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Abstract
Various problems in AI and multiagent systems can be tack-
led by finding the “most desirable” elements of a set given
some binary relation. Examples can be found in areas as di-
verse as voting theory, game theory, and argumentation the-
ory. Some particularly attractive solution sets are defined in
terms of a covering relation—a transitive subrelation of the
original relation. We consider three different types of cov-
ering (upward, downward, and bidirectional) and the corre-
sponding solution concepts known as the uncovered set and
the minimal covering set. We present the first polynomial-
time algorithm for finding the minimal bidirectional covering
set (an acknowledged open problem) and prove that decid-
ing whether an alternative is in a minimal upward or down-
ward covering set is NP-hard. Furthermore, we obtain various
set-theoretical inclusions, which reveal a strong connection
between von Neumann-Morgenstern stable sets and upward
covering on the one hand, and the Banks set and downward
covering on the other hand. In particular, we show that every
stable set is also a minimal upward covering set.

Introduction
Various problems in AI and multiagent systems can be tack-
led by identifying the “most desirable” elements of a set of
alternatives according to some binary dominance relation.
Examples are diverse and include finding valid arguments in
argumentation theory (e.g., Dung, 1995), selecting socially
preferred candidates in social choice settings (e.g., Fish-
burn, 1977; Laslier, 1997; Brandt, Fischer, & Harrenstein,
2007), determining the winner of a competition (e.g., Dutta
& Laslier, 1999), choosing the optimal strategy in a sym-
metric two-player zero-sum game (Duggan & Le Breton,
1996), and investigating which coalitions will form in coop-
erative game theory (Brandt & Harrenstein, 2007). In social
choice theory, where dominance-based solutions are most
prevalent (see, e.g., Fishburn, 1977; Laslier, 1997; Brandt,
Fischer, & Harrenstein, 2007), the dominance relation can
simply be defined as the pairwise majority relation, i.e., an
alternative a is said to dominate another alternative b if the
number of individuals preferring a to b exceeds the num-
ber of individuals preferring b to a. McGarvey (1953) has
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shown that any asymmetric dominance relation can be re-
alized by a particular preference profile, even if individual
preferences are required to be linear. As is well known
from Condorcet’s paradox, however, the dominance relation
may very well contain cycles. This implies that the domi-
nance relation need not have a maximum, or even a maxi-
mal, element, even if the underlying individual preferences
do. Thus, the concept of maximality is rendered untenable
in most cases. As a consequence, various so-called solu-
tion concepts that take over the role of maximality in non-
transitive relations have been suggested (e.g., von Neumann
& Morgenstern, 1944; Fishburn, 1977; Miller, 1980; Banks,
1985; Dutta, 1988). Some particularly attractive solution
sets are defined in terms of a covering relation—a subre-
lation of the dominance relation (Gillies, 1959; Fishburn,
1977; Miller, 1980; Dutta, 1988). There are three natural
conceptions of covering:
• upward covering, where an alternative a is said to cover

another alternative b if a dominates b and the alternatives
dominating a form a subset of those dominating b,

• downward covering, where a covers b if a dominates b
and the alternatives dominated by b form a subset of those
dominated by a, and

• bidirectional covering, where a covers b if a covers b up-
ward and downward.

In tournaments, i.e., complete dominance relations, all no-
tions of covering coincide.1 Tournaments have received par-
ticular attention in social choice theory because the pairwise
majority relation is guaranteed to be complete given an odd
number of voters with linear preferences.

Since each of the covering relations is transitive, maximal
(i.e., uncovered) elements are guaranteed to exist if the set
of alternatives is finite. Consequently, the set of uncovered
alternatives for a given covering relation constitutes a natural
solution concept. In tournaments, the resulting uncovered
set consists precisely of those alternatives that dominate any

1Additional covering relations due to Fishburn (1977) and
Miller (1980), which do not require that a dominates b for a to
cover b, were introduced in the context of tournaments where they
coincide with all other covering relations. Since they possess some
undesirable properties for incomplete dominance relations (see,
e.g., Dutta & Laslier, 1999), we will not consider them in this pa-
per.



other alternative along a domination path of length one or
two and is the finest solution concept that satisfies the so-
called expansion property (Moulin, 1986). Dutta & Laslier
(1999) generalize Moulin’s result and provide an appealing
axiomatic characterization of the bidirectional uncovered set
for incomplete dominance relations.

