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Matching with preferences has great potential to coordinate the efficient allocation of scarce resources in organizations

when monetary transfers are not available, and thus can provide a powerful design principle for information systems.

Unfortunately, it is well-known that it is impossible to combine all three properties of truthfulness, efficiency, and fairness

(i.e. envy-freeness) in matching with preferences. Established mechanisms are either efficient or envy-free, and the

efficiency loss in envy-free mechanisms is substantial. We focus on a widespread representative of a matching problem:

course assignment where students have preferences for courses and organizers have priorities over students. An important

feature in course assignment is that a course has both a maximum capacity and a minimum required quota. This is also

a requirement in many other matching applications such as school choice, hospital-residents matching, or the assignment

of workers to jobs. We introduce RESPCT, a mechanism that respects minimum quotas and is truthful, efficient, and has

low levels of envy. The reduction in envy is significant and is due to two remarkably effective heuristics. We follow a

design science approach and provide analytical and experimental results based on field data from a large-scale course

assignment application. These results have led to a policy change and the proposed assignment system is now being used

to match hundreds of students every semester.
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1. Introduction
Matching theory began with the problem of how to match two distinct sets of agents (Gale and Shapley

1962). Gale and Shapley’s celebrated marriage problem asks the question of how to assign men and women

into a stable set of marriages. The distinguishing features of this model are that there are two distinct sets of

agents and money cannot be used to aid in the assignment. The central question of the marriage problem is

the existence and properties of an equilibrium assignment; in this context, it is called a stable assignment.1

1 An assignment is individually rational if no man or woman wants to divorce his or her partner. An assignment has a blocking pair
if there is a man and a woman who prefer each other to their current assignment. An assignment is stable if it is individually rational
and there is no blocking pair.

1
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There is no tension between stability and efficiency here; since a stable assignment is in the core, it is Pareto

efficient.

A closely related question is how to match an agent to an object. An important example of this is the

school assignment problem (Balinski and Sönmez 1999, Abdulkadiroğlu and Sönmez 2003). The critical

distinction between these two models is that in school assignment, the schools are viewed as “objects to be

consumed” and are not included in welfare considerations. Schools are not interpreted as having preferences

over students; instead, a student’s priority at a school is interpreted as her “right” to attend the school. The

central objective of a school assignment is not finding an equilibrium, since students are not allowed to

change schools unless they are granted permission. Instead, the central question is what constitutes a fair

assignment, in the sense of respecting each student’s rights at the schools. Formally, student i has justified

envy of student j if i prefers j’s school to her own and has higher priority than j at that school. An assignment

is interpreted as fair if no student has justified envy of another.

Our focus is on course assignment within educational institutions, a widespread application of

one-to-many object assignment (without transfers). This problem is analogous to the school assignment

problem, as it is a one-to-many assignment problem where the objects have priorities over the students.2

Depending on the application, course assignment could be a many-to-many (if a student is assigned several

courses) or one-to-many (if a student is assigned to only one course out of many) problem. One-to-many

assignments (similar to school choice problems) are ubiquitous at European universities. For example, in

larger European universities, there is a study plan with fixed lectures at particular times of the week that

students need to attend, but the students can choose different seminars, tutorials for the lectures, or lab

courses. In our specific application, the course instructors rank the students; however, in general, one student

can have higher priority at a course for many reasons, such as seniority, honors status, prior experience

with a subject, or his motivation letter. In a particular semester, students only have one choice out of many

seminars (or lab courses). This is also the case at the Technical University of Munich. Course organizers

offer seminars or lab courses on specific topics (robotics, programming, compilers, machine learning, etc.)

and have priorities for students. For example, for a robotics course with 15 seats, a course organizer

might prefer computer science students in the master’s program over students in industrial engineering or

bachelor’s students in general. Moreover, course organizers can (and do) submit individual rankings over

students based on achievements or grades from previous courses. Depending on the focus of these courses,

their priorities will differ.

Although course assignment is a specific application, it is very similar to other applications, such

as school choice (Abdulkadiroğlu and Sönmez 2003), college admission (Biró 2008), cadets-to-branch

2 This course assignment problem is different from the course scheduling problems described by Budish et al. (2016), where students
need to select packages of course seats in different courses, which is also referred to as the combinatorial assignment problem.
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matching in the military (Sönmez and Switzer 2013), the well-known hospital-residents matching (Roth

2002, NRMP 2014), refugee resettlement (Delacrétaz et al. 2016), or various labor markets (Biró 2017).

A key difference between our problem and these is that courses typically require a minimum number

of students. While this is relevant in other applications, it has not been central to the prior literature on

school choice or hospital-residents matching. Still, the findings in this study are of interest to many other

application domains of matching with preferences.

Efficiency, fairness, and incentive-compatibility (aka truthfulness) are seen as the key design desiderata

for matching problems with preferences, and they are also central to course assignment. A matching is

Pareto efficient if it is impossible to reallocate so as to make any one student strictly better off without

making at least one student worse off. A matching is fair or envy-free if no pairs of students and course

organizers would like to switch partners, as introduced earlier. Finally, strategyproofness of a matching

mechanism refers to when students have a dominant strategy for reporting their true preferences to the

mechanism. This is a strong notion of incentive-compatibility.3 The central tension in course assignment,

school choice, or any object assignment where the objects have priorities over the agents is that there does

not always exist a fair assignment that is Pareto efficient (Abdulkadiroğlu and Sönmez 2003).

Our paper has multiple connections to information systems literature. In a widely cited article by Ba

et al. (2001), the authors argue that incentives and incentive-alignment need to be considered in information

systems design. Various subsequent papers emphasized incentives in the design of information systems for

supply chain coordination (Fan et al. 2003) and electronic markets (Bapna et al. 2003, Adomavicius and

Gupta 2005, Bapna et al. 2009, Liu et al. 2010, Adomavicius et al. 2013). Some of these authors use lab

experiments to study new computational market designs (Adomavicius et al. 2013, Bichler et al. 2017),

while others analyze new market designs in the field as we do (Lu et al. 2017, 2016). Bichler et al. (2010)

provide a broader perspective on market design in information systems that combines economic principles

with information systems design. Almost all of this literature is focused on auction-based mechanisms,

however. Our paper fits very well into this overall line of research, but adds a new perspective: the designs

we introduce do not require monetary transfers to achieve an efficient allocation of resources, as is required

in auctions. This opens up a variety of new applications within and across organizations. Often tasks must

be assigned to workers, operating rooms to surgeons, or course seats to students, but payments cannot be

used and preferences cannot be easily expressed as comparable cardinal numbers.4

In particular, our work is a design science contribution to matching with preferences. Design science

supports a pragmatic research paradigm that calls for the creation of innovative artifacts to solve real-world

3 Note that course organizers are assumed to be non-strategic and have publicly known priorities among groups of students.
Matching mechanisms that are incentive-compatible for both sides of a matching market are impossible.
4 Note that for assignment problems where agents can state cardinal preferences and it is possible to exchange money among
participants, strategyproof, efficient, and fair mechanisms do exist (Sun and Yang 2003).
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problems (Hevner and Chatterjee 2010). Let us briefly address the main elements of the guidelines outlined

in Gregor and Hevner (2013).

• Purpose: We make a design science contribution (Hevner et al. 2004) and introduce a strategyproof

and fully efficient mechanism that exhibits surprisingly little envy. The approach considers minimum

quotas, which adds to the complexity of the problem.

• Scope and relevance: The paper addresses a fundamental assignment problem with preferences, which

is widespread in the form of course assignment at universities. Similar matching problems appear in

many other domains.

• Method: We first propose an algorithmic solution and formally prove important properties.

• Artifact and evaluation: We then implement a respective artifact and use field data from a large-scale

application where up to 7,000 students are matched every year. The data illustrates the benefits for

the specific application with respect to reduced envy and provides the basis for the adoption of our

approach at the Technical University of Munich.

In summary, our paper provides an artifact to solve a relevant real-world problem that follows the seven

design science guidelines from Hevner et al. (2004) and addresses the relevance, rigor, and design cycles

outlined in Hevner (2007).

The structure of the paper follows the publication schema by Gregor and Hevner (2013). In Section

2, we discuss course assignment in general and the related literature, demonstrate the previous solution

for assigning courses, and highlight the contributions of our new mechanisms relative to prior literature.

Afterwards, we formally define the course assignment model in Section 3. Our method is algorithmic design

and we use formal proofs to characterize the properties of the overall artifact. In Section 4, we discuss our

new artifact in detail, laying out all contributions that lead to a significant increase in fairness. Then, we

provide results based on field data in Section 5. Finally, we discuss and interpret our results in Section 6

and draw conclusions in Section 7.

2. Literature Review
In what follows, we first explain Gale’s Top Trading Cycles algorithm and show why there is tension

between efficiency and fairness. Next, we describe the options a designer has to reduce envy while still

respecting requirements such as minimum quotas that are relevant in many assignment problems with

preferences.
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2.1. Top Trading Cycles

A market designer typically can decide between two strategyproof mechanisms: Gale’s Top Trading Cycles

algorithm (hereafter TTC), which is strategyproof and efficient but not envy-free, and Gale and Shapley’s

Deferred Acceptance algorithm (hereafter DA), which is strategyproof and envy-free but not efficient.

In their seminal paper, Shapley and Scarf (1974) introduced TTC in order to find a competitive solution

for a stylized housing market. In the Shapley-Scarf model, each agent is endowed with an object (a house).

A round of TTC proceeds as follows. Each agent points at her favorite remaining object, and each object

points to its owner. There must exist at least one cycle. For each cycle, assign the agent to the object she is

pointing to and then remove the agent and object. The mechanism proceeds by repeating this process until

no agents or objects remain.

Example 1. To illustrate the TTC algorithm, consider the preference profile of four agents {1,2,3,4} for

the objects {a,b, c,d} in Table 1.5 Initially, agent 1 owns object a, agent 2 owns object b, agent 3 owns object

c, and agent 4 owns object d.

1

2

3

4

a

b

c

d

   agents objects

Figure 1 Illustration of the first round of the TTC algorithm as a bipartite graph for the example in Table 1.

