purposely restricting his freedom
of choice. Promises and threats epitomize one of the fundamental
and at first sight perhaps most surprising phenomena in game the-
ory: it may occur that a player can improve his strategic position
by limiting his own freedom of action. By commitments we will un-
derstand such limitations of one’s action space. Action itself could
be seen as the ultimate commitment. Performing a particular action
means doing so to the exclusion of all other actions.

Commitments come in different forms and it may depend on the
circumstances which ones can and which ones cannot credibly be
made. Besides simply committing to the performance of an action,
an agent might make his commitment conditional on the actions
of other agents, as, e.g., the kidnapper does, when he promises to
set free a hostage on receiving a ransom, while threatening to cut
off another toe, otherwise. Some situations even allow for commit-
ments on commitments or for commitments to randomized actions.

By focusing on the selection of actions rather than on commit-
ments, it might seem that the conception of game theory as mere
interactive decision theory is too narrow. In this respect, Schelling’s
view might seem to evince a more comprehensive understanding of
what game theory tries to accomplish. One might object, that com-
mitments could be seen as the actions of a larger game. In reply to
this criticism Schelling remarks:

While it is instructive and intellectually satisfying to
see how such tactics as threats, commitments, and
promises can be absorbed in an enlarged, abstract “su-
pergame” (game in “normal form”), it should be em-
phasized that we cannot learn anything about those
tactics by studying games that are already in normal
form. [. . . ] What we want is a theory that systematizes
the study of the various universal ingredients that make
up the move-structure of games; too abstract a model
will miss them. [9, pp. 156-7]



Our concern is with these commitment tactics, be it that our anal-
ysis is confined to situations in which the players can commit in
a given order and where we assume the commitments the players
can make are given. Despite Schelling’s warning for too abstract a
framework, our approach will be based on the formal notion of an
extortion, which we will propose in Section 4 as a uniform tactic
for a comprehensive class of situations in which commitments can
be made sequentially. On this basis we tackle such issues as the
usefulness of certain types of commitment in different situations
(strategic games) or whether it is better to commit early rather than
late. We also provide a framework for the assessment of more gen-
eral game theoretic matters like the relationship of extortions to
backward induction or Pareto efficiency.

Insight into these matters has proved itself invaluable for a proper
understanding of diplomatic policy during the Cold War. Nowa-
days, we believe, these issues are equally significant for applica-
tions and developments in such fields as multiagent systems, dis-
tributed computing and electronic markets. For example, commit-
ments have been argued to be of importance for interacting soft-
ware agents as well as for mechanism design. In the former setting,
the inability to re-program a software agent on the fly can be seen as
a commitment to its specification and thus exploited to strengthen
its strategic position in a multiagent setting. A mechanism, on the
other hand, could be seen as a set of commitments that steers the
players’ behavior in a certain desired way (see, e.g., [2]).

Our analysis is conceptually similar to that of Stackelberg or
leadership games [15], which have been extensively studied in the
economic literature (cf., [16]). These games analyze situations in
which a leader commits to a pure or mixed strategy, and a number
of followers, who then act simultaneously. Our approach, however,
differs in that it is assumed that the players all move in a particu-
lar order—first, second, third and so on—and that it is specifically
aimed at incorporating a wide range of possible commitments, in
particular conditional commitments.

After briefly discussing related work in Section 2, we present
the formal game theoretic framework, in which we define the no-
tions of a commitment type as well as conditional and unconditional
commitments (Section 3). In Section 4 we propose the generic con-
cept of an extortion, which for each commitment type captures the
idea of an optimal commitment profile. We point out an equiv-
alence between extortions and backward induction solutions, and
investigate whether it is advantageous to commit earlier rather than
later and how the outcomes obtained through extortions relate to
Pareto efficiency. Section 5 briefly reviews some other commit-
ment types, such as inductive, mixed and mixed conditional com-
mitments. The paper concludes with an overview of the results and
an outlook for future research in Section 6.

2. RELATED WORK
Commitment is a central concept in game theory. The possi-

bility to make commitments distinguishes cooperative from non-
cooperative game theory [4, 6]. Leadership games, as mentioned
in the introduction, analyze commitments to pure or mixed strate-
gies in what is essentially a two-player setting [15, 16]. Informally,
Schelling [9] has emphasized the importance of promises, threats
and the like for a proper understanding of social interaction. On a
more formal level, threats have also figured in bargaining theory.
Nash’s threat game [5] and Harsanyi’s rational threats [3] are two
important early examples. Also, commitments have played a sig-
nificant role in the theory of equilibrium selection (see, e.g., [13].

Over the last few years, game theory has become almost indis-
pensable as a research tool for computer science and (multi)agent
research. Commitments have by no means gone unnoticed (see,

 (1, 3) (3, 2)

(0, 0) (2, 1)


Figure 1: Committing to a dominated strategy can be advanta-
geous.

e.g., [1, 11]). Recently, also the strategic aspects of commitments
have attracted the attention of computer scientists. Thus, Conitzer
and Sandholm [2] have studied the computational complexity of
computing the optimal strategy to commit to in normal form and
Bayesian games. Sandholm and Lesser [8] employ levelled com-
mitments for the design of multiagent systems in which contrac-
tual agreements are not fully binding. Another connection be-
tween commitments and computer science has been pointed out
by Samet [7] and Tennenholtz [12]. Their point of departure is the
observation that programs can be used to formulate commitments
that are conditional on the programs of other systems.