Uncovered sets tend to be rather large and are not idem-
potent. Thus, a natural refinement of the uncovered set can
be obtained by repeatedly computing the uncovered set un-
til no more alternatives can be removed. This solution is
called the iterated uncovered set (see Laslier, 1997). Unfor-
tunately, the iterated uncovered set does not satisfy several
criteria that are considered essential for any solution concept
(such as monotonicity). As a solution to these problems,
Dutta (1988) proposed the minimal covering set, which is
the smallest set of alternatives (with respect to set inclu-
sion) that satisfies specific notions of internal and external
stability (with respect to the underlying covering relation).
Minimal covering sets are always contained in their corre-
sponding iterated uncovered set. The minimal bidirectional
covering set of any dominance relation is unique and consid-
ered especially attractive because it satisfies an outstanding
number of desirable criteria (Laslier, 1997; Dutta & Laslier,
1999; Peris & Subiza, 1999). In addition to the minimal
bidirectional covering set, minimal upward and downward
covering sets are considered for the first time in this paper.

Naturally, computational tractability is a crucial property
of any solution concept, simply because intractability ren-
ders a concept useless for large instances that do not pos-
sess additional structure. While for some solution sets either
efficient algorithms or hardness results have been put for-
ward (see, e.g., Woeginger, 2003; Conitzer, 2006; Conitzer,
Davenport, & Kalagnanam, 2006; Brandt, Fischer, & Har-
renstein, 2007), very little is known about the computational
complexity of solution concepts based on covering relations.
In fact, Laslier states that the “computational needs for the
different methods to be applied also vary a lot. [. . . ] Un-
fortunately, no algorithm has yet been published for finding
the Minimal Covering set [. . . ] of large tournaments. For
tournaments of order 10 or more, it is almost impossible to
find (in the general case) these sets at hand” (Laslier, 1997,
p. 8). In this paper, we provide polynomial-time algorithms
for finding the minimal bidirectional covering set (the set
Laslier was referring to), the essential set (an attractive sub-
set of the minimal bidirectional covering set), and iterated
uncovered sets. Moreover, we show that deciding whether
an alternative is in a minimal upward or downward covering
set is NP-hard.

Preliminaries
Let A be a finite set of alternatives and let �⊆ A × A be
an asymmetric and irreflexive relation on A, the dominance
relation. The fact that an alternative a dominates another al-
ternative b, denoted a � b, means that a is “strictly better
than” b or “beats” b in a pairwise comparison. We do not
in general assume completeness or transitivity of � but al-
low for ties among alternatives and cyclical dominance. A
dominance relation that does satisfy completeness is called
a tournament. In the literature, the more general case of

an incomplete dominance relation as studied in this paper is
sometimes referred to as a weak tournament. We will some-
times find it convenient to view � as a directed dominance
graph (V, E) with vertex set V = A and (a, b) ∈ E if and
only if a � b, or as a (skew-symmetric) adjacency matrix
MA,� = (mi j)i, j∈A where mi j = 1 if i � j, mi j = −1 if j � i,
and mi j = 0 otherwise.

We say that an alternative a ∈ A is undominated relative
to � whenever there is no alternative b ∈ A with b � a.
A special type of undominated alternative is the Condorcet
winner, an alternative that dominates every other alternative.
The concept of a maximal element we reserve in this paper
to denote an undominated element of a transitive relation.
Given its asymmetry, transitivity of the dominance relation
implies its acyclicity. The implication in the other direction
holds for tournaments but not for the general case. Fail-
ure of transitivity or completeness makes that a Condorcet
winner need not exist; failure of acyclicity, moreover, that
the dominance relation need not even contain maximal el-
ements. As such, the obvious notion of maximality is no
longer available to single out the “best” alternatives. Other
concepts have been devised to take over its role. In the con-
text of this paper, a choice set is a function f from the set of
ordered pairs (A,�) into the set of nonempty subsets of A.
While choice sets are always computed for a pair (A,�), we
will often omit � where the meaning is obvious from the
context.

Covering Relations and Choice Sets
In this paper we focus on choice sets based on transitive sub-
relations of the dominance relation called covering relations.