�1 �2 �3 �4

c d a c
b a d b
d b c a
a c b d

Table 1 Preferences of agents in TTC

The first round of the TTC algorithm with these preferences is illustrated in Figure 1. The dashed lines

mark a cycle. Object c is assigned to agent 1, and object a is assigned to agent 3. These objects and agents

are then removed. In the second round, there remains a bipartite graph with the nodes 2,4,b, and d. Agent 2

5 For the formal definitions we refer to Section 3. For each agent, a column represents her preference order over objects, with an
object a being preferred over object b if a is in a row above b’s row.
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Table 2 (a) Course priorities (�c ) and (b) student preferences (�s )

(a) �c1 �c2 �c3

s1 s2 s2

s3 s1 s1

s2 s3 s3

(b) �s1 �s2 �s3

c2 c1 c1

c1 c2 c2

c3 c3 c3

points to object d and agent 4 to object b. These nodes form a new cycle and are assigned accordingly. The

final matching is {(1, c), (2,d), (3,a), (4,b)}.

Roth (1982) demonstrated that TTC is strategyproof. The first characterization of TTC for the housing

model was provided by Ma (1994), who demonstrates that TTC is the unique strategyproof, Pareto efficient,

and individually rational mechanism in the Shapley-Scarf housing market. However, the main applications

of TTC are not in the housing market (where there is ownership) but instead in object allocation, where the

objects have priorities. Pápai (2000) was the first to modify TTC for object allocation as part of a broad

class of allocation mechanisms called hierarchical exchange rules. This class was later generalized by Pycia

and Ünver (2017), who introduce a generalization of hierarchical exchange rules called trading cycles.

Much of the recent attention to TTC is due to Abdulkadiroğlu and Sönmez (2003). This pioneering paper

demonstrated the applicability of TTC to object allocation. A number of recent papers that have provided

characterizations of TTC for this environment include Abdulkadiroğlu et al. (2017), Morrill (2013), Morrill

(2015a), and Dur (2013).

The course assignment (and school choice) problem differs from the house assignment problem in two

important ways: courses may be assigned to more than one student, and no student “owns” a course.

Nonetheless, Abdulkadiroğlu and Sönmez (2003) adapt TTC to this environment in a natural way. Each

student points to her favorite course and each course points to the student with highest priority at that course.

2.2. Efficiency vs. Envy-Freeness

A central problem in matching with preferences is the efficiency/envy-freeness tradeoff discussed by

Abdulkadiroğlu and Sönmez (2003) in their seminal paper. Let us introduce a brief example to illustrate

this tradeoff:

Example 2. Consider the course allocation problem with three students S = {s1, s2, s3} and three courses

C = {c1, c2, c3}, each with a capacity of 1. The course priorities (�c) and the student preferences (�s) are

given in Table 2 as strict ordinal rankings.

Let’s take a look at two possible matchings, µ1 and µ2, and their consequences from the students’

perspective. The matching

µ1 =

(
c1 c2 c3

s1 s2 s3

)
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is the only fair matching; it is underlined in Table 2. However, the matching is Pareto dominated for the

students by

µ2 =

(
c1 c2 c3

s2 s1 s3

)
.

Fairness forces students s1 and s2 to share the courses in an inefficient way. If students s1 and s2 were

assigned the courses c2 and c1, respectively, then student s3 would prefer course c1 to her assignment c3,

and she would have higher priority for course c1 than its assigned student, s2. In this case, s3 would have

justified envy of s2. As a result, fairness conflicts with Pareto efficiency!

The recommendation by Abdulkadiroğlu and Sönmez (2003) regarding DA is clear: DA Pareto dominates

any other envy-free assignment. However, their recommendation regarding TTC is far less certain.

Surprisingly little is known about the degree of envy in TTC or alternative efficient mechanisms when

multiple units of an object are assigned to more than one agent, e.g. when many students are assigned to the

same course. We show that the inefficiency of DA is substantial in course matching and that TTC generates

significant envy. Therefore, a natural question is: How we can make an efficient mechanism with as little

envy as possible?

2.3. Reducing Envy and Considering Quotas

Let us now introduce possibilities for the reduction of justified envy in TTC. In the original formulation of

TTC, a house points at its owner in order to preserve individual rationality. With course assignment, there

is no individual rationality, as there is no ownership. When there are no minimum capacities or quotas, a

natural analog to individual rationality is respecting top priorities: if a course or object a has capacity for q

agents, then each of the q highest ranked agents at a are either assigned to a or a course they prefer to a. We

say these students are guaranteed a. It is not necessary to point to the highest ranked student at a in order to

preserve respecting top priorities. We can point to any of the guaranteed students.

Note that if a student is guaranteed a and ranks a first, then assigning her to a cannot result in justified

envy. It is only when a student does not rank a first (and is part of a cycle) that it is possible for her

assignment to cause justified envy. In this situation, the student’s priority at a is irrelevant, except to the

extent that it guarantees her assignment at a. What is relevant is her priority at courses other than a. A

designer cannot know which courses an agent will point to (and the mechanism will not be strategyproof

if it uses a student’s submitted rankings). However, since the course priorities are known to the mechanism

designer, a better approach is to point to the student that is most likely to have high priority at the courses

she points to.

Our major technical challenge is determining which students are guaranteed a course. This is trivial when

there is no minimum quota. With no minimum quota, an agent is guaranteed a course c with a capacity

for q students if and only if she has one of the q highest priorities at c. It is far less clear when each
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course must be assigned a minimum number of students. In order to incorporate minimum quotas, we draw

on a recent contribution by Fragiadakis et al. (2012) and Fragiadakis et al. (2016). The authors proposed

extensions of the DA and TTC algorithms for school choice by dividing the number of available seats into

two classes: regular seats, which equal the minimum quotas and must be filled, and extended seats, which

equal the difference between the maximum and minimum quota of a course. The authors proposed, among

others, the Extended-Seat DA and Extended-Seat TTC algorithms. While the former is group strategyproof6

and envy-free, the latter is strongly group strategyproof and Pareto efficient. However, the Extended-Seat

TTC does not consider the level of envy of the resulting matching, and this can be high as we show.

Unfortunately, with Extended-Seat TTC it is much harder to determine which students are guaranteed a

course and, consequently, reducing justified envy becomes a very challenging problem, one that we address

in our paper.

As far as we know, Abdulkadiroğlu et al. (2017) is the only other paper that compares the performance of

TTC to the alternatives using real-world data. They consider the problem of assigning children to schools

in New Orleans where TTC was used for one year’s assignment. They compare the performance of TTC to

alternative implementations and find an essentially negligible impact on the envy of the assignment. School

assignment and course assignment are closely related problems, but there are also substantial differences. In

our field data from the course assignment application, we find far more heterogeneity in preferences than in

these reports on the school choice problem. Moreover, the “depth” of the assignment problem, in the sense

of the ratio of students to objects, is different, as far more students are assigned to a school than to a course.

The only paper related to ours in the context of matching is Hakimov and Kesten (2018), which also asks

whether it is possible to reduce the envy of TTC. This approach does not allow for minimum quotas, which

are of central importance in most course assignment problems. Incorporating minimum quotas into ETTC

is non-trivial. Doing so would constitute another new algorithm (which maybe uses some of RESPCT’s

ideas). A few papers deal with more complex matching problems, such as the multi-unit or combinatorial

assignment of course schedules (Budish et al. 2016). Students in MBA programs can often select course

schedules and not just one out of many seminars. This leads to a different problem, and we do not consider

such course assignment problems in our paper.

2.4. The Prior Solution in Practice

Our specific task was to assign students to classes in the computer science and information systems

department at the Technical University of Munich, a large European university. This department is currently

the largest department at the university with more than 6,000 students. Students have to enroll in one out of

many seminars in one semester and one out of many practical courses in another semester, and the number

6 Group strategyproofness means that no group of participants can collude and misreport their preferences in a way that makes
every participant better off.
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of assignments has grown to a total number of 2,000-3,000 students per semester. In addition, the system is

used by large classes with several hundred students for the assignment of students to one out of many tutor

groups. These course-specific assignments add up to another ∼ 7,000 assignments of students to courses

every year in the computer science department alone. Based on its success, the matching system was also

adopted by other departments, including architecture, business, mathematics, and mechanical engineering.

Previously, students have been assigned based on a first come, first served (FCFS) basis, but due to

severe shortcomings of the FCFS system, the assignment mechanism was changed to DA in 2014 (Diebold

et al. 2014, Diebold and Bichler 2017). In FCFS, a student would often sign up for more than a dozen

of courses, but then cancel the registrations for all but the most preferred one among those courses where

she was admitted. Due to the almost random order of arrivals, simple FCFS rules are neither efficient nor

fair. For example, students registered when their most preferred courses were already taken by students

who had a lower priority for the course organizer. Students tried to swap with others who had a seat in a

course higher on their preference list. At the same time, course organizers did not get the students who were

high on their priority list. The computer science department was looking for a more principled approach

to course assignment and implemented DA. Organizing the course assignment via DA was considered a

significant improvement by the student union and the faculty, and overall was viewed as a great improvement

over FCFS. However, DA does not allow for minimum quotas, which is central in most course assignment

problems, and DA incurs significant efficiency losses, as we will also show later. These deficiencies recently

motivated the department to rethink the assignment mechanism.

First, efficiency is seen as a first-order concern in large-scale course assignment applications by the

university administration. In large-scale applications with hundreds of participants, envy is less of a concern

to students than in small applications with only a dozen participants. On the other hand, efficient use of

scarce resources is a key concern to the Dean of Studies. Moreover, preferences in course assignments are

very different from assignments in school choice, where preferences and priorities are often homogenous.

The students have diverse preferences over courses, mirroring their individual interests in all areas of

computer science and the breadth of available topics. Likewise, courses have diverse priorities over students

(e.g., their type of study) and lecturers rank individual students based on these priorities. In school

assignment applications where the preferences and priorities are largely homogeneous, the DA assignment

is nearly Pareto efficient (see for example Abdulkadiroğlu et al. (2017), which describes such assignments

in both Boston and New Orleans). However, as we will show, this finding does not generalize and DA

is quite inefficient in our course assignment environment where preferences are more heterogeneous. An

initial analysis showed that the efficiency loss in DA is substantial compared to TTC.

Second, a number of core courses require a minimum number or minimum quota of attendees. Fragiadakis

et al. (2016) mention computer science students at Kyushu University who must all complete a laboratory
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requirement. This characteristic is typical for course assignment applications in general. In our situation,

courses in profile areas shall be offered by the department in any case and a minimum number of students

is required by the Dean of Studies. This seemingly innocuous feature can be decisive for the adoption of a

matching mechanism for course assignment, but it leads to substantial challenges in the implementation, as

we show in this paper.