Our approach is similar to the Stackleberg setting in that we as-
sume an order in which the players commit. We, however, consider
a number of different commitment types, among which conditional
commitments, and propose a generic solution concept.

3. COMMITMENTS
By committing, an agent can improve his strategic position. It

may even be advantageous to commit to a strategy that is strongly
dominated, i.e., one for which there is another strategy that yields
a better payoff no matter how the other agents act. Consider for ex-
ample the 2×2 game in Figure 1, in which one player, Row, chooses
rows and another, Col, chooses columns. The entries in the matrix
indicate the payoffs to Row and Col, respectively. Then, top-left
is the solution obtained by iterative elimination of strongly domi-
nated strategies: for Row, playing top is always better than playing
bottom, and assuming that Row will therefore never play bottom,
left is always better than right for Col. However, if Row succeeds
in convincing Col of his commitment to play bottom, the latter had
better choose the right column. Thus, Row attains a payoff of two
instead of one. Along a similar line of reasoning, however, Col
would wish to commit to the left column, as convincing Row of
this commitment guarantees him the most desirable outcome. If,
on the other hand, both players actually commit themselves in this
way but without convincing the other party of their having done so,
the game ends in misery for both.

Important types of commitments, however, cannot simply be an-
alyzed as unconditional commitments to actions. The essence of a
threat, for example, is deterrence. If successful, it is not carried out.
(This is also the reason why the credibility of a threat is not neces-
sarily undermined if its putting into effect means that the threatener
is also harmed.) By contrast, promises are made to entice and, as
such, meant to be fulfilled. Thus, both threats and promises would
be strategically void if they were unconditional.

Figure 2 shows an example, in which Col can guarantee himself
a payoff of three by threatening to choose the right column if Row
chooses top. (This will suffice to deter Row, and there is no need
for an additional promise on the part of Col.) He cannot do so by
merely committing unconditionally, and neither can Row if he were
to commit first.

In the case of conditional commitments, however, a particular
kind of inconsistency can arise. It is not in general the case that
any two commitments can both be credible. In a 2 × 2 game, it
could occur that Row commits conditionally on playing top if the



 (2, 2) (0, 0)

(1, 3) (3, 1)


Figure 2: The column player Col can guarantee himself a payoff of
three by threatening to play right if the row player Row plays top.

Col plays left, and bottom, otherwise. If now, Col simultaneously
were able to commit to the conditional strategy to play right if Row
plays top, and left, otherwise, there is no strategy profile that can
be played without one of the players’ bluff being called.

To get around this problem, one can write down conditional com-
mitments in the form of rules and define appropriate fixed point
constructions, as suggested by Samet [7] and Tennenholtz [12].
Since checking the semantic equivalence of two commitments (or
commitment conditions) is undecidable in general, Tennenholtz
bases his definition of program equilibrium on syntactic equiva-
lence. We, by contrast, try to steer clear from fixed point con-
structions by assuming that the players make their commitment in
a particular order. Each player can then make his commitments de-
pendent on the actions of the players to commit after him, but not
on the commitments of the players that committed before. On the
issue how this order comes about we do not here enter. Rather, we
assume it to be determined by the circumstances, which may force
or permit some players to commit earlier and others later. We will
find that it is not always beneficial to commit earlier than later or
vice versa.

Another point to heed is that we only consider the case in which
the commitments are considered absolutely binding. We do not
take into account commitments that can be violated. Intuitively,
this could be understood as that the possibility of violation fatally
undermines the credibility of the commitment. We also assume
commitments to be complete, in the sense that they fully lay down a
player’s behavior in all foreseeable circumstances. These assump-
tions imply that the outcome of the game is entirely determined by
the commitments the players make. Although these might be im-
plausible assumptions for some situations, we had better study the
idealized case first, before tackling the complications of the more
general case. To make these concepts formally precise, we first
have to fix some notation.

3.1 Strategic Games
A strategic game is a tuple (N, (Ai)i∈N , (ui)i∈N), where N =

{1, . . . , n} is a finite set of players, Ai is a set of actions available
to player i and ui a real-valued utility function for player i on the
set of (pure) strategy profiles S = A1×· · ·×An. We call a game finite
if for all players i the action set Ai is finite. A mixed strategy σi for
a player i is a probability distribution over Ai. We write Σi for the
set of mixed strategies available to player i, and Σ = Σ1 × · · · × Σn

for the set of mixed strategy profiles. We further have σ(a) and
σi(a) denote the probability of action a in mixed strategy profile σ
or mixed strategy σi, respectively. In settings involving expected
utility, we will generally assume that utility functions represent
von Neumann-Morgenstern preferences. For a player i and (mixed)
strategy profiles σ and τ we write σ 4i τ if ui (σ) 6 ui (τ).

3.2 Conditional Commitments
Relative to a strategic game (N, (Ai)i∈N , (ui)i∈N) and an order-

ing π = (π1, . . . , πn) of the players, we define the set Fπi of (pure)
conditional commitments of a player πi as the set of functions
from Aπ1 × · · · × Aπi−1 to Aπi . For π1 we have the set of conditional
commitments coincide with Aπ1 . By a conditional commitment pro-

file f we understand any combination of conditional commitments
in Fπ1 × · · · × Fπn .