Definition 1 (covering) Let A be a set of alternatives, � a
dominance relation on A. Then, for any x, y ∈ A,
• x upward covers y, denoted xCuy, if x � y and for all

z ∈ A, z � x implies z � y,
• x downward covers y, denoted xCdy, if x � y and for all

z ∈ A, y � z implies x � z, and
• x bidirectionally covers y, denoted xCby, if xCuy and

xCdy.

It is easily verified that each of these covering relations is
asymmetric and transitive, and thus a strict partial order
on A. The set of maximal elements of such an ordering is
referred to as the uncovered set.

Definition 2 (uncovered set) Let A be a set of alterna-
tives, C a covering relation on A. Then, the uncovered set
of A with respect to C is defined as

UCC(A) = { x ∈ A | yCx for no y ∈ A }.

In particular, we will write UCu = UCCu for the upward
uncovered set, UCd = UCCd for the downward uncovered
set, and UCb = UCCb for the bidirectional uncovered set.

For an example of uncovered sets according to the dif-
ferent covering relations, consider the dominance graph of
Figure 1. Here, a upward covers b because f , the only al-
ternative that dominates a, also dominates b. a itself is not
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Figure 1: Example of upward, downward, and bidirectional
covering. The set A of alternatives is partitioned into the
upward uncovered set UCu(A) = {a, c, e} and the downward
uncovered set UCd(A) = {b, d, f }.

upward covered by f because d and e dominate f but not a.
On the other hand, f downward covers a because it domi-
nates b, the only alternative dominated by a. Neither a nor f
downward covers b, because the latter is the only alterna-
tive that dominates c. By symmetry of the graph, we have
UCu(A) = {a, c, e}, UCd(A) = {b, d, f }, and UCb(A) = A.

The uncovered set is not idempotent and may be applied
iteratively to obtain finer solutions. We write UCk

C(A) =

UCC(UCk−1
c (A)) for the kth iteration of UCC on A and de-

fine the iterated uncovered set as the fixed point UC∞C (A) =

UCm
C (A) if UCm

C (A) = UCm+1
C (A) for some m.

Dutta (1988) proposes a further refinement of the iterated
uncovered set in tournaments, which is based on the notion
of a covering set.

Definition 3 (covering set) Let A be a set of alternatives, �
a dominance relation on A, and C a covering relation based
on �. Then, B ⊆ A is a covering set for A under C if

(i) UCC(B) = B, and
(ii) for all x ∈ A \ B, x < UCC(B ∪ {x}).

Properties (i) and (ii) are referred to as internal and external
stability of a covering set, respectively.

For tournaments, where the different notions of covering
and uncovered sets coincide, Dutta (1988) proves the ex-
istence of a unique minimal covering set with respect to
set inclusion. Peris & Subiza (1999) and Dutta & Laslier
(1999) extend this result to incomplete dominance graphs
by showing that there is always a unique minimal bidirec-
tional covering set. We will denote this set by MC. The
minimal bidirectional covering set is regarded as particularly
attractive because it satisfies an outstanding number of de-
sirable criteria (Laslier, 1997; Dutta & Laslier, 1999; Peris
& Subiza, 1999). Furthermore, Duggan & Le Breton (1996)
have pointed out that the minimal covering set of a tourna-
ment coincides with the weak saddle of the corresponding
adjacency game—a solution concept that was proposed in-
dependently (and much earlier) by Shapley (1964). Similar
set-valued solution concepts such as CURB sets and Set-
Nash equilibria have recently received increased attention in
computational contexts (Benisch, Davis, & Sandholm, 2006;
Lavi & Nisan, 2005).

Figure 2 illustrates that uniqueness of a minimal cov-
ering set is not guaranteed for upward or downward cov-
ering. {x1, x2} is a minimal upward covering set for the
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Figure 2: Minimal upward and downward covering sets need
not be unique. There are two minimal upward covering
sets {x1, x2} and {y1, y2} in the dominance graph on the left,
and two minimal downward covering sets {x1, x2, x3} and
{y1, y2, y3} in the dominance graph on the right.

dominance graph on the left because x1Cuy1 in {x1, x2, y1}

and x2Cuy2 in {x1, x2, y2}, while no single alternative can
cover the remaining three alternatives. By a symmetric argu-
ment, the same holds for {y1, y2}. For the dominance graph
on the right, xi is downward uncovered in {x1, x2, x3} and yi
is downward covered in {x1, x2, x3, yi} for all i ∈ {1, 2, 3}.
Since any proper subset of {x1, x2, x3} fails to cover yi for
some i ∈ {1, 2, 3}, we have actually found a minimal down-
ward covering set. We leave it to the reader to verify that
apart from the symmetric set {y1, y2, y3} there are no addi-
tional minimal downward covering sets.