2.5. A New Approach

We will demonstrate that we can assign agents to objects (i.e., students to courses) with significantly

less envy than TTC (or Extended-Seat TTC), which makes our mechanism very appealing as a practical

alternative to DA and TTC. Our proposed assignment mechanism is called Extended Seat Prioritized Clinch

and Trade with a widened Range of guarantees (hereafter RESPCT). We explicitly consider minimum

quotas in RESPCT, which turned out to be a central requirement for our course allocation problem, as

well as for a wide range of applications beyond the scope of this paper. For example, schools require a

minimum number of students, a military branch requires a minimum number of cadets, and rural hospitals

require a minimum of doctors to operate. Often, minimum quotas are implemented as a means to guarantee

diversification of quality or maintain racial and ethnical balance (Abdulkadiroğlu and Sönmez 2003, Ehlers

et al. 2014).

We theoretically characterize the important properties of the RESPCT mechanism regarding

strategyproofness, efficiency, and fairness. For many assignment problems, there is no data publicly

available. We are fortunate to be able to compare the performance of our algorithm in the context of a

large-scale course assignment application from the Technical University of Munich. In all, we utilized 10

different assignments ranging from 27 to 733 different students. We compared instances of the algorithm

for a variety of minimum quota scenarios. In every scenario, our algorithm had substantially less envy

than the alternatives, resulting in a reduction of instances of justified envy by a factor of three or more.

We also found substantial improvement regarding the number of students that envy other students. In

summary, our assignment is efficient and has far fewer students with justified envy compared to TTC or

quota-respecting versions of TTC. Compared to (quota-respecting versions of) DA, roughly 10 percent of

the students could be Pareto-improved with RESPCT. These significant improvements were the result of

two algorithmic innovations: prioritized pointing and maximizing the seat guarantees. It is the combination

of these algorithmic contributions that led to a remarkable reduction in justified envy.

Strategyproofness, efficiency, and very low levels of envy convinced the computer science department

at the university to change the assignment procedure from DA to RESPCT. Note that our results are

relevant beyond course assignment. There has been an intense discussion about efficiency and fairness in

school choice (Abdulkadiroğlu and Sönmez 2003), but the result also matters for the assignment of medical

residents (Kamada and Kojima 2015), college admissions (Biró 2008), and other matching problems that
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are frequently found in organizations. If there are only a few cases of justified envy, a market designer might

aim for efficiency rather than fairness as first-order priority in all of these applications.

3. Model and Method
Before we formally introduce important design desiderata, let us first introduce basic notation and the TTC

algorithm.

3.1. Notation and Basic Algorithms

As a typical example for a matching market, we consider a course allocation problem as a tuple (S ,C, p,q,�S

,�C). Here, S = {s1, s2, ..., sn} is the set of students, while C = {c1, c2, ..., cm} is the set of courses. The vector

p = (p1, p2, ..., pm) describes the courses’ minimum quotas, while q = (q1,q2, ...,qm) is the vector of their

maximum quotas (capacity). We assume that pc ≤ qc for all c and
∑

c∈C pc ≤ n ≤
∑

c∈C qc.

Each student s ∈ S has a complete, irreflexive, and transitive preference relation �s over C ∪ {◦} where ◦

represents a student being unassigned and q◦ =∞. Then, a �s b indicates that s strictly prefers course a to

b. Let P be the set of all strict preference orders a student can have. Then, �S∈ P
|S | describes the preference

profiles for all students S . As is common in this literature, we assume that preferences are independent and

private and do not change when students observe the preferences of others. Correspondingly, each course

c ∈ C has a strict, complete, irreflexive, and transitive preference relation �c over students. A matching

µ : C ∪ S 7→ 2S ∪C is a function that satisfies the following consistency conditions: µ(s) ∈ C for all s ∈ S ,

µ(c) ⊆ S for all c ∈C, and µ(s) = c if and only if s ∈ µ(c) for all s ∈ S , c ∈C.

The one-to-many generalization of TTC introduced by Abdulkadiroğlu and Sönmez (2003) is represented

by Algorithm 1.

Algorithm 1 Top Trading Cycle
Assign a capacity counter for each course that keeps track of how many seats are still available. Initially, set

the counters equal to the maximum quotas of the courses.

Round k ≥ 1. Each student points to her favorite course with remaining capacity. Each course points to the

student who has the highest priority for the course. Since the number of students and courses are finite,

there is at least one cycle. Moreover, each student and each course can be part of at most one cycle. Every

student in a cycle is assigned a seat in a course she points to and is removed. The counter of each course in

a cycle is reduced by one and if it reduces to zero, the course is removed.

The Extended Seat Top Trading Cycle (ESTTC) is a mechanism proposed by Fragiadakis et al. (2012)

to incorporate minimum quotas for matching markets. ESTTC works as follows: for the regular matching

market (S ,C, p,q,�S ,�C) described above, define an extended market (S , C̃, q̃, �̃S , �̃C̃), where C̃ can be

derived from C by dividing every course c ∈C into a standard course c with maximum quota q̃c = pc and an
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extended course c∗ with maximum quota p̃c∗ = qc − pc. In the extended market, there are no more minimum

quotas. We use the same notation for both regular courses and standard courses in the extended market

with a slight abuse of notation. We obtain �̃S by inserting every extended course c∗ in every student’s

preference profile directly behind the corresponding standard course. Thus, if �s= ci �s c j �s ... for some

s ∈ S , �̃s = ci�̃sc∗i �̃sc j�̃sc∗j... in the extended market. Let ε = n−
∑

c∈C pc be the number of students who can

at maximum be assigned to extended courses without making a feasible matching impossible. In addition

to the individual preferences of courses, there also exists an additional global preference list �ML (master

list), which Fragiadakis et al. (2012) intuitively describe as a type of tiebreaker when two students cannot

both be assigned their preferred courses. ESTTC is then defined as in Algorithm 2.

Algorithm 2 Extended Seat Top Trading Cycle
Set the counter of available seats for all (standard and extended) courses to their respective maximum

quotas.

Round k ≥ 1. Each student points to her favorite course with remaining capacity, each standard course points

to its favorite student, and each extended course points to the student with the highest priority according to

�ML. There must exist at least one cycle. Every student in a cycle is assigned a seat in a course she points

to and is removed. The counter of each course in a cycle is reduced by one and if any is reduced to zero, it

is also removed. If the number of students assigned to extended courses reaches ε after a round, remove all

extended courses.

Denote by µ̃ the matching in the extended market. Then, the matching µ in the regular market is defined

as follows: s ∈ µ(c) if and only if s ∈ µ̃(c) or s ∈ µ̃(c∗). Since all extended courses point to the same student, at

most one student can be assigned an extended course in every round until the number of students assigned to

extended courses reaches ε, at which point all extended courses are taken off the market. Therefore, ESTTC

always results in a matching that adheres to the minimum quotas. However, this strict policy of endowing

all seats to a single student is one of the major shortcomings of ESTTC and can be improved to make the

mechanism fairer, as described in Section 4.

Example 3. Let S = {s1, ..., s6} and C = {c1, c2, c3}. The preferences, priorities, and quotas are provided in

Table 3. The rounds of the mechanism are depicted in Figure 3.1. To keep the example simple, the number

of students matches the sum of maximum quotas. Therefore the number of students assigned to extended

courses can never exceed ε = n−
∑

c∈C pc = 6− 3 = 3.

Round 1: Standard courses c1 and c2 point to their favorite student while extended course c∗3 points to s1

which is highest in the ML-list. There exists only one cycle: c1, s3, c∗3, s1, c1. We resolve the cycle by setting

µ(c1) = s3 and µ(c∗3) = s3 and reducing the capacities of c1 and c∗3 by one. We remove c∗3 as its remaining
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�s1 �s2 �s3 �s4 �s5 �s6

c1 c1 c3 c3 c2 c3

c3 c2 c2 c1 c1 c1

c2 c3 c1 c2 c3 c2

�c1 �c2 �c3 �ML

s3 s2 s1 s1

s5 s1 s6 s2

s1 s3 s4 s3

s6 s6 s5 s4

s2 s4 s2 s5

s4 s5 s3 s6

p 2 1 0
q 3 2 1

Table 3 Preferences and priorities for student-to-course matching with minimum quotas.

s1

s2

s3

s4

c1

c2

c∗3

Round 1: Round 2: Round 3:

s5

s6

s2

s4

c1

c2

s5

s6

s4 c∗1

c∗2s6

Round 4:

s6 c∗2

Figure 2 Run of ESTTC for Example 3

capacity reaches 0.

Round 2: We obtain c1, s5, c2, s2, c1 as the only existing cycle in round 2 and resolve that cycle. After

resolving the cycle, we remove c1 and c2.

Round 3: We resolve the cycle c∗1, s4, c∗1. We then remove c∗1.

Round 4: We resolve the cycle between the only remaining course c∗2 and the only remaining student s6.

We obtain the matching µ′ = {(c1, {s1, s2}), (c∗1, {s4}), (c2, {s5}), (c∗2, {s6})}, (c∗3, {s3})} in the extended market,

which results in the matching µ = {(c1, {s1, s2, s4}), (c2, {s5, s6}), (c3, {s3})} in the regular market.

3.2. Design Desiderata

A matching is called feasible if it satisfies the following property: pc ≤ |µ(c)| ≤ qc for all c ∈C. LetM denote

the set of feasible matchings. A mechanism χ :P|S | 7→M is a function that takes a set of preference profiles

as input and returns a feasible matching between students and courses. We assume the courses’ priorities

to be fixed and known to all students. Ideally, we want students to have incentives for reporting their true

preferences to the mechanism. We define �s by a �s b if and only if a �s b or a = b.

Definition 1 (Strategyproofness). A mechanism χ is strategyproof if and only if for any �S∈ P
|S |, ς ∈ S

and �′ς∈ P, χς(�S ) �ς χς
(
�S \{ς},�

′
ς

)
, where χς(�S ) is the matching that ς receives under �S .

Two main design desiderata for matching with preferences are Pareto efficiency and fairness.
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Definition 2 (Pareto Efficiency). A matching µ′ Pareto dominates another matching µ if there exists

some ς ∈ S such that µ′(ς) �ς µ(ς) and for all other ς ∈ S it holds that µ′(ς) �ς µ(ς). A matching µ is Pareto

efficient if and only if no other matching Pareto dominates µ.

Definition 3 (Fairness / Envy-Freeness). A matching µ is envy-free if and only if µ(ς′) �ς µ(ς) implies

ς′ �µ(ς′) ς for all ς, ς′ ∈ S . If µ(ς′) �ς µ(ς) and ς �µ(ς′) ς
′ for some ς′, we say that ς and c form a blocking

pair or ς has justified envy toward ς′.