Intuitively, π reflects the sequential order in which the players
can make their commitments, with πn committing first, πn−1 second,
and so on. Each player can condition his action on the actions of
all players that are to commit after him. In this manner, each con-
ditional commitment profile f can be seen to determine a unique
strategy profile, denoted by f ′, which will be played if all players
stick to their conditional commitments. More formally, the strategy
profile f ′ = ( f ′π1

, . . . , f ′πn
) for a conditional commitment profile f is

defined inductively as

f ′π1
=df. fπ1 ,

f ′πi+1
=df. fπi+1 ( f ′π1

, . . . , f ′πi
).

The sequence f ′π1
, ( f ′π1
, f ′π2

), . . . , ( f ′π1
, . . . , f ′πn

) will be called the path
of f . E.g., in the two-player game of Figure 2 and given the or-
der (Row,Col), Row has two conditional commitments, top and
bottom, which we will henceforth denote t and b. Col, on the other
hand, has four conditional commitments, corresponding to the dif-
ferent functions mapping strategies of Row to those of Col. If we
consider a conditional commitment f for Col such that f (t) = l
and f (b) = r, then (t, f ) is a conditional commitment profile
and (t, f )′ = (t, f (t)) = (t, l).

There is a natural way in which a strategic game G together with
an ordering (π1, . . . , πn) of the players can be interpreted as an ex-
tensive form game with perfect information (see, e.g., [4, 6])1, in
which π1 chooses his action first, π2 second, and so on. Observe
that under this assumption the strategies in the extensive form game
and the conditional commitments in the strategic game G with or-
dering π are mathematically the same objects. Applying backward
induction to the extensive form game yields subgame perfect equi-
libria, which arguably provide appropriate solutions in this setting.
From the perspective of conditional commitments, however, play-
ers move in reverse order. We will argue that under this interpreta-
tion other strategy profiles should be singled out as appropriate.

To illustrate this point, consider once more the game in Figure 2
and observe that neither player can improve on the outcome ob-
tained via iterated strong dominance by committing uncondition-
ally to some strategy. Situations like this, in which players can
make unconditional commitments in a fixed order, can fruitfully
be analyzed as extensive form games, and the most lucrative un-
conditional commitment can be found through backward induction.
Figure 3 shows the extensive form associated with the game of Fig-
ure 2. The strategies available to the row player are the same as in
the strategic form: choosing the top or the bottom row. The strate-
gies for the column player in the extensive game are given by the
four functions that map strategies of the row player in the strate-
gic game to one of his own. Transforming this extensive form
back into a strategic game (see Figure 4), we find that there exists
a second equilibrium besides the one found by means of backward
induction. This equilibrium with outcome (1, 3), indicated by the
thick lines in Figure 3, has been argued to be unacceptable in the
sequential game as it would involve an incredible threat by Col:
once Row has played top, Col finds himself confronted with a fait
accompli. He had better make the best of a bad bargain and opt
for the left column after all. This is in essence the line of thought
Selten followed in his famous argument for subgame perfect equi-
libria [10]. If, however, the strategies of Col in the extensive form
are thought of as his conditional commitments he can make in case
1For a formal definition of a game in extensive form, the reader
consult one of the standard textbooks, such as [4] or [6]. In this
paper all formal definitions are based on strategic games and order-
ings of the players only.
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Figure 3: Extensive form obtained from the strategic game of Fig-
ure 2 when the row player chooses an action first. The backward in-
duction solution is indicated by dashed lines, the conditional com-
mitment solution by solid ones. (The horizontal dotted lines do not
indicate information sets, but merely indicate which players are to
move when.)

he moves first, the situation is radically different. Thus we also as-
sume that it is possible for Col to make credible the threat to choose
the right column if Row were to play top, so as to ensure the latter is
always better off to play the bottom row. If Col can make a condi-
tional commitment of playing the right column if Row chooses top,
and the left column otherwise, this leaves Row with the easy choice
between a payoff of zero or one, and Col may expect a payoff of
three.

This line of reasoning can be generalized to yield an algo-
rithm for finding optimal conditional commitments for general two-
player games:

1. Find a strategy profile s = (sπ1 , sπ2 ) with maximum payoff to
player π2, and set fπ1 = sπ1 and fπ2 (sπ1 ) = sπ2 .

2. For each tπ1 ∈ Aπ1 with tπ1 , sπ1 , find a strategy tπ2 ∈ Aπ2

that minimizes uπ1 (tπ1 , tπ2 ), and set fπ2 (tπ1 ) = tπ2 .

3. If uπ1 (tπ1 , fπ2 (tπ1 )) 6 uπ1 (sπ1 , sπ2 ) for all tπ1 , sπ1 , return f .

4. Otherwise, find the strategy profile (s′π1
, s′π2

) with the highest
payoff to π2 among the ones that have not yet been consid-
ered. Set fπ1 = s′π1

and fπ2 (s′π1
) = s′π2

, and continue with
Step 2.

Generalizing the idea underlying this algorithm, we present in
Section 4 the concept of an extortion, which applies to games with
any number of players. For any order of the players an extortion
contains, for each player, an optimal commitment given the com-
mitments of the players that committed earlier.