A serious defect of downward covering sets is that they
may fail to exist for very simple instances. For example, it is
easily verified that no subset of A = {a, b, c} with a � b � c
satisfies both internal and external stability. As we will see
later on, deciding the existence of a downward covering set
is NP-hard. Minimal upward covering sets, on the other
hand, are guaranteed to exist. The following theorem can
be proven by showing that any iteration of the upward un-
covered set is externally stable. We omit the proof.

Theorem 1 There always exists a minimal upward covering
set.

A refinement of the minimal bidirectional covering set
can be obtained by considering the adjacency game (called
tournament game by Dutta & Laslier, 1999) in which two
parties propose alternatives x, y ∈ A. The first party wins
if x � y, the second party wins if y � x, and the game ends
in a tie if neither of the two alternatives dominates the other.
In other words, the adjacency game Γ(A,�) is a symmetric
two-player zero-sum game where actions correspond to ele-
ments of A and the payoff of the first player is given by the
adjacency matrix MA,� of the dominance graph for A and �.
A strategy in such a game consists of a probability distribu-
tion over the different actions. A pair of strategies is called
a Nash equilibrium if none of the two players can increase
his (expected) payoff by changing his strategy, given that
the strategy of the other player remains the same (see, e.g.,
Osborne & Rubinstein, 1994). Dutta & Laslier (1999) de-
fine the essential set as the set of alternatives for which the
corresponding action is played with positive probability in
some Nash equilibrium of the adjacency game. It suffices to
restrict attention to symmetric equilibria because the set of
equilibria in a zero-sum game is convex.



Definition 4 (essential set) Let A be a set of alternatives, �
a dominance relation on A. Then, the essential set of A is
defined as

ES(A) = { a ∈ A | sa > 0 for some (s, s) ∈ N(Γ(A,�)) },

where N(Γ) denotes the set of Nash equilibria of game Γ
and sa the probability of action a under strategy s.

The essential set generalizes the bipartisan set, which is de-
fined in terms of the unique Nash equilibrium of the ad-
jacency game in the case of a complete dominance rela-
tion (Laslier, 1997). The essential set and the solution con-
cepts based on bidirectional covering can be ordered linearly
with respect to set inclusion: ES ⊆ MC ⊆ UC∞b ⊆ UCb.

Set-theoretical Relationships
By analyzing set-theoretical inclusions and disjunctions be-
tween choice sets, one can gain additional insight into the
reasons why, and to which extent, particular choice sets
are different. A complete characterization of the relation-
ships between various choice sets in tournaments is given
by Laslier (1997), including all the choice sets studied in
this paper. Bordes (1983) investigates relationships between
the different variants of the uncovered set in general domi-
nance graphs. We extend these results for the three variants
of the minimal covering set.

It is rather straightforward to show that every minimal
covering set has to be contained in the iterated uncovered set
for the same dominance relation, and that MC is both an up-
ward and a downward covering set. However, we were able
to construct dominance graphs with ten alternatives where
an additional minimal upward or downward covering set ex-
ists that does not intersect with MC. Figure 1 illustrates that
upward and downward uncovered sets, and hence the cor-
responding minimal covering sets, can have an empty inter-
section. This example also reveals an interesting relation-
ship between covering sets and two well-known choice sets,
which we introduce next.

A set S of alternatives is called stable if no element in-
side the set can be removed because it is dominated by some
other element in the set, while no element outside the set
can be included in the set because some element inside the
set dominates it (von Neumann & Morgenstern, 1944).

Definition 5 (stable set) Let A be a set of alternatives, � a
dominance relation on A. Then S ⊆ A is a (von Neumann-
Morgenstern) stable set if

(i) a � b for no a, b ∈ S and
(ii) for all a < S there is some b ∈ S with b � a.

Stable sets are neither guaranteed to exist nor to be unique.
Elementary counterexamples are cycles consisting of three
or four alternatives, respectively.

The Banks set consists of those elements that are the max-
imal element of � for some subset of the alternatives on
which � is complete and transitive and which is itself maxi-
mal with respect to set inclusion (Banks, 1985).