It is well-known that for two-sided matchings, these two desiderata are incompatible and one has to

choose between either Pareto efficiency or fairness (see example 2). Example 3 contains four instances of

justified envy: s6 has justified envy toward s2, s3, and s4 and s4 has justified envy toward s3. Note that

envy-free matchings may not always exist with quotas. If all student-course pairs are acceptable (every

student prefers any course to being unmatched, and any course organizer prefers any student to a vacant

seat), then an envy-free matching always exists. If not all pairs are acceptable, then an envy-free matching

might not exist.

As we discussed earlier, the DA mechanism by Gale and Shapley (1962) is strategyproof and fair while

TTC is strategyproof and Pareto efficient (Shapley and Scarf 1974). We aim for a mechanism that is

strategyproof, efficient, and as fair as possible. We interpret mechanism A to be fairer than mechanism B for

a given assignment problem if on average there are fewer instances of justified envy under A than under B.

Since fairness is not achievable for TTC even without minimum quotas, we relax fairness in the following

definition. A weaker fairness condition is mutual best:

Definition 4 (Mutual Best). A matching µ satisfies mutual best if and only if the following condition is

met: c is the favorite course of s and s is among the qc highest priorities of c, which implies that µ(c) = s. If

s is among the qc highest priorities of c, we say that s is guaranteed a seat at c.

If a student s is guaranteed a seat at course c, s will never cause justified envy. She has no justified envy

toward any student since she ends up at her favorite course. Also, no other student s′ can have justified envy

toward s, since in order to have justified envy, s′ needs to have a higher priority at c. However, in this case

s′ also is guaranteed a seat at c and would either end up at c or a course s′ prefers over c.

TTC satisfies mutual best; if s is guaranteed a seat at her most preferred course c, then s is always

assigned to c. Note that not all mechanisms used in practice satisfy mutual best. For example, using a serial

dictatorship or linear programming procedure to maximize the size of the matching do not satisfy mutual

best (Morrill 2013). Unfortunately, when minimum quotas are a requirement, no mechanism always satisfies

mutual best.

Theorem 1. A matching that satisfies mutual best does not always exist in the presence of minimum

quotas.
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�s1 �s2

c1 c1

c2 c2

�c1 �c2

s1 s2

s2 s1

p 0 1
q 2 2

Table 4 Example of a mutual best violation

Proof: Consider an example with S = {s1, s2} and C = {c1, c2} and preferences as in Table 4.

Either s1 or s2 is not assigned c1, which is a contradiction to mutual best. Q.E.D.

In the following, we define a relaxation of mutual best.

Definition 5. A matching µ satisfies σ-mutual best if and only if the following condition is met: (c is the

favorite course of s and s is among the σc highest priorities of c) implies that µ(c) = s.

Note that mutual best is equivalent to σ-mutual best with σ = q. As shown above, in the presence of

minimum quotas, this is not always achievable. In this paper, we will discuss how to guarantee as many

seats as possible, i.e. how to maximize σ. We will introduce a mechanism, RESPCT, that satisfies σ-mutual

best for this maximal vector of guaranteed seats and show empirically that this mechanism is substantially

fairer than ESTTC. In the next section, we will introduce the RESPCT mechanism and formally prove its

important properties.

4. Artifact Description
As we will show, the RESPCT mechanism includes a number of innovations that improve the fairness of

TTC. We first discuss improvements without minimum quotas and then consider these quotas. Our approach

of making TTC fairer leverages two observations regarding the one-to-many variant of the assignment

problem. Envy in TTC can be caused by unnecessary trades and allowing early trade opportunities for

students that have low priorities at other courses. The former can be mitigated by a clinching procedure that

we discuss in Section 4.1, the latter by prioritized pointing, which we introduce in Section 4.2. Afterwards,

we show in Section 4.3 that these innovations can also improve fairness when considering minimum quotas,

while also retaining strategyproofness and Pareto efficiency. Since the performance of both clinching as well

as prioritized pointing relies heavily on the guarantees that courses can offer, we show how to maximize

these number of guaranteed seats in Section 4.4. Finally, we describe the complete RESPCT mechanism in

Section 4.5.

4.1. Clinching

Morrill (2015b) already discussed that there are unnecessary trades in TTC that cause unfairness without

contributing to TTCs Pareto efficiency, strategyproofness, and mutual best properties. Consider the

following example:

Example 4. Let S = {s1, s2, s3} and C = {c1, c2}. qc1 = 2 and qc2 = 1. Define preferences and priorities as

follows:
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�s1 �s2 �s3

c2 c1 c2

c1 c2 c1

�c1 �c2

s1 s2

s2 s3

s3 s1

Table 5 Preferences of students and priorities of course organizers

In round one of TTC, we resolve the cycle c2, s2, c1, s1, c2. In round two, we assign the only remaining

student and course c1, s3. The final matching is µ = {(c1, {s2, s3}), (c2, {s1})}.

A matching that is both fair and Pareto efficient exists in the market: {(c1, {s1, s2}), (c2, {s3})}. However,

this matching is not chosen by TTC. Due to mutual best, s2 has a guaranteed seat at c1 since it is her favorite

course and she has one of the qc2 highest priorities at c2. However, under TTC, s2 has to trade endowments

with s1 to receive that seat at c2, thereby allowing s1 to obtain a seat at c2 where she has low priority. If

instead we allow s2 to clinch her seat at c1 without trading, we reach the outcome {(c1, {s1, s2}), (c2, {s3})}.

4.2. Prioritized Pointing

Another property of TTC is that its pointing rule is myopic. TTC always points at the highest ranked student

and allows that student to trade her priorities. If the student has very low priorities for other courses, allowing

her this trade may lead to a lot of justified envy later on. However, as we will prove later, we can point to

any of the guaranteed students at a course while preserving the properties of efficiency, mutual best, and

strategyproofness. Consider a course c. The question is which of the guaranteed students should c point to

in order to minimize the chance of generating justified envy. The important point is that a student’s priority

at c is irrelevant to the probability that she will cause justified envy. A cycle in TTC is either trivial, where

a student and course point at each other, or nontrivial. A trivial cycle cannot cause justified envy so long as

the student was guaranteed that course. In a nontrivial cycle, a student is not assigned to the course pointing

at her, so her priority for that course is irrelevant.

Consequently, a better approach is to estimate which student is least likely to point at a course where she

has low priority. Note that we cannot use a student’s submitted preferences to determine who she will point

to without violating strategyproofness. However, the designer does know a student’s priority rank for all of

the other courses.

We use a heuristic estimate, which turns out to be very helpful in reducing the total number of instances of

justified envy. First, we restrict a course c with capacity q to point to one of the q highest-priority students.

This is to ensure that a trivial cycle cannot cause justified envy. Second, among this set of students, we do

not use a student’s priority rank at c, as this information is irrelevant. Instead, we calculate each student’s

average priority rank for the courses other than c.7 In this context, we use the term highest average priority

rank for notational convenience, but in fact we use a more sophisticated metric. We weight priority rankings

7 Note that a student’s priority ranking counts the number of students with which she is capable of causing justified envy. Since we
have a simple objective (reduce the total instances of justified envy), this is an effective heuristic. When there is a more complicated
design objective, such as weighting instances of justified envy differently, a more sophisticated heuristic would be needed.



Bichler, Hammerl, Morill, Waldherr: How to Assign Scarce Resources Without Money
Information Systems Research 00(0), pp. 000–000,© 0000 INFORMS 17

for courses such that courses with a low remaining capacity are given high precedence while those with

a high remaining capacity are given low precedence. The relative capacity of the remaining courses is a

proxy for the likelihood that a course will be overdemanded. Since processing a cycle changes the relative

capacities of the remaining courses, these weights are dynamically adjusted.

Consider the following example:

Example 5. Let S = {s1, s2, s3, s4} and C = {c1, c2, c3}. qc1 = 2 and qc2 = qc3 = 1. Define preferences and

priorities as follows:

�s1 �s2 �s3 �s4

c1 c3 c1 c3

c2 c2 c2 c1

c3 c1 c3 c2

�c1 �c2 �c3

s4 s2 s1

s2 s1 s2

s1 s3 s3

s3 s4 s4

Table 6 Preferences of students and priorities of course organizers

In round 1 of TTC, we resolve the cycle c1, s4, c3, s1, c1. In round 2, s2 is matched to c2 and in round 3, s3

is matched to c1. The final matching is µ = {(c1, {s1, s3}), (c2, {s2}), (c3, {s4})}.

Since s4 is allowed to trade in the first round, she obtains a seat at c3, which leads to justified envy by s2.

Note that this instance of justified envy cannot be removed by clinching, since none of the students could

clinch in the first round. However, if instead of pointing at s4, course c1 points at s2, who is also guaranteed

a seat at c1, we reach a matching that is both Pareto efficient and fair. In this case, the first round leads to the

cycle c1, s2, c3, s1, c1 and ultimately to the matching µ = {(c1, {s1, s4}), (c2, {s3}), (c3, {s2})}.

Let us now introduce the Prioritized Clinch & Trade (PCT) mechanism, where we suggest a more

sophisticated pointing procedure for the courses while also incorporating a clinching procedure as discussed

in the previous section:

Algorithm 3 Prioritized Clinch and Trade
Round k ≥ 1 - Clinching: Whenever a student s who is not pointing to a course at the end of round k−1 (i.e.,

the course s is pointing to in round k− 1 is removed) has a priority that is within the remaining capacity of

her favorite course c, assign s to c. Iteratively clinch until no student-course pair can be clinched.

Round k ≥ 1 - Trading: Let each student s point to her favorite course with remaining capacity and let each

course c that was not pointing by the end of round k − 1 point to the student who is guaranteed a seat at

c with the highest average rank among courses other than c. There must exist at least one cycle. Resolve

the cycle by assigning each student the course she is pointing to. After that, remove every assigned student,

reduce the capacity of each course in the cycle by one, and remove courses with capacity of zero.

We will provide an example of the clinch and trade mechanism in the next section when discussing the

extension of PCT for course assignments with minimum quotas. Importantly, this mechanism is efficient,
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strategyproof, and always satisfies mutual best. The proofs of the following results can be found in the

appendix.

Theorem 2. PCT is Pareto efficient, strategyproof, and satisfies mutual best.

We discussed that no mechanism can be strategyproof, fair, and always select an efficient assignment

when a fair and efficient assignment exists. However, PCT is strategyproof, fair, and efficient when there

are only two courses and there is sufficient capacity for all students. A fair and efficient assignment must

correspond to the student-optimal envy-free assignment. This implies that when there are two courses

and sufficient capacity, PCT corresponds exactly to the student-proposing Deferred Acceptance algorithm.

