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A B S T R A C T

In spectrum auctions, bidders typically have synergistic values for combinations of licenses. This
has been the key argument for the use of combinatorial auctions in the recent years. Considering
synergistic valuations turns the allocation problem into a computationally hard optimization
problem that generally cannot be approximated to a constant factor in polynomial time. Ascending
auction designs such as the Simultaneous Multiple Round Auction (SMRA) and the single-stage or
two-stage Combinatorial Clock Auction (CCA) can be seen as simple heuristic algorithms to solve
this problem. Such heuristics do not necessarily compute the optimal solution, even if bidders are
truthful. We study the average efficiency loss that can be attributed to the simplicity of the auction
algorithm with different levels of synergies. Our simulations are based on realistic instances of
bidder valuations we inferred from bid data from the 2014 Canadian 700 MHz auction. The goal of
the paper is not to reproduce the results of the Canadian auction but rather to perform “out-of-
sample” counterfactuals comparing SMRA and CCA under different synergy conditions when
bidders maximize payoff in each round. With “linear” synergies, a bidder's marginal value for
a license grows linearly with the total number of licenses won, while with the “extreme national”
synergies, this marginal value is independent of the number of licenses won unless the bidder wins
all licenses in a national package. We find that with the extreme national synergy model, the CCA
is indeed more efficient than SMRA. However, for the more realistic case of linear synergies, SMRA
outperforms various versions of CCA that have been implemented in the field including the one
used in the Canadian 700 MHz auction. Overall, the efficiency loss of all ascending auction al-
gorithms is small even with high synergies, which is remarkable given the simplicity of the
algorithms.
1. Introduction

Radio spectrum is a key resource in the digital economy. Recognizing its enormous value for society, the US Federal Communication
Commission (FCC) decided in 1994 to replace their bureaucratic process (“beauty contest”) with a market-based approach to assign
spectrum: the Simultaneous Multiple Round Auction (SMRA). Since then the SMRA has successfully been used by many regulators and
has generated hundreds of billions of dollars worldwide. Despite this success, the SMRA has also led to a number of strategic problems
for bidders. Telecom operators typically have preferences for certain packages of licenses. In the SMRA this leads to the so-called
exposure problem: bidders who compete aggressively for a certain package risk ending up with only a subset, possibly paying more
than what this subset is worth to them. The inability to express preferences for packages directly adds strategic complexity for bidders
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and is a source of inefficiency in the SMRA. The exposure problem that is inherent to item-by-item competition has stirred interest in
combinatorial auctions, which allow bidders to submit preferences for combinations or packages directly. The design of combinatorial
spectrum auctions has drawn significant attention from researchers from various fields including economics, game theory, operations
research, and computer science, see e.g. Cramton, Shoham, and Steinberg (2006).

Combinatorial auctions have also drawn interest from regulators. For their 2008 700 MHz auction, the FCC decided to augment the
SMRA with the possibility to bid on a national package. This simple combinatorial auction was based on the Hierarchical Package
Bidding (HPB) format that had been designed and tested by Goeree and Holt (2010). In the same year, the British regulator Ofcom
pioneered the Combinatorial Clock Auction (Cramton, 2008) and regulators world-wide have since followed their example by adopting
different versions of the CCA. The single-stage CCA (Porter, Rassenti, Roopnarine, & Smith, 2003) is a simple ascending format where
bidders can submit multiple package bids in each round and prices are increased on items for which there is excess demand. Variants of
single-stage CCA have been used in Romania in 2012 and in Denmark in 2016. The single-stage CCA creates incentives for demand
reduction (Ausubel, Cramton, Pycia, Rostek,&Weretka, 2014), a problem which the two-stage CCA tries to address. The two-stage CCA
allows for only a single package bid in each round and adds a sealed-bid “shoot out” phase and a core-selecting payment rule (Cramton,
2013). Both phases are governed by a revealed-preference activity rule. The two-stage CCA has been used in many countries including
Austria, Australia, Canada, Ireland, the Netherlands, Slovakia, Switzerland, and the UK (Bichler& Goeree, 2017; Cave& Nicholls, 2017;
Mochon & Saez, 2017).

One takeaway message from the recent literature is that the design of spectrum auctions is still a topic of intense debate. Another is
that it requires different approaches – theory, laboratory experiments, and simulations – to understand the properties of alternative
formats. Mechanism design theory has identified the unique efficient auction in which bidding truthfully is a (weakly) dominant
strategy so that bidders do not require information about their rivals' valuations. Despite its desirable features, the Vickrey-Clarke-
Groves (VCG) mechanism is rarely used in the field for various practical reasons (Ausubel & Milgrom, 2006, ch. 1). Bayesian-Nash
implementation allows for a broader class of auction formats but imposes a strong common-prior assumption. Moreover, recent
game-theoretical models of spectrum auction formats typically make simplifying assumptions about bidders’ valuations (Goeree& Lien,
2014), focus on small environments with a few items and players (Levin & Skrzypacz, 2016), or assume complete information to
highlight strategic problems (Janssen & Karamychev, 2016). Laboratory experiments provide valuable insights as well, e.g. Goeree and
Holt (2010), but the size of the markets that can be organized in an economic experiment is typically limited. And, like in theoretical
analyses, experimental designs often ignore or simplify complicated institutional details (e.g. activity rules or spectrum caps).