3.3 Commitment Types
So far, we have distinguished between conditional and uncondi-

tional commitments. If made sequentially, both of them determine
a unique strategy profile in a given strategic game. This notion of
sequential commitment allows for generalization and gives rise to
the following definition of a (sequential) commitment type.

D 3.1. (Sequential commitment type) A (sequen-
tial) commitment type τ associates with each strategic game G
and each ordering π of its players, a tuple

(
Xπ1 , . . . , Xπn , φ

)
,

where Xπ1 , . . . , Xπn are (abstract) sets of commitments and φ is a
function mapping each profile in X = Xπ1 × · · · × Xπn to a (mixed)
strategy profile of G. A commitment type

(
Xπ1 , . . . , Xπn , φ

)
is finite

whenever Xπi is finite for each i with 1 6 i 6 n.

Thus, the type of unconditional commitments associates with a
game and an ordering π of its players the tuple

(
S π1 , . . . , S πn , id

)
,

 (2, 2) (2, 2) (0, 0) (0, 0)

(1, 3) (3, 1) (1, 3) (3, 1)


Figure 4: The strategic game corresponding to the extensive form
of Figure 3

where id is the identity function. Similarly,
(
Fπ1 , . . . , Fπn ,

′
)

is the
tuple associated with the same game by the type of (pure) condi-
tional commitments.

4. EXTORTIONS
In the introduction, we argued informally how players could im-

prove their position by conditionally committing. How well they
can do, could be analyzed by means of an extensive game with the
actions of each player being defined as the possible commitments
he can make. Here, we introduce for each commitment type a cor-
responding notion of extortion, which is defined relative to a strate-
gic game and an ordering of the players. Extortions are meant to
capture the concept of a profile that contains, for each player, an op-
timal commitment given the commitments of the players that com-
mitted earlier. A complicating factor is that in finding a player’s
optimal commitment, one should not only take into account how
such a commitment affects other players’ actions, but also how it
enables them to make their commitments.

D 4.1. (Extortions) Let G be a strategic game, π an
ordering of its players, and τ a commitment type. Let τ(G, π) be
given by

(
Xπ1 , . . . , Xπn , φ

)
. A τ-extortion of order 0 is any com-

mitment profile x ∈ Xπ1 × · · · × Xπn . For m > 0, a commitment
profile x ∈ Xπ1 × · · · × Xπn is a τ-extortion of order m in G given π
if x is an τ-extortion of order m − 1 with

φ
(
yπ1 , . . . , yπm , xπm+1 , . . . , xπn

)
4πm φ

(
xπ1 , . . . , xπm , xπm+1 , . . . , xπn

)
for all commitment profiles g in X with (yπ1 , . . . , yπm , xπm+1 , . . . , xπn )
a τ-extortion of order m − 1. A τ-extortion is a commitment profile
that is a τ-extortion of order m for all m with 0 6 m 6 n. Further-
more, we say that a (mixed) strategy profile σ is τ-extortionable if
there is some τ-extortion x with φ(x) = s.

Thus, an extortion of order 1 is a commitment profile in which
player π1, makes a commitment that maximizes his payoff, given
fixed commitments of the other players. An extortion of order m is
an extortion of order m− 1 that maximizes player m’s payoff, given
fixed commitments of the players πm+1 through πn.

For the type of conditional commitments we have that any con-
ditional commitment profile f is an extortion of order 0 and an ex-
tortion of an order m greater than 0 is any extortion of order m − 1
for which:(

gπ1 , . . . , gπm , fπm+1 , . . . , fπn

)′ 4πm

(
fπ1 , . . . , fπm , fπm+1 , . . . , fπn

)′
,

for each conditional commitment profile g such that(
gπ1 , . . . , gπm , fπm+1 , . . . , fπn

)
an extortion of order m − 1.

To illustrate the concept of an extortion for conditional com-
mitments consider the three-player game in Figure 5 and assume

 (1, 4, 0) (1, 4, 0)

(3, 3, 2) (0, 0, 2)

  (4, 1, 1) (4, 0, 0)

(3, 3, 2) (0, 0, 2)


Figure 5: A three-player strategic game
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Figure 6: A conditional extortion f of order 1 (left) and an extortion g of order 3 (right).

(Row,Col,Mat) to be the order in which the players commit. Fig-
ure 6 depicts the possible conditional commitments of the players
in extensive forms, with the left branch corresponding to Row’s
strategy of playing the top row. Let f and g be the conditional
commitment strategies indicated by the thick lines in the left and
right figures respectively. Both f and g are extortions of order 1.
In both f and g Row guarantees himself the higher payoff given
the conditional commitments of Mat and Col. Only g, however, is
also an extortion of order 2. To appreciate that f is not, consider
the conditional commitment profile h in which Row chooses top
and Col chooses right no matter how Row decides, i.e., h is such
that hRow = t and hCol(t) = hCol(b) = r. Then, (hRow, hCol, fMat) is
also an extortion of order 1, but yields Col a higher payoff than f
does. We leave it to the reader to check that, by contrast, g is an
extortion of order 3, and therewith an extortion per se.