Interestingly, when there are N students, N courses, and each course has a capacity of one, then PCT is

equivalent to TTC. However, when there are N students, two courses, and the total capacity of both courses

is at least N, PCT is equivalent to the Deferred Acceptance algorithm.

Theorem 3. If there are two courses and the total capacity of the two courses is greater than or equal to

the number of students, then PCT is fair.

Note that TTC is not fair under the conditions of Theorem 3. When there are more than two courses, PCT

may have justified envy. However, the intuition from Theorem 3 continues to hold more generally. When

there are fewer courses, average priority becomes a better predictor of a student’s priority at her favorite

course. While PCT consistently outperforms TTC, the difference is most dramatic when there are relatively

few courses with relatively high capacities.

Corollary 1. If there are two courses and the total capacity of the two courses is greater than or equal

to the number of students, then PCT corresponds exactly to the student-proposing Deferred Acceptance

algorithm.

Unfortunately, for larger assignment problems it is possible to construct instances for which traditional

TTC leads to less justified envy than any of the proposed methods for increasing its fairness, such as

PCT or ETTC (Hakimov and Kesten 2018). Hence, none of these algorithms lead to outcomes that can be

analytically proven to be always fairer than the result of TTC. However, the positive effects of these new

methods on fairness can be shown empirically. In this paper, we are mainly concerned with assignments

under the additional constraint of minimum quotas. Yet, we also compared PCT and ETTC without quotas.

These preliminary tests are based on field data and empirically generated data and showed that PCT resulted

in less justified envy than TTC and ETTC. In our results in Section 5, we focus on the comparison different

algorithms taking high and low quotas into account.
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4.3. Considering Minimum Quotas

The biggest challenge we faced in creating the course assignment mechanism at our university was

incorporating minimum quotas. Both clinching and non-myopic pointing are based on identifying which

students are guaranteed a course. This is trivial when there are no minimum quotas; a student is guaranteed

a course with capacity q if and only if she has one of the q highest priorities. This is far more challenging

when there are minimum quotas.

The ESTTC algorithm, introduced by Fragiadakis et al. (2012) and defined on page 12, is a hierarchical

exchange rule, as introduced in Pápai (2000). The inheritance rule is a hybrid between the standard TTC

inheritance rule and that of a serial dictatorship. For a course c with minimum quota pc and maximum quota

qc, the first pc seats are inherited via TTC and the remaining seats are inherited as in a serial dictatorship

using the ordering induced by the master list. When viewed this way, it is clear that ESTTC guarantees the

assignment of pc students at course c. Using this observation, ESTTC can be adapted to PCT in a natural

way. We refer to the resulting mechanism as Extended Seat Prioritized Clinch & Trade (ESPCT).

Algorithm 4 Extended Seat Prioritized Clinch and Trade (ESPCT)
Set ε = n−

∑
c∈C pc. Denote by Gc the set of students who have one of the pc highest priorities at course c.

Instead of using an arbitrary master list, we define �ML using a student’s average priority for all courses.

Specifically, i �ML j if i has a higher average priority for all courses than j.

Round k ≥ 1 - Clinching: Whenever a student s who is not pointing to a course at the end of round k−1 (i.e.,

the course s is pointing to in round k− 1 is removed) has a priority that is within the remaining capacity of

her favorite standard course c, assign s to c. Iteratively clinch until no student-course pair can be clinched.

Round k ≥ 1 - Trading: Let each student s point to her favorite course with remaining capacity. Let all

standard courses that were not pointing to a student by the end of round k−1 point to the student in Gc with

the highest average priority for courses other than c. Let all extended courses point to the student ranked

highest according to �ML (i.e., the student with the highest average priority for all courses). Execute one

round of TTC. If the number of assigned extended seats reaches ε, remove all extended courses. Update Gc

according to the remaining students.

Example 6. We use the same instance as Example 3 with the corresponding preferences and priorities

shown in Table 3 to allow for a comparison between ESTTC and ESPCT. We compute ε = 6− 3 = 3.

Round 1: No student clinches at the beginning of the round. Standard course c1 points at s3 due to her

average rank of 4.5 among other courses (as compared to 5 of s5) and standard course c2 points at s2.

Extended course c∗3 points at s1 due to her average rank of 2 across all courses. This leads to a cycle

c1, s3, c∗3, s1, c1 and c∗3 is taken off the market.
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Round 3:

s4 c∗1

c∗2s6

Round 4:

s4 c∗2

s1

s2

s3

s4

c1

c2

c∗3

Round 1: Round 2:

s5

s6

s2

s4

c1

c2

s5

s6

Figure 3 Run of ESPCT for Example 6

Round 2: Again, no student clinches. We resolve the cycle c1, s5, c2, s2, c1. After that, we take c1 and c2 off

the market.

Round 3: All extended courses point to s6. We resolve c∗1, s6, c∗1.

Round 4: We resolve the cycle between the only remaining student s4 and the only remaining course c∗2.

The trading rounds are depicted in Figure 4.3. We receive the matching µ̃ =

{(c1, {s1, s2}), (c∗1, {s6}), (c2, {s5}), (c∗2, {s4}), (c3, {s3})} in the extended market. The resulting matching in the

regular market is µ = {(c1, {s1, s2, s6}), (c2, {s4, s5}), (c3, {s3})}. Since s6 and s4 have justified envy toward s3,

µ contains two instances of justified envy.

First, note that the original version of ESTTC already satisfies p-mutual best (i.e. σ-mutual best with

σ = p). Using this result, we can prove the same for ESPCT.

Theorem 4. ESTTC is strongly group-strategyproof, Pareto efficient, and satisfies p-mutual best.

Proof: See the appendix.

Corollary 2. ESPCT is strategyproof, Pareto efficient, and satisfies p-mutual best.

Proof: The proof is a simple consequence from Theorems 2 and 4. Q.E.D.

ESTTC (and ESPCT) guarantees the priority of only pc students at course c (where pc is c’s minimum

quota). In general, however, this is not the maximum number of students it could guarantee. For example,

consider a feasible minimum priority vector p and an alternative minimum priority vector p′ where for

every school c p′c ≤ pc and for some school p′c < pc. It is clearly feasible to satisfy the minimum quotas

p′ (since it was possible to satisfy the quotas p). But note that if we run ESTTC using p′, fewer students

are guaranteed any individual course compared to if we run ESTTC using p. For this reason, ESTTC will

perform better (with respect to justified envy) under p than under p′. This is paradoxical, as the minimum

number of students required is a design constraint and is chosen to be as small as possible. This occurs

because the algorithm transitions earlier from pointing to students based on priorities to pointing to students

based on the master list.
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We correct this by first determining the maximal number of seats that can be guaranteed at a school. This

can be applied to any of the extended seat algorithms, but it is the most beneficial when we also use this

information for clinching and prioritized pointing. We refer to this mechanism as Range-widening ESPCT

(RESPCT).

4.4. Maximizing the number of guaranteed seats

In order to allow courses to guarantee seats in excess of their minimum quotas, we need to make sure that

these guarantees do not lead to a shortage of students for other courses in the case where all guaranteed

seats are clinched. For each course c, let σc be the number of students that are guaranteed a seat at c and let

Gc with |Gc| = σc be the set of these students. Obviously, σc ≤ qc has to hold for all courses. Furthermore,

in order to be compatible with the minimum quota vector p, for each subset of courses C0, the number of

students that are not guaranteed seats in courses in C0 must exceed the sum of the minimum quotas of other

courses, i.e.

n−

∣∣∣∣∣∣ ⋃
c∈C0

Gc

∣∣∣∣∣∣ ≥ ∑
c∈C\C0

pc for all C0 ⊂C (FC)

has to hold. By satisfying this condition, we ensure that even if all seats guaranteed by courses in C0 are

clinched, there are still enough students left to satisfy the minimum quotas of all other courses.

In the following, we discuss how to maximize the number of guaranteed seats while retaining the

feasibility condition (FC). Again, all proofs for the results can be found in the appendix. Note first that we

can always guarantee at least n seats.

Theorem 5. Let σ be a vector of guaranteed seats with
∑

c∈C σc = n and pc ≤ σc ≤ qc. Then, (FC) is

satisfied.

Under certain conditions, we can even guarantee σ = q:

Theorem 6. If n ≥
∑

c′∈C\{c} qc′ + pc for all c ∈C, then (FC) is satisfied for σ = q.

In general, checking whether a vector of guarantees σ is compatible with the minimum quota vector p

requires validating (FC) for an exponential number of subsets. The following result implies that it is not in

general possible to efficiently show compatibility.

Theorem 7. Deciding whether a vector σ is incompatible with a minimum quota vector p is a strongly

NP-complete problem.

The compatibility of a fixed vector σ can be verified via a mixed integer linear program (MIP). In this

case, the parameter σcs denotes if s is guaranteed a seat at c in σ (i.e., σcs = 1 if and only if s is among

the top σc students in c’s preference list). Define variables xsc ∈ {0,1}, which state whether student s ∈ S

clinches her seat at c ∈C. Then, introduce an auxiliary variable λc ∈R≥0 for each course c ∈C to denote the

shortage of students of c, i.e., the number of students that are necessary in excess of the students clinching
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a seat at c in order to satisfy the minimum quota pc. Then, the objective of the following MIP is to find a

clinching of seats by the students such that (FC) is violated. Thus, if the MIP does not allow for a feasible

solution, (FC) is satisfied for the vector σ.

∑
c∈C

xsc ≤ 1 s ∈ S (1)

xsc ≤σcs s ∈ S , c ∈C (2)

λc ≤ qc(1− zc) c ∈C (3)

λc ≤ pc −
∑
s∈S

xsc + qczc c ∈C (4)

∑
c∈C

λc ≥
∑
s∈S

1−∑
c∈C

xsc

 + 1 (5)

xsc ∈ {0,1} c ∈C, s ∈ S (6)

λc ≥ 0 c ∈C (7)

zc ∈ {0,1} c ∈C (8)

Here, constraints (1) and (2) restrict each student to clinch at most one of their guaranteed seats. All

students, who either do not clinch a guaranteed seat or are not offered one in the first place by any course

are summed up in constraint (5), in which we enforce a solution such that the shortage of students exceeds

the sum of non-clinching students. The shortage λc for each course c is defined in constraints (3) and (4),

setting it to max{0, pc −
∑

s∈C xsc}.