Definition 6 (Banks set) Let A be a set of alternatives, � a
dominance relation on A. Then, an alternative a is in the
Banks set of A, denoted a ∈ B(A), if there exists X ⊆ A
such that � is complete and transitive on X with maximal
element a and there is no b ∈ A such that b � x for all x ∈ X.

Returning to the dominance graph of Figure 1, it is eas-
ily verified that there exists a unique stable set S = {a, c, e},
and that B(A) = {b, d, f }. The relationship between upward
covering and stable sets on the one hand and downward cov-
ering and the Banks set on the other is no mere coincidence.
We state the following two theorems without proof.

Theorem 2 Every stable set is a minimal upward covering
set and thus contained in the upward uncovered set.

It is worth noting that there can be additional minimal up-
ward covering sets, which may have an empty intersection
with all stable sets.

Theorem 3 The Banks set intersects with every downward
covering set and is contained in the downward uncovered
set.2

Computing Choice Sets
Naturally, computational tractability is a crucial property of
any choice set, simply because intractability renders a con-
cept useless for large instances that do not possess addi-
tional structure. In the following, we assume the reader to
be familiar with the well-known chain of complexity classes
AC0 ⊂ P ⊆ NP, and the notion of polynomial-time re-
ducibility (see, e.g., Johnson, 1990). AC0 is the class of
problems solvable by uniform constant-depth Boolean cir-
cuits with unbounded fan-in and a polynomial number of
gates. P and NP are the classes of problems that can be
solved in polynomial time by deterministic and nondeter-
ministic Turing machines, respectively.

We start by showing that all variants of the uncovered set
are very easy to compute and amenable to parallel computa-
tion. We omit the straightforward proof.

Theorem 4 Deciding whether an alternative is contained in
the upward, downward, or bidirectional uncovered set is in
AC0.3

We continue with the finest solution concept studied in
this paper, the essential set. By Definition 4, the essential set
can be computed by finding those actions of the adjacency
game that are played with positive probability in any Nash
equilibrium. Algorithm 1 determines this set by first com-
puting the (expected) payoff of the first player in some Nash
equilibrium of the game, which constitutes the solution of
a linear programming problem. The minimax theorem (see,
e.g., von Neumann, 1928) implies that this payoff equals the

2The second part of this theorem is due to Banks & Bordes
(1988).

3If the input is a preference profile, as it is usually the case in
the context of social choice, the problem becomes TC0-complete
(under constant depth reducibility).



Algorithm 1 Essential set
procedure ES(A,�)

B← ∅; (mi j)i, j∈A ← MA,�
minimize v
subject to

∑
j∈A s j · mi j ≤ v ∀i ∈ A∑
j∈A s j = 1

s j ≥ 0 ∀ j ∈ A
for all k ∈ A do

maximize sk
subject to

∑
j∈A s j · mi j ≤ v ∀i ∈ A∑
j∈A s j = 1

s j ≥ 0 ∀ j ∈ A
if sk > 0 then B← B ∪ {k} end if

end for
return B

Algorithm 2 Minimal bidirectional covering set
procedure MC(A,�)

B← ES(A,�)
loop

A′ ← { a ∈ A \ B | a uncovered in B ∪ {a} }
if A′ = ∅ then return B end if
B← B ∪ ES(A′,�)

end loop

payoff in every Nash equilibrium in a two-player zero-sum
game. We can thus search for a strategy of the second player
in which a particular action is played with the highest pos-
sible probability while ensuring that the payoff of the first
player for any of his actions does not exceed the payoff com-
puted in the first stage of the algorithm. It is straightforward
to show that this algorithm is correct and runs in polynomial
time.

Theorem 5 The essential set can be computed in time poly-
nomial in the number of alternatives.

By inclusion of ES in MC, Algorithm 1 also provides a
way to efficiently compute some element of MC. While this
cannot always be exploited to efficiently compute the whole
set, it is of great benefit in our context. Algorithm 2 deter-
mines MC by starting with the essential set and iteratively
adding specific elements outside the set that are still uncov-
ered. The crux of the matter is to only add elements that may
not be covered in a later iteration and it is not at all obvious
which elements these should be. It turns out that these are
precisely the elements in the minimal bidirectional covering
set of the subrelation induced by the uncovered alternatives.
Recalling that we can efficiently compute a subset of any
minimal covering set, the algorithm is complete.