4.1 Promises and Threats
One way of understanding conditional extortions is by conceiv-

ing of them as combinations of precisely one promise and a num-
ber of threats. From the strategy profiles that can still be realized
given the conditional commitments of players that have commit-
ted before him, a player tries to enforce the strategy profile that
yields him as much payoff as possible. Hence, he chooses his com-
mitment so as to render deviations from the path that leads to this
strategy profile as unattractive as possible (‘threats’) and the de-
sired strategy profile as appealing as possible (‘promises’) for the
relevant players. If (sπ1 , . . . , sπn ) is such a desirable strategy pro-
file for player πi and fπi his conditional commitment, the value
of fπi (sπ1 , . . . , sπi−1 ) could be taken as his promise, whereas the val-
ues of fπi for all other (tπ1 , . . . , tπi−1 ) could be seen as constituting
his threats. The higher the payoff is to the other players in a strategy
profile a player aims for, the easier it is for him to formulate an ef-
fective threat. However, making appropriate threats in this respect
does not merely come down to minimizing the payoffs to players to
commit later wherever possible. A player should also take into ac-
count the commitments, promises and threats the following players
can make on the basis of his and his predecessors’ commitments.
This is what makes extortionate reasoning sometimes so compli-
cated, especially in situations with more than two players.

For example, in the game of Figure 5, there is no conditional
extortion that ensures Mat a payoff of two. To appreciate this, con-
sider the possible commitments Mat can make in case Row plays
top and Col plays left (tl) and in case Row plays top and Col plays
right (tr). If Mat commits to the right matrix in both cases, he virtu-
ally promises Row a payoff of four, leaving himself with a payoff of
at most one. Otherwise, he puts Col in a position to deter Row from
choosing bottom by threatening to choose the right column if the
latter does so. Again, Mat cannot expect a payoff higher than one.
In short, no matter how Mat conditionally commits, he will either

enable Col to threaten Row into playing top or fail to lure Row into
playing the bottom row.

4.2 Benign Backward Induction
The solutions extortions provide can also be obtained by model-

ing the situation as an extensive form game and applying a back-
ward inductive type of argument. The actions of the players in any
such extensive form game are then given by their conditional com-
mitments, which they then choose sequentially. For higher types
of commitment, such as conditional commitments, such ‘meta-
games’, however, grow exponentially in the number of strategies
available to the players and are generally much larger than the orig-
inal game. The correspondence between the backward induction
solutions in the meta-game and the extortions of the original strate-
gic game rather signifies that the concept of an extortion is defined
properly. First we define the concept of benign backward induc-
tion in general relative to a game in strategic form together with
an ordering of the players. Intuitively it reflects the idea that each
player chooses for each possible combination of actions of his pre-
decessors the action that yields the highest payoff, given that his
successors do similarly. The concept is called benign backward in-
duction, because it implies that a player, when indifferent between
a number of actions, chooses the one that benefits his predeces-
sors most. For an ordering π of the players, we have πR denote its
reversal (πn, . . . , π1).

D 4.2. (Benign backward induction) Let G be a
strategic game and π an ordering of its players. A benign back-
ward induction of order 0 is any conditional commitment profile f
subject to π. For m > 0, a conditional commitment strategy pro-
file f is a benign backward induction (solution) of order m if f is a
benign backward induction of order m − 1 and

(gπR
n
, . . . , gπR

m+1
, gπR

m
, . . . , gπR

1
)′ 4πR

m
(gπR

n
, . . . , gπR

m+1
, fπR

m
, . . . , fπR

1
)′

for any backward induction (gπR
n
,..., gπR

m+1
, gπR

m
,..., gπR

1
) of order m−1.

A conditional commitment profile f is a benign backward induction
if it is a benign backward induction of order k for each k with 0 6
k 6 n.

For games with a finite action set for each player, the follow-
ing result follows straightforwardly from Kuhn’s Theorem (cf. [6,
p. 99]). In particular, this result holds if the players’ actions are
commitments of a finite type.

F 4.3. For each finite game and each ordering of the play-
ers, benign backward inductions exist.

For each game, each ordering of its players and each commit-
ment type, we can define another game G∗ with the the actions
of each player i given by his τ-commitments Xi in G. The utility



of a strategy profile (xπ1 , . . . , xπn ) for a player i in G∗ can then be
equated to his utility of the strategy profile φ(xπn , . . . , xπ1 ) in G. We
now find that the extortions of G can be retrieved as the paths of
the benign backward induction solutions of the game G∗ for the
ordering πR of the players, provided that the commitment type is
finite.

T 4.4. Let G = (N, (Ai)i∈N , (ui)i∈N) be a game and π
an ordering of its players with which the finite commitment
type τ associates the tuple

(
Xπ1 , . . . , Xπn , φ

)
. Let further G∗ =(

N, (Xπi )i∈N , (u∗πi
)i∈N
)
, where u∗πi

(xπn , . . . , xπ1 ) = uπi (φ(xπ1 , . . . , xπn )),
for each τ-commitment profile (xπ1 , . . . , xπn ). Then, a π-
commitment profile (xπ1 , . . . , xπn ) is a τ-extortion in G given π if and
only if there is some benign backward induction f in G∗ given πR

with f ′ = (xπn , . . . , xπ1 ).
P. Assume that f is a benign backward induction in G∗

relative to πR. Then, f ′ = (xπn , . . . , xπ1 ), for some commitment
profile (xπ1 , . . . , xπn ) of G relative to π. We show by induction
that (xπ1 , . . . , xπn ) is an extortion of order m, for all m with 0 6
m 6 n. For m = 0, the proof is trivial. For the induction step,
consider an arbitrary commitment profile (yπ1 , . . . , yπn ) such that
(yπ1 , . . . , yπm , xπm+1 , . . . , xπn ) is an extortion of order m− 1. In virtue
of the induction hypothesis, there is a benign backward induction g
of order m − 1 in G∗ with g′ = (xπn , . . . , xπm+1 , yπm , . . . , yπ1 ). As f is
also a benign backward induction of order m:

(gπn , . . . , gπ1 )′ 4∗πm
(gπn , . . . , gπm+1 , fπm , . . . , fπ1 )′.