Unfortunately, it is not easy to make use of the MIP in order to maximize the number of guaranteed

seats. One could consider making the guarantees σcs variable and minimizing the sum N =
∑

c∈C
∑

s∈S σcs of

guarantees, i.e. finding the minimal number of guarantees such that the vector σ is incompatible with the

minimum quotas. While finding such an N ensures that all vectors σ′ with
∑

cσ
′
c < N respect (FC), this does

not necessarily yield a maximal number of guaranteed seats.

One possibility to find vectors σ with the help of the MIP described above is by employing Algorithm 5

with σ = p and S fixed = ∅. In each step of the algorithm, one element of σ is increased and the feasibility

of the new vector is validated with the MIP. The algorithm terminates when σ can no longer be increased.

This way, after at most
∑

c∈C qc iterations, the algorithm returns a maximal vector σ, i.e. the number of

guaranteed seats cannot be increased for any of the courses. Note that the algorithm does not necessarily

find a maximum vector, i.e. one where the sum of guaranteed seats is maximized.
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Algorithm 5 Greedy algorithm to determine a maximal σ vector
Input: A lower bound σ for σ and a set of students S fixed that are already assigned to courses.

Set σ =σ. Initiate a set Γ of courses c for which σc cannot be increased.

While Γ , C: Select a course c ∈ C \ Γ and define σ′ with σ′c = σc + 1 and σ′c′ = σc′ for all c′ , c. Solve

the MIP for σ′ with all students from S fixed who are already assigned to their courses. If the MIP returns a

feasible solution (i.e., the vector σ′ violates (FC)), add c to Γ. Otherwise set σ =σ′ and continue.

Return σ.

4.5. Range-Widened Extended Seats Prioritized Clinch and Trade

As a result of these considerations, we define the range-widened Extended Seats Prioritized Clinch and

Trade (RESPCT) mechanism by widening the clinching and prioritization rules to also apply to extended

courses according to the σ determined above. Note that σ is not fixed, and we instead recalculate σ at the

end of each round. We allow students to clinch with extended courses c∗ as long as they have one of the

σc highest priorities for c. Then, in the cycle resolution phase, we allow extended courses to point to up to

ε distinct students. For this, we iteratively select the courses and determine which students they point to.

First, we consider all extended courses c∗ with σc > pc and allow them to point at the student that has a

guaranteed seat at c with the highest average priority for other courses (as in the prioritized pointing rule

in PCT). If these courses point to fewer than ε distinct students, we continue with the remaining extended

courses, which are allowed to point to their highest priority student. As soon as the number of students that

are pointed at by the extended courses reaches ε, all remaining extended courses point at the student among

those ε with highest priority.

Example 7. Again, we consider the same market from Example 3. Since every matching that satisfies the

maximum quotas is feasible, we get σ = q. Again, ε = 3.

Round 1: Student s1 clinches c1. After that, s6 clinches c∗3. Student s3 clinches her favorite remaining school

c2. Student s2 then clinches her favorite school c1. With only two students and two courses remaining, we

resolve cycle c∗1, s5, c∗2, s4, c∗1 as depicted in Figure 7.

We obtain the matching µ̃ = {(c1, {s1, s2}), {(c∗1, {s4}), (c2, {s3}), (c∗2, {s5}), (c3∗, {s6})}, resulting in µ =

{(c1, {s1, s2, s4}), (c2, {s3, s5}), (c3, {s6})} in the regular market. There is no instance of justified envy in µ.

Theorem 8. RESPCT satisfies strategyproofness, Pareto efficiency, and σ-mutual best such that∑
c∈C σc ≥ n.

Theorem 9. If
∑

c′∈C\{c} qc′ + pc ≥ n for all c, RESPCT satisfies mutual best.

Proof: This is a simple consequence of Theorems 6 and 8. Q.E.D.
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Algorithm 6 Range-widened Extended Seats Prioritized Clinch and Trade (RESPCT)
Determine σ1 by executing Algorithm 5 with input p and define �ML using a student’s average priority for

all courses.

Round k ≥ 1 - Clinching phase: Whenever a student s who is not pointing to a course at the end of round

k−1 (i.e., the course s is pointing to in round k−1 is removed) has a priority that is within σk
c of her favorite

course c, assign s to c.

After each round of clinching, recalculate σk by executing Algorithm 5 with σk and the hitherto assigned

students as input. Iteratively clinch until no student-course pair can be clinched. Define as ε1 the difference

between unassigned students and open seats at regular courses.

Round k ≥ 1 - Cycle Resolution Phase: All standard and extended courses that were pointing to a student

by the end of round k − 1 continue to point at that student. Each standard course c that was not pointing to

a student in round k − 1 points to the student in Gk
c with the highest average priority for courses other than

c. For each extended course, c, if σk
c > pk

c and c was not pointing to a student at the end of round k − 1,

then c points to the student in Gk
c with the highest average priority for courses other than c. If all extended

courses point to fewer than εk many students, iteratively select additional extended courses and have them

point to their highest prioritized student. Specifically, the extended course that represents course c points to

the student in Gk
c with the highest average priority at courses other than c. If extended courses already point

to εk students, let all other extended courses point to the student among those εk who has the highest priority

according to �ML (i.e., the highest average priority for all courses). Execute one round of TTC. Calculate

σk+1 via Algorithm 5 for an input of σc and the hitherto assigned students. Define as εk+1 the difference

between unassigned students and open seats at regular courses. When εk+1 = 0, remove all extended courses.

s4 c∗1

c∗2s5

Figure 4 Run of RESPCT for Example 7

5. Evaluation
In order to evaluate the level of envy caused by the RESPCT mechanism discussed in this paper, we

conducted a computational study using field data from the computer science department at the Technical

University of Munich.
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5.1. Data and Experimental Design

In the following, we briefly describe the field data from the course assignment application at the Technical

University of Munich. Students and lecturers participate in this mechanism – students by stating their

preferences over courses and lecturers by stating the capacity of their course and their preferences over

students. The registration data sets describe preferences for seminars and practical courses for both

bachelor’s and master’s students collected between June 2014 and March 2016. For our experiments, we

only considered data sets where the number of students does not exceed the total course capacity but does

exceed the sums of minimum quotas we introduced. These sets range from 27 to 733 different students and

six to 43 courses (see Table 7).

Name #Students #Courses Total
capacity

TS1 539 26 575
TS2 27 6 59
TS3 88 12 116
TS4 689 36 726
TS5 57 9 86
TS6 636 40 758
TS7 105 11 110
TS8 78 16 253
TS9 731 40 775

TS10 733 43 753
Table 7 Summary of two-sided data sets

Let us provide a few additional statistics on the distribution of preferences and highlight their

heterogeneity. For this, we illustrate the distribution of preferences in a larger data set, TS1, and a smaller

data set, TS2, which are representative for other data sets as well. For each course in the two data sets Figure

5 shows the fraction of students that rank the corresponding course as their top choice, or among their

top three (or five) choices, respectively. The chart shows the heterogeneity of the students’ preference lists

except for a few popular courses, especially when considering the top five choices. Even in TS2 with only

six courses, no course was ranked within the top five by every student. The courses’ priorities are equally

diverse. In TS1, 15 students are ranked as top priority by at least one of the 26 courses, while 63 distinct

students are ranked among the top three priorities and 106 students are ranked among the top five, with a

maximum number of 26 · 3 = 78 and 26 · 5 = 130 spots available. For TS2, five distinct students are ranked

as top priority, 14 within the top three and 18 within the top five, with a maximum of six, 18, and 30 spots

available, respectively.

Course organizers submitted only maximum capacities, since minimum quotas were not yet part of the

course assignment mechanisms. Therefore, in order to evaluate the mechanisms for each of the data sets we

tested a range of different minimum quotas. Based on our experience with the matching system used at the
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(b) Data Set TS2 (6 courses)
Figure 5 Fraction of students that have a course in the top 1,3 or 5 of their preference lists

university, we consider a range from 3 to 7 as realistic minimum quotas for seminars and courses. Thus,

for every x ∈ [3,7] we augmented each test set with minimum quotas pc = min(x,qc − 1) for all courses c,

resulting in a total of 50 test instances.

For all instances, we employed ESTTC, ESPCT, and RESPCT in order to compare their performance with

respect to fairness. For this, we evaluated (1) the instances of justified envy, (2) the number of students with

justified envy, and (3) the number of students envied. Moreover, in order to analyze the gain in efficiency

when using a Pareto-optimal mechanism over a fair mechanism, we also implemented the extended-seats

version of the Deferred Acceptance mechanism by Fragiadakis et al. (2016) to compare its efficiency to

that of RSPECT, the most fair Pareto-optimal mechanism. Runtime is typically a criterion when evaluating

algorithms. The longest runtime we observed was 139.03 seconds (2.32 minutes), while most algorithms

took less than one minute, which is negligible in this domain.

5.2. Fairness

In order to obtain the vector σ that is necessary for RESPCT, we first tested whether σ = q was feasible.

The feasibility condition (FC) was violated by σ = q in only in 13 of the 50 test instances. For these, we

employed Algorithm 5 to find a maximal vector of guarantees, σmax. In spite of having to solve several

integer programs using Gurobi 7.0.2, it only took a couple of seconds to find σmax.

We will now discuss the degree of (un-)fairness in our mechanisms. For ESTTC, we used a randomized

master list. In order to reduce the impact of chance, we performed 10 runs of ESTTC for every minimum

quota vector and test set with different master lists and computed the arithmetic mean of all metrics.

Figure 6 shows the instances of justified envy per student for each minimum quota vector, averaged over

all 10 instances. RESPCT performed best among all mechanisms, even with a lower number of guaranteed



Bichler, Hammerl, Morill, Waldherr: How to Assign Scarce Resources Without Money
Information Systems Research 00(0), pp. 000–000,© 0000 INFORMS 27

p = 3 p = 4 p = 5 p = 6 p = 7
1

2

3

4

5

1.35 1.43 1.38
1.6 1.75

4.13 4.22 4.18
3.94 3.93

4.63 4.58 4.58 4.44 4.33

In
st

an
ce

s
of

JE
(p

er
st

ud
en

t)
RESPCT ESPCT ESTTC

Figure 6 Instances of justified envy (per student) when applying the respective matching mechanisms

seats. It also becomes clear that even without guaranteeing more seats, the effects of clinching and trading

in ESPCT led to much fairer assignments than the standard ESTTC.