Theorem 6 The minimal bidirectional covering set can be
computed in time polynomial in the number of alternatives.

Proof: We prove that Algorithm 2 computes the minimal
bidirectional covering set and runs in time polynomial in the
number of alternatives. In each iteration of the algorithm, at

least one element is added to B, so the algorithm is guaran-
teed to terminate after a linear number of iterations. Each
iteration consists of a single call to ES for a subset of the
alternatives, which by Theorem 5 requires only polynomial
time.

As for correctness, we show by induction on the size of B
that B ⊆ MC(A) holds at any time. When the algorithm
terminates, B is a covering set for A, so we must actually
have B = MC(A). The base case follows directly from the
fact that ES(A) ⊆ MC(A) (Dutta & Laslier, 1999). Now
assume that B ⊆ MC(A) at the beginning of a particular iter-
ation. We will argue that every element of MC(A′) has to be
part of every superset of B that is a covering set for A, thus
B ∪ ES(A′) ⊆ B ∪ MC(A′) ⊆ MC(A). Assume for contra-
diction that for some x ∈ MC(A′) there exists a set B′ ⊇ B,
x < B′, such that x is covered in B′ ∪ {x}. Obviously, x can-
not be covered in B′ ∪ {x} by any element of B since x is
uncovered in B, i.e., for every y ∈ B we either have y � x
or there is some z ∈ B such that x � z and y � z or z � y
and z � x. The same holds for elements of A \ (B ∪ A′). If x
was covered in B′ by an element y ∈ A \ (B∪ A′), this would
imply that y � z if x � z and z � y if z � x for all z ∈ B and
thus y ∈ A′. Finally, if x was covered in B′ by y ∈ A′, we
would have that y � x and y � z if x � z and z � y if z � x
for all z ∈ A′. In this case, A′ \ {x} would be a covering set
for A′ and, since MC lies in the intersection of all bidirec-
tional covering sets (Dutta & Laslier, 1999), x < MC(A′).
This is a contradiction. �

A potential problem of bidirectional covering is that it is
not very discriminatory. One might thus try to obtain smaller
choice sets by considering covering in one direction only. It
turns out that this renders the computational problems hard.
The following theorem can be shown using reductions from
satisfiability. We again omit the proof.

Theorem 7 It is NP-hard to decide (i) whether an alter-
native is contained in some minimal upward covering set,
(ii) whether an alternative is contained in some minimal
downward covering set, and (iii) whether there exists a
downward covering set.

Conclusions
We have investigated solution concepts for dominance
graphs that are based on the notion of covering and an-
alyzed their computational complexity. It turned out that
polynomial-time algorithms exist for computing (iterated)
uncovered sets, the minimal bidirectional covering set, and
the essential set. In contrast, we proved that deciding
whether an alternative is in some minimal upward or down-
ward covering set is NP-hard. This is particularly intriguing,
because we further showed that these sets are related to von
Neumann-Morgenstern stable sets and to the Banks set, re-
spectively, which are also known to be computationally in-
tractable (Brandt, Fischer, & Harrenstein, 2007; Woeginger,
2003). Table 1 summarizes our results.

Our algorithm for computing the minimal bidirectional
covering set MC underlines the significance of MC as a prac-
tical solution concept. MC was originally introduced as a



existence complexity
UCb,UCu,UCd unique in AC0

UC∞b ,UC∞u ,UC∞d unique in P
MC unique in P
minimal upward covering exists NP-hard
minimal downward covering — NP-hard
ES unique in P

Table 1: Existence, uniqueness, and complexity of the
choice sets studied in this paper

refinement of the uncovered set that is superior to the Ke-
meny set because the latter fails to satisfy a very mild con-
sistency criterion (Dutta, 1988). Now it has turned out that,
besides this advantage, MC can be computed in polynomial
time whereas computing the Kemeny set is NP-hard and
all known algorithms have exponential worst-case complex-
ity (Hemaspaandra, Spakowski, & Vogel, 2005; Conitzer,
Davenport, & Kalagnanam, 2006). Moreover, due to the
equivalence pointed out by Duggan & Le Breton (1996), our
algorithm for computing MC can also be applied for find-
ing the unique weak saddle in a subclass of symmetric two-
player zero-sum games.
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