Hence, (xπn , . . . , xπm+1 , yπm , . . . , yπ1 ) 4∗πm
(xπn , . . . , xπ1 ). By defini-

tion of u∗πm
, then also:

φ(yπ1 , . . . , yπm , xπm+1 , . . . , xπn ) 4πm φ(xπ1 , . . . , xπn ).

We may conclude that x is an extortion of order m.
For the only if direction, assume that x is an extortion of G

given π. We prove that there is a benign backward induction f (∗)

in G∗ for πR with f (∗)′ = x. In virtue of Fact 4.3, there is a benign
backward induction h in G∗ given πR. Now define f (∗) in such a way
that f (∗)

πi (zπn , . . . , zπi−1 ) = xπi , if (zπn , . . . , zπi−1 ) = (xπn , . . . , xπi−1 ),
and f (∗)

πi (zπn , . . . , zπi−1 ) = hπi (zπn , . . . , zπi−1 ), otherwise. We prove
by induction on m, that f (∗) is a benign backward induction of
order m, for each m with 0 6 m 6 n. The basis is trivial. So
assume that f (∗) is a backward induction of order m − 1 in G∗

given πR and consider an arbitrary benign backward induction g
of order m − 1 in G∗ given πR. Let g′ be given by (yπn , . . . , yπ1 ).
Either (yπn , . . . , yπm+1 ) = (xπn , . . . , xπm+1 ), or this is not the case. If
the latter, it can readily be appreciated that:

(gπn , . . . , gπm+1 , f (∗)
πm
, . . . , f (∗)

π1
)′ = (gπn , . . . , gπm+1 , hπm , . . . , hπ1 )′.

Having assumed that h is a benign backward induction, sub-
sequently, (gπn , . . . , gπ1 )′ 4∗m (gπn , . . . , gπm+1 , hπm , . . . , hπ1 )′, and
(gπn , . . . , gπ1 )′ 4∗m (gπn , . . . , gπm+1 , f (∗)

πm , . . . , f (∗)
π1 )′. Hence, f (∗) is

a benign backward induction of order m. In the former case
the reasoning is slightly different. Then, (gπn , . . . , gπ1 )′ =
(xπn , . . . , xπm+1 , yπm , . . . , yπ1 ). It follows that:

(gπn , . . . , gπm+1 , f (∗)
πm
, . . . , f (∗)

π1
)′ = ( f (∗)

πn
, . . . , f (∗)

π1
)′ = (xπn , . . . , xπ1 ).

In virtue of the induction hypothesis, (yπ1 , . . . , yπn ) is an extortion
of order m− 1 in G given π. As the reasoning takes place under the
assumption that x is an extortion in G given π, we also have:

φ(yπ1 , . . . , yπm , xπm+1 , . . . , xπn ) 4πm φ(xπ1 , . . . , xπn ).

Then, (xπn , . . . , xπm+1 , yπm , . . . , yπ1 , ) 4
∗
πm

(xπn , . . . , xπ1 )., by defini-
tion of u∗. We may conclude that:

(gπn , . . . , gπ1 )′ 4∗πm
(gπn , . . . , gπm+1 , f (∗)

πm
, . . . , f (∗)

π1
)′,

signifying that f (∗) is a benign backward induction of order m.

As an immediate consequence of Theorem 4.4 and Fact 4.3 we also
have the following result.

C 4.5. Let τ be a finite commitment type. Then,
τ-extortions exist for each strategic game and for each ordering
of the players.

4.3 Commitment Order
In the case of unconditional commitments, it is not always favor-

able to be the first to commit. This is well illustrated by the familiar
game rock-paper-scissors. If, on the other hand, the players are in a
position to make conditional commitments in this particular game,
moving first is an advantage. Rather, we find that it can never harm
to move first in a two-player game with conditional commitments.

T 4.6. Let G be a two-player strategic game involving
player i. Further let f be an extortion of G in which i commits first,
and g an extortion in which i commits second. Then, g′ 4i f ′.

P . Let f be a conditional extortion in G given π. It
suffices to show that there is some conditional extortion h of or-
der 1 in G given π′ with h′ = f ′. Assume for a contradiction that
there is no such extortion of order 1 in G given π′. Then there must
be some b∗ ∈ A j such that f ′ ≺ j

(
b∗, a
)
, for all a ∈ Ai. (Oth-

erwise we could define (g j, gi) such that g j = f j( fi), gi(g j) = fi,
and for any other b ∈ A j, gi(b) = a∗, where a∗ is an action in Ai

such that (b, a∗) 4 j f ′. Then g would be an extortion of order 1
in G given π′ with g′.) Now consider a conditional commitment
profile h for G and π such that h j(a) = b∗, for all a ∈ Ai. Let fur-
ther hi be such that (a, h j)′ 4i (hi, h j)′, for all a ∈ Ai. Then, h is an
extortion of order 1 in G given π. Observe that (hi, h j)′ = ( f ′i , b

∗).
Hence, f ′ ≺ j h′, contradicting the assumption that f is an extortion
in G given π.