There are many interesting effects that can be observed. First, as is expected, RESPCT leads to worse

results as the minimum quotas increase. The minimum quotas are a constraint, and higher minimum

quotas mean that fewer students can be guaranteed a course. This reduces the impact of both clinching

and prioritized pointing. Paradoxically, the performances of ESTTC and ESPCT actually improve as the

minimum quotas increase. This was discussed earlier and is due to the fact that with higher minimum

quotas, ESTTC and ESPCT allocate fewer extended seats. Since extended seats are assigned based on the

master list and not course priorities, having fewer extended seats results in less justified envy. Therefore, the

performance difference between RESPCT and both ESTTC and ESPCT becomes smaller as the minimum

quotas increase.

While the number of students with envy follows the same pattern (see Figure 7), the number of students

envied (see Figure 8) actually increases across all mechanisms with increasing minimum quotas. However,

it can clearly be seen that RESPCT outperforms all other mechanisms in these metrics as well.

5.3. Efficiency

In order to evaluate the gains in efficiency when using RESPCT instead of a strategyproof fair mechanism

for matchings with minimum quotas (i.e., one which produces no instances of justified envy), we

also implemented the Extended-Seats Deferred Acceptance (ESDA) mechanism by Fragiadakis et al.

(2012). ESDA led to very inefficient outcomes: On average, roughly 10 percent of students could be

Pareto-improved under the envy-free matching obtained by ESDA. Figure 9 depicts the average rank of all

students, and Table 4 shows the distribution of ranks for RESPCT and ESDA. It can be seen that RESPCT
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Figure 7 Fraction of students that have justified envy when applying the respective matching mechanisms
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Figure 8 Fraction of students that are envied under the respective matching mechanisms

is vastly more efficient based on these measurements, showing once again the advantage of TTC over DA

when efficiency is seen as a first-order concern. In Table 8, we report the rank distributions and fairness

measures for all mechanisms discussed in this work for the illustrative case of p = 5. It can observed once

again that the TTC variants are much more efficient than ESDA with RESPCT being the fairest of the

efficient mechanisms.
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p = 3 p = 4 p = 5 p = 6 p = 7
Rank RESPCT ESDA RESPCT ESDA RESPCT ESDA RESPCT ESDA RESPCT ESDA
1 2571 2269 2562 2262 2551 2268 2549 2181 2541 2172
2 471 628 487 628 483 629 483 634 479 640
3 223 273 209 276 216 287 209 300 225 291
4 134 180 125 182 127 180 131 189 124 192
5+ 284 333 300 335 306 338 311 379 314 388

Table 8 Comparison of efficiency between RESPCT and ESDA

RESPCT ESPCT ESTTC ESDA
Rank 1 2551 2531 2514 2258
Rank 2 483 467 477 629
Rank 3 216 191 216 278
Rank 4 127 154 138 180
Rank 5+ 306 340 338 338
Justified Envy 6.829 22.290 24.503 –
Students with Envy 910 1.089 1.081 –
Students Envied 811 2.107 2.191 –

Table 9 Total number of rank distribution and justified envy for p = 5

5.4. Scalability

In order to evaluate how well our algorithms scale, we generated synthetic data sets in addition to our

field data. We created matching instances with up to 2,000 students and 60 to 100 courses of varying



Bichler, Hammerl, Morill, Waldherr: How to Assign Scarce Resources Without Money
30 Information Systems Research 00(0), pp. 000–000,© 0000 INFORMS

minimum quotas and capacities. The preferences of students and courses were designed in such a way as to

resemble the structure of real-world preference profiles we witnessed in the field data. While the runtime of

RESPECT increased significantly, we were still able to solve even the largest instances within 90 minutes.

Since the course assignment only has to take place once at the beginning of each semester, these runtimes

are still acceptable even for this large number of participants. The results for these larger instances confirm

the results we obtained for the field data: RESPECT clearly outperforms all other efficient algorithms with

regards to fairness and is significantly more efficient than ESDA.

6. Discussion
Coordination has long been a central topic in the decision support and design science literature, where

economic design desiderata matter (Banker and Kauffman 2004). Auction mechanisms are an integral part

of this literature, but monetary transfers are often not an option. Matching with preferences is another

essential pillar of the broader market design literature, and it provides an important mechanism for the

design of information systems. We draw on recent results of matching with preferences and make a design

science contribution to address one of the central problems in this literature: the trade-off between efficiency

and fairness. While TTC (or its quota-respecting version ESTTC) incurs justified envy, DA (or ESDA) leads

to very inefficient assignments. The level of inefficiency is substantial, which leads to a challenging trade-off

for designers.

We introduced the RESPCT mechanism. By incorporating a non-myopic pointing rule for the courses and

maximizing the number of guaranteed seats at each course, RESPCT assigned students in a significantly

fairer way than ESTTC. It is the combination of these innovations that makes a substantial difference in the

level of justified envy. RESPCT outperforms ESTTC by far regarding the fairness metrics that we studied.

Experiments show that even without widening the range of guaranteed seats and when only employing

clinching and non-myopic pointing, the resulting ESPCT algorithm still has significant advantage over

ESTTC, which confirms our expectations regarding the fairness of the two mechanisms.

If fairness is the only concern of the designer, DA-based algorithms like ESDA are a clear choice.

However, efficiency almost always matters and designers do not want to be wasteful. RESPCT is fully

efficient and has very little envy. Especially when the ratio of agents required to fill quotas within the number

of overall agents is low, RESPCT outperforms the other algorithms since all of its building blocks can be

made use of. Most importantly, although we have assumed objects have minimum quotas, the advantages of

RESPCT over TTC (when there are no minimum quotas) are even greater than the advantages of RESPCT

over ESTTC (when there are minimum quotas). Without minimum quotas, it is trivial to calculate which

agents are guaranteed an object,8 so RESPCT retains all of the advantages of clinching and non-myopic

pointing but without the computational burden. When there are minimum quotas, RESPCT is best suited

8 Without a minimum quota, an agent is guaranteed an object with capacity q if she has one of the q highest priorities.
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for applications, such as course assignment, where the minimum requirement is small relative to the overall

capacity of the object.

RESPCT can easily be implemented for any matching problem that can be solved via (ES)TTC or DA

mechanisms. In order to calculate the vector of guarantees, RESPCT should have access to a mathematical

programming solver. In our experiments we have worked on a large-scale matching problem with 2,000

students and 100 courses. These instances could all be solved within 90 minutes on commodity hardware.

Larger assignment problems in domains such as course assignments, cadets-to-branch matching, and

hospital-resident matchings are usually performed only once every few months and such computation times

should not constitute a problem. Hence, RESPECT can serve as a remedy for many one-to-many assignment

problems.

As always, there are limitations. RESPCT is not well suited for environments with complicated

admissions requirements. For example, college admissions in India involve a complicated interaction

of horizontal and vertical reserve requirements (Sönmez and Yenmez 2019). In such an environment,

determining which students are guaranteed admission to a university would likely be computationally

infeasible. Other limitations stem from the type of preferences that can be elicited from participants.

RESPCT is designed for ordinal preferences and priorities that are complete, irreflexive, and transitive.

Moreover, preferences are independent and private and do not change when students observe the preferences

of others. In cases where the students’ preferences and their satisfaction with an outcome depend on these

or other factors, a designer might be better advised to model the assignment as a mathematical optimization

problem and search for an efficient solution. However, by doing so, the designer loses strategyproofness and

it might not even be possible to find an envy-free allocation if the preferences of individuals change once

the number of interested students is revealed. For example, Jehiel et al. (2006) showed that, in environments

with interdependencies, only constant rules, according to which the same alternative is chosen for every

type realization, are incentive compatible.

A key assumption in most of the literature on one-to-many assignment problems is that of unit

demand, i.e. students want to win only one out of many course seats. It turns out that multi-object

assignment problems, e.g. the assignment of course schedules to students, is a much harder problem.

The only strategyproof mechanisms available are serial dictatorships Ehlers and Klaus (2003), Pápai

(2001). Only recently have randomized mechanisms been introduced that satisfy weaker notions of

incentive-compatibility (Nguyen et al. 2016).

7. Conclusions
The trade-off between fairness and efficiency leads to a significant policy problem in many applications

of matching with preferences. Fairness is often prioritized over efficiency (Roth 2002). We show that with

appropriate algorithms one can implement fully efficient results with very low levels of envy. This might

well be an argument in favor of TTC in other applications such as school choice, where the topic has been
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intensively discussed over the years (Abdulkadiroğlu and Sönmez 2003). Also in school choice minimum

quotas matter, and regulators want to make sure that all schools seats are filled even if they are less popular.

Overall, we provide a strategyproof and efficient mechanism with very low levels of envy, which was

the main argument for the computer science department at the Technical University of Munich to switch

from the DA algorithm to RESPCT. We argue that such considerations will also apply to other domains,

such as medical labor markets, cadet matching in the military, or school choice, where there has been a

long debate about DA vs. TTC. RESPCT is a versatile tool for one-to-many object assignments without

monetary transfers and a powerful means for the design of distributed information systems. The unit demand

assumption in assignment problems is the most severe but also the most challenging limitation, one that

is currently drawing significant attention (Budish and Cantillon 2012, Nguyen et al. 2016, Karaenke et al.

2020), as it would considerably extend the number of applications for matching with preferences.
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Pycia, Marek, M Utku Ünver. 2017. Incentive compatible allocation and exchange of discrete resources. Theoretical

Economics 12(1) 287–329.



Bichler, Hammerl, Morill, Waldherr: How to Assign Scarce Resources Without Money
Information Systems Research 00(0), pp. 000–000,© 0000 INFORMS 35

Roth, Alvin E. 1982. Incentive compatibility in a market with indivisible goods. Economics letters 9(2) 127–132.

Roth, Alvin E. 2002. The economist as engineer: Game theory, experimentation, and computation as tools for design

economics. Econometrica 70(4) 1341–1378.

Shapley, Lloyd, Herbert Scarf. 1974. On cores and indivisibility. Journal of Mathematical Economics 1(1) 23–37.

Sönmez, Tayfun, Tobias B Switzer. 2013. Matching with (branch-of-choice) contracts at the united states military

academy. Econometrica 81(2) 451–488.

Sönmez, Tayfun, Bumin Yenmez. 2019. Affirmative action in india via vertical and horizontal reservations. Working

paper .

Sun, Ning, Zaifu Yang. 2003. A general strategy proof fair allocation mechanism. Economics Letters 81(1) 73–79.



Bichler, Hammerl, Morill, Waldherr: How to Assign Scarce Resources Without Money
36 Information Systems Research 00(0), pp. 000–000,© 0000 INFORMS

Proofs

Theorem 2: PCT is Pareto efficient, strategyproof, and satisfies mutual best.

Proof: Pareto efficiency: Each student in round 1 is assigned to her most preferred course and therefore cannot

be made strictly better off. If a student i in round 2 is not assigned her most preferred course, then that course was

assigned to capacity in round 1. Any reassignment that makes i strictly better off must make a student from round 1

strictly worse off. Iterating this argument, we find that no student assigned in round k may be made strictly better off

without making a student assigned in an earlier round strictly worse off. Therefore, the algorithm is Pareto efficient.

Strategyproofness: We first discuss the trading phase of the mechanism: Consider any student i and preference

profile P of the students. We fix the preferences of the students other than i, and at the start of each round, we allow

i to point at whatever course she wishes. Suppose for contradiction that there is some round where i does strictly

better by pointing at a course other than her most preferred course, and let k be the last round i is able to benefit by

misreporting. If i does not form a cycle in round k, then her report in this round does not effect the outcome, and

she may make the same misreport in the next round and receive the same assignment. This contradicts k being the

latest round she is able to profitably misreport her preferences. If i does form a cycle by pointing at a course b even

though her most preferred course a still has available capacity, then there is a path from b to i. If i had pointed at her

true favorite a instead of b, then she could not have formed a cycle, as otherwise pointing at b is not be a profitable

misrepresentation. Therefore, if i points to a in round k, b is not assigned in round k and indeed the entire path from b

to i is preserved through round k + 1. Therefore, i can make the same profitable misrepresentation in round k + 1 as in

round k, which contradicts k being the last round in which i is able to profitably misreport her preferences. Therefore,

i never does better than pointing at her most preferred course.

Clinching does not interfere with strategyproofness: We do not let a student that is pointing at a course clinch that

course. Therefore, the clinching process does not effect any existing path. In particular, once there exists a path from

a course a to a student i, then that path remains until i is assigned. Therefore, i has no incentive to misrepresent her

preferences and point to any course other than her most preferred course. Similarly, a student has no incentive to clinch

a course unless it is her most preferred course. She can only clinch a course a if she is guaranteed admissions to a, and

once a student is guaranteed admissions to a course, then she never loses that status.

Mutual best: The analysis above also implies that PCT satisfies mutual best as a student is never assigned a course

worse than one she is guaranteed admission to. Q.E.D.

Theorem 3 If there are two courses and the total capacity of the two courses is greater than or equal to the number

of students, then PCT is fair.

Proof: Label the two courses a and b and let µ be the assignment produced by PCT. After the iterative clinching

process, it must be that every student guaranteed a spot at a prefers b to a and vice versa. Suppose for contradiction

that some student i has justified envy of the assignment µ. Without loss of generality, µ(i) = a and there exists a j such

that µ( j) = b, bPia, and i �b j. Student j could not have clinched b given that, since i has higher priority and b is i’s

most preferred course, i would have also clinched b. Therefore, j was assigned via a prioritized trading cycle. Since

every student in a cycle is assigned to her most preferred course with available capacity and b must have had available

capacity when j was assigned, i could not have been assigned before j. Note that as there are only two courses, the
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highest average priority at the courses other than a corresponds exactly to the highest priority at b. Since i has a higher

priority at b than j, a does not point at j if i is available. This contradicts j being part of a prioritized trading cycle

while i is unassigned.

Theorem 4: ESTTC is strongly group-strategyproof, Pareto efficient, and satisfies p-mutual best.

Proof: The proofs for the first two properties are due to Fragiadakis et al. (2012). We only show p-mutual best:

Denote by Pc the set of students who hold one of the pc highest priorities at c for all c ∈ C. Let s ∈ Pc be a student

whose favorite course is c. Since the minimum capacity of course c in the regular market pc is equal to the maximum

capacity of the standard course c in the extended market, s holds one of the pc highest priorities at the standard course

c. Therefore, s always points to c. Whenever a student who is not in Pc is assigned c in the extended market, the student

in Pc who holds the top priority is assigned a course other than c. In the next round, c points to the next student in Pc.

Since |Pc| ≤ pc, course c points to s at some time if s does not receive c in an earlier round due to a trade, i.e., µ(s) = c.

Q.E.D.

Theorem 5: Let σ be a vector of guaranteed seats with
∑

c∈C σc = n and pc ≤σc ≤ qc. Then, (FC) is satisfied.

Proof: Let C0 ⊂C. Then,

n− |
⋃
c∈C0

Gc| ≥ n−
∑
c∈C0

σc =
∑

c∈C\C0

σc ≥
∑

c∈C\C0

pc

Q.E.D.

Theorem 6: If n ≥
∑

c′∈C\{c} qc′ + pc for all c ∈C, then (FC) is satisfied for σ = q.

Proof: Let C0 ⊂C and γ ∈C \C0. Then,

n− |
⋃
c∈C0

Gc| ≥ n−
∑
c∈C0

σc = n− (
∑
c∈C

qc −
∑

c∈C\C0

qc)

≥
∑

c∈C\{γ}

qc + pγ −
∑
c∈C

qc +
∑

c∈C\C0

qc

=
∑
c∈C

qc − qγ + pγ −
∑
c∈C

qc +
∑

c∈C\(C0∪{γ})

qc + qγ

= pγ +
∑

c∈C\(C0∪{γ})

qc

≥ pγ +
∑

c∈C\(C0∪{γ})

pc =
∑

c∈C\C0

pc

Q.E.D.

Theorem 7: Deciding whether a vector σ is incompatible with a minimum quota vector p is a strongly NP-complete

problem.

Proof: The problem is obviously in NP, since for a given subset C0, (FC) can be easily checked. We now prove

strong NP-hardness by reduction from vertex cover. Let G = (V,E) be an undirected graph and let k be an integer. The

decision version of vertex cover asks whether there exist k vertices such that all edges E are incident to at least one of

these vertices. For G and k, we construct the following course assignment instance:

For each vertex v ∈ V create one course cv with minimum quota pcv = 1 and maximum capacity qcv = |E|.

For each edge e ∈ E create a student se.

Additionally, create α = |V | − k− 1 auxiliary students d1, . . . ,dα.

Define the priorities, guarantees, and σ of courses such that each course cv guarantees seats to all students se for
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which e is incident to v in G. Auxiliary students are guaranteed a seat at no course.

Then, there exists a vertex cover in G of size k if and only if σ is not compatible with p.

Let v1, . . . , vk be a vertex cover. Since each edge is incident to at least one of these vertices, all students representing

these edges have guarantees at courses cv1 , . . . , cvk . Thus for C0 = {cv1 , . . . , cvk }, it holds that

|E|+α− |
⋃
c∈C0

Gc| = α < |V | − k =
∑

c∈C\C0

pc,

leading to an incompatibility of σ and p.

Suppose now that σ is not compatible with p. Since α students are not guaranteed a seat at any course and all courses

have a minimum quota of 1, there must exist a subset of courses C0 with a size of at most k, such that |
⋃

c∈C0
Gc| = |E|.

In this case, all edges representing those students have to be incident with at least one vertex representing a course in

C0. Thus, these vertices form a vertex cover for G.

Q.E.D.

Theorem 8: RESPCT satisfies strategyproofness, Pareto efficiency, and σ-mutual best such that
∑

c∈C σc ≥ n.

Proof: Every student and course is part of at most one cycle during each round of RESPCT. Furthermore, no

student can receive a course by clinching that she could not have otherwise received: Denote by Gk
c the set of students

who are guaranteed a seat at course c in step k. Assume student s ∈ S can receive a seat at regular course c ∈C during

the clinching phase of some step of RESPCT. Thus, s ∈Gk
c during some round k. In RESPCT, since |Gc|= σc, c and

c∗ combined point to at least |Gc| students who are in Gc until σc expires. If a student who is not in Gk
c is assigned

either c or c∗, a student in Gk
c must be assigned a course other than c and c∗. Hence, either c or c∗ point to every student

s′ ∈ Gk
c for all rounds k unless s′ receives c or c∗ by either clinch or trading an endowment from a different course.

Consequently, s could also have received c during the trading phase.

Strategyproofness: No student can improve her assignment by pointing to a course other than her most preferred

one. Assume that student s can profit by misrepresenting her preferences by pointing to course d instead of her favorite

course c and let k be the last round where she can profit from that misrepresentation. We differentiate the following

two cases: Case 1: d is a standard course. This case is equivalent, as in ESTTC, and hence strategyproofness holds

as in Theorem 4. Case 2: d is an extended course. If s does not build a cycle with d in round k, she does not profit

from misrepresenting, which is a contradiction to our assumption. Thus, s must build a cycle with d. Denote by Z∗k

the set of students who are endowed a seat at an extended course at the beginning of round k. Denote by Zk(s,d) the

set of students who are involved in the cycle between s and d and are endowed a seat at an extended course at the

beginning of round k. Since the student who is endowed d is involved in this cycle, |Zk(s,d)| ≥ 1. Thus, no course c∗

that points to a student s′ ∈ Z(s,d) is assigned in round k if s points to c. Since all extended courses point to at most

εk students in round k, |Z∗k | ≤ εk. If s pointed to c instead of d in round k, no cycle could have existed in round k

between d and any other student and, consequently, no student in Z(s,d) is assigned a course in round k. Therefore,

εk+1 ≥ εk − |Z∗k | + |Zk(s,d)| ≥ εk − εk + 1 ≥ 1. Therefore, the extended courses are not taken off the market before the

beginning of round k + 1 and s can still build a cycle with d in round k + 1. Thus, k is not the last round in which s can

profit from misrepresenting, which is a contradiction to our assumption.
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As described above, no student can clinch at a course where she could not have received a seat during the cycle

resolution phase. Therefore, no student can make herself better off by clinching some course d that is different from

her most preferred course c, since she could have also received d during the clinching phase. Since no student can

make herself better off by lying during the cycle resolution phase, it is obvious that a student can neither improve

her assignment by lying during the clinching phase nor by lying during the cycle resolution phase. Consequently,

RESPCT is strategyproof.

Pareto efficiency: The proof of Pareto efficiency is equivalent to the proof for ESTTC.

σ-mutual best: Any vector σ with
∑

c∈C σc = n satisfies FC due to Theorem 5, thus any method described in Section

4.4 produces such a vector σ. Then, if a student has one of the σc highest priorities at her most preferred course c, she

clinches c during the clinching phase of step 2 of RESPCT and, therefore, RESPCT satisfies σ-mutual best. Q.E.D.