Theorem 4.6 does not generalize to games with more than two
players. Consider the three-player game in Figure 7, with exten-
sive forms as in Figure 8. Here, Row and Mat have identical pref-
erences. The latter’s extortionate powers relative Col, however, are
very weak if he is to commit first: any conditional commitment
he makes puts Col in a situation in which she can enforce a pay-
off of two, leaving Mat and Row in the cold with a payoff of one.
However, if Mat is last to commit and Row first, then the latter can
exploit his strategic powers, threaten Col so that she plays left, and
guarantee both himself and Mat a payoff of two.

4.4 Pareto Efficiency
Another issue concerns the Pareto efficiency of the strategy pro-

files extortionable through conditional commitments. We say that
a strategy profile s (weakly) Pareto dominates another strategy pro-
file t if t 4i s for all players i and s$it for some. Moreover, a
strategy profile s is (weakly) Pareto efficient if it is not (weakly)
Pareto dominated by any other strategy profile. We extend this
terminology to conditional commitment profiles by saying that a
conditional commitment profile f is (weakly) Pareto efficient or
(weakly) Pareto dominates another conditional commitment profile
if f ′ is or does so. We now have the following result.

 (0, 1, 0) (0, 0, 0)

(0, 0, 0) (1, 2, 1)

  (2, 1, 2) (0, 0, 0)

(0, 0, 0) (1, 2, 1)


Figure 7: A three-person game.
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Figure 8: It is not always better to commit early than late, even in the case of conditional or inductive commitments.

T 4.7. In each game, Pareto efficient conditional extor-
tions exist. Moreover, any strategy profile that Pareto dominates an
extortion is also extortionable through a conditional commitment.

P . Since, in virtue of Fact 4.5, extortions gener-
ally exists in each game, it suffices to recognize that the second
claim holds. Let s be the strategy profile (sπ1 , . . . , sπn ). Let fur-
ther the conditional extortion f be Pareto dominated by s. An
extortion g with g′ = s can then be constructed by adopting
all threats of f while promising g′. I.e., for all players πi we
have gπi (sπ1 , . . . , sπi−1 ) = si and gπi (tπ1 , . . . , tπn ) = fπi (tπ1 , . . . , tπn ),
for all other tπ1 , . . . , tπn . As s Pareto dominates f ′, the “threats” of f
remain effective as threats of g given that s is being promised.

This result hints at a difference between (benign) backward in-
duction and extortions. In general, solutions of benign backward
inductions can be Pareto dominated by outcomes that are no benign
backward induction solutions. Therefore, although every extortion
can be seen as a benign backward induction in a larger game, it is
not the case that all formal properties of extortions are shared by
benign backward inductions in general.

5. OTHER COMMITMENT TYPES
Conditional and unconditional commitments are only two pos-

sible commitment types. The definition also provides for types
of commitment that allow for committing on commitments, thus
achieving a finer adjustment of promises and threats. Similarly, it
subsumes commitments on and to mixed strategies. In this section
we comment on some of these possibilities.

5.1 Inductive Commitments
Apart from making commitments conditional on the actions of

the players to commit later, one could also commit on the com-
mitments of the following players. Informally, such commitments
would have the form of “if you only dare to commit in such and
such a way, then I do such and such, otherwise I promise to act so
and so.”

For a strategic game G and an ordering π of the players, we de-
fine the inductive commitments of the players inductively. The in-
ductive commitments available to π1 coincide with the actions that
are available to him. An inductive commitment for player πi+1 is a
function mapping each profile of inductive commitments of play-
ers π1 through πi to one of his basic actions. Formally we define the
type of inductive commitments

(
Fπ1 , . . . , Fπn ,

′
)

such that for each
player πi in a game G and given π:

Fπ1 =df. Aπ1 ,

Fπi+1 =df. A
Fπ1×···×Fπi
πi+1 .

Let f ′πi
= f πi

(
f π1
, . . . , f πi−1

)
, for each player πi and have f ′ denote

the pure strategy profile
(
f ′π1
, . . . , f ′πn

)
.

Inductive commitments have a greater extortionate power than
conditional commitments. To appreciate this, consider once more
the game in Figure 5. We found that the strategy profile in
which Row chooses bottom and Col and Mat both choose left is
not extortionable through conditional commitments. By means of
inductive commitments, however, this is possible. Let f be the
inductive commitment profile such that f Row is Row choosing the
bottom row (b), f Col is the column player choosing the left column
(l) no matter how Row decides, and f Mat is defined such that:

f Mat
(
f Row, f Col

)
=

r if f Row = t and f Col (b) = r,
l otherwise.

Instead of showing formally that f is an inductive extortion of the
strategy profile (b, l, l), we point out informally how this can be
done. We argued that in order to exact a payoff of two by means of
a conditional extortion, Mat would have to lure Row into choosing
the bottom row without at the same time putting Col in a position
to successfully threaten Row not to choose top. This, we found,
is an impossibility if the players can only make conditional com-
mitments. By contrast, if Mat can commit to commitments, he can
undermine Col’s efforts to threaten Row by playing the right ma-
trix, if Col were to do so. Yet, Mat can still force Row to choose
the bottom row, in case Col desists form making this threat.

As can readily be observed, in any game, the inductive com-
mitments of the first two players to commit coincide with their
conditional commitments. Hence, as an immediate consequence
of Theorem 4.6, it can never harm to be the first to commit to
an inductive commitment in the two player case. Similarly, we
find that the game depicted in Figure 7 also serves as an example
showing that, in case there are more than two players, it is not al-
ways better to commit to an inductive commitment early. In this
example the strategic position of Mat is so weak if he is to com-
mit first, that even the possibility to commit inductively does not
strengthen it, whereas, in a similar fashion as with conditional com-
mitments, Row can enforce a payoff of two to both himself and Mat
if he is the first to commit.

5.2 Mixed Commitments Types
So far we have merely considered commitments to and on pure

strategies. A natural extension would be also to consider commit-
ments to and on mixed strategies. We distinguish between con-
ditional, unconditional as well as inductive mixed commitments.
We find that they are generally quite incomparable with their pure
counterparts: in some situations a player can achieve more using
a mixed commitment, in another using a pure commitment type.
A complicating factor with mixed commitment types is that they



can result in a mixed strategy profile being played. This makes
that the distinction between promises and threats, as delineated in
Section 4.1, gets blurred for mixed commitment types.

The type of mixed unconditional commitments associates
with each game G and ordering π of its players the tu-
ple
(
Σπ1 , . . . , Σπn , id

)
. The two-player case has been extensively

studied (e.g., [2, 16]). As a matter of fact, von Neumann’s fa-
mous minimax theorem shows that for two-player zero-sum games,
it does not matter which player commits first. If the second player
to commit plays a mixed strategy that ensures his security level, the
first player to commit can do no better than to do so as well [14].

In the game of Figure 5 we found that, with conditional commit-
ments, Mat is unable to enforce an outcome that awards him a pay-
off of two. Recall that the reason of this failure is that any effort to
deter Row from choosing the top row is flawed, as it would put Col
in an excellent position to threaten Row not to choose the bottom
row. If Mat has inductive commitments at his disposal, however,
this is a possibility. We now find that in case the players can dis-
pose of unconditional mixed strategies, Mat is in a much similar
position. He could randomize uniformly between the left and right
matrix. Then, Row’s expected utility is 2 1

2 if he plays the top row,
no matter how Col randomizes. The expected payoff of Col does
not exceed 2 1

2 , either, in case Row chooses top. By purely com-
mitting to the left column, Col player entices Row to play bottom,
as his expected utility then amounts to 3. This ensures an expected
utility of three for Col as well.

However, a player is not always better off with unconditional
mixed commitments than with pure conditional commitments. For
an example, consider the game in Figure 2. Using pure conditional
commitments, he can ensure a payoff of three, whereas with un-
conditional mixed commitments 2 1

2 would be the most he could
achieve. Neither is it in general advantageous to commit first to a
mixed strategy in a three-player game. To appreciate this, consider
once more the game in Figure 7. Again committing to a mixed
strategy will not achieve much for Mat if he is to move first, and as
before the other players have no reason to commit to anything other
than a pure strategy. This holds for all players if Row commits first,
Col second and Mat last, be it that in this case Mat obtains the best
payoff he can get.

Analogous to conditional and inductive commitments one can
also define the types of mixed conditional and mixed inductive com-
mitments. With the former, a player can condition his mixed strate-
gies on the mixed strategies of the players to commit after him.
These tend to be very large objects and, knowing little about them
yet, we shelve their formal analysis for future research. Conceptu-
ally, it might not be immediately clear how such mixed conditional
commitments can be made with credibility. For one, when one’s
commitments are conditional on a particular mixed strategy being
played, how can it be recognized that it was in fact this mixed strat-
egy that was played rather than another one? If this proves to be
impossible, how can one know how his conditional commitments
is to be effectuated? A possible answer would be, that all depends
on the circumstances in which the commitments were made. E.g.,
if the different agents can submit their mixed conditional commit-
ments to an independent party, the latter can execute the random-
izations and determine the unique mixed strategy profile that their
commitments induce.

6. SUMMARY AND CONCLUSION
In some situations agents can strengthen their strategic position

by committing themselves to a particular course of action. There
are various types of commitment, e.g., pure, mixed and conditional.
Which type of commitment an agent is in a position in to make es-

sentially depends on the situation under consideration. If the agents
commit in a particular order, there is a tactic common to making
commitments of any type, which we have formalized by means the
concept of an extortion. This generic concept of extortion can be
analyzed in abstracto. Moreover, on its basis the various commit-
ment types can be compared formally and systematically.

We have seen that the type of commitment an agent can make
has a profound impact on what an agent can achieve in a game-
like situation. In some situations a player is much helped if he
is in a position to commit conditionally, whereas in others mixed
commitments would be more profitable. This raises the question
as to the characteristic formal features of the situations in which it
is advantageous for a player to be able to make commitments of a
particular type.

Another issue which we leave for future research is the computa-
tional complexity of finding an extortion for the different commit-
ment types.
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