In contrast, simulations allow one to analyze realistic market sizes and to take institutional details into account. As such they can
provide complementary insights (Consiglio & Russino, 2007). Interestingly, there are no published simulation studies about spectrum
auction markets that we are aware of, even though simulations are regularly used by consultants and telecoms to explore different
bidding strategies.
1.1. Auctions as algorithms

Spectrum auctions can be seen as large games with many bidders, licenses, and additional rules such as spectrum caps and activity
rules. For example, the 2014 Canadian 700 MHz auction allowed bidders to bid on 18 packages in 14 regions leading to 1814 possible
packages. In large games like this, bidders need a lot of information about competitors to bid strategically, and one might argue that
strategic manipulation is less of a concern. But even if we ignore strategic bidding, it is far from obvious that auctions yield efficient
outcomes. It is well-known that the allocation problem in a combinatorial auction where bidders have preferences for combinations of
licenses is an NP-hard optimization problem (Cramton et al., 2006). The SMRA and different versions of the CCA can be interpreted as
algorithms to solve this problem, and it is important to understand the approximation ratios of these algorithms (Domowitz & Wang,
1994). It is unclear whether to expect efficient outcomes even when bidders bid straightforwardly in each round of the auction.

Theoretical results on the allocation problem in combinatorial auctions are not encouraging. There is no polynomial-time algorithm
that guarantees an approximate solution to the winner determination problemwithin a factor of l1�ε from the optimal allocation, where l
is the number of submitted bids and ε a small number (Pekec & Rothkopf, 2003). The problem is APX-hard and the worst-case
approximation ratio of any polynomial-time algorithm for the allocation problem in combinatorial auctions is inOð ffiffiffiffi

m
p Þ, where m is

the number of objects to be sold. In large spectrum auctions with many licenses such as the Canadian auction in 2014, this lower bound
on efficiency is obviously very low1 and provides no practical guidance. There are also results on the worst-case efficiency of the single-
stage CCA with bidders who truthfully reveal their preferences (i.e., bid straightforward) in each round. This can also be seen as an
algorithm to solve the allocation problem. Unfortunately, the worst-case approximation ratio can be 2 ∕ (m þ 1) with m being the
number of licenses (Bichler, Shabalin, & Ziegler, 2013b).

Worst-case bounds might be too pessimistic, and it is interesting to understand the average-case approximation ratio to the fully
efficient solution of different auction types based on realistic problem instances. Numerical experiments are widely used in operations
research and computer science to analyze the average-case solution quality of an algorithm, and they help to understand aspects of the
algorithm that do not lend themselves to theoretical analysis or lab experiments. In particular, we want to study the average-case ef-
ficiency of different auction algorithms under the assumption of straightforward bidding. This provides an estimate of the efficiency that
can be achieved by the auction algorithms that are commonly employed in the field for realistic market sizes and considering all details of
1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18*14

p ¼ 15:87, such that the worst-case approximation of any polynomial-time algorithm might be OPT∕15.87, where OPT is the optimal solution to the
allocation problem.
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the auction design.
Another important element of realism in our simulations stems from the fact that we estimate bidder value models from bids

observed in the Canadian 700 MHz auction. Unlike other regulators, the Canadian regulator, Industry Canada, revealed detailed bid
data.2 We use the supplementary bids from the Canadian 700 MHz auction to estimate individual license values for each bidder.3 Our
goal is not to provide themost precise estimates of bidders’ private valuations and then reproduce the outcomes of the Canadian auction.
This would lead to over-fitting problems in the counterfactuals we have in mind. Our goal instead is to robustly infer reasonable in-
stances of bidder valuations and then compare the performance of different auction formats under various “out-of-sample” synergy
conditions.

In particular, we compare efficiency of the SMRA to that of the single-stage and two-stage CCA using extensive numerical experi-
ments. The experiments employ a simulation framework that implements the exact rules of the 2014 Canadian auction, i.e. band plan,
spectrum caps, regional interests of bidders and rules of the two-stage CCA. In addition, we implemented the rules of SMRA and the
single-stage CCA as they were used in other countries. Since the Canadian auction shares similarities with other large spectrum auctions,
e.g., in Australia, India, and the US, the results of our study are of interest beyond the Canadian market.

1.2. Outline

The paper is organized as follows. The next section provides details about the SMRA and CCA formats. Section 3 covers the
experimental design, including details about the Canadian 700 MHz auction. The results of the simulation experiments can be found in
Section 4. Section 5 concludes and the Appendices provide further details about the value model we estimate (Appendix A), the
optimization algorithms used in the simulations (Appendix B), our modeling assumptions (Appendix C), and the results (Appendix D).

2. The auctions

In this section, we briefly summarize the SMRA and different versions of combinatorial clock auctions and provide references to the
details of the implementations, which follow the very auction rules used in Canada or other countries.

2.1. The Simultaneous Multiple Round Auction (SMRA)

The SMRA is an extension of the English auction to more than one license. All licenses are sold at the same time, each with a price
associatedwith it, and the bidders can bid on any one of the licenses. The auction proceeds in rounds, which is a specific period of time in
which all bidders can submit bids. After the round is closed, the auctioneer discloses who is winning and the prices of each license, which
coincide with the highest bid submitted on each license. There are differences in the level of information revealed about other bidders’
bids. Sometimes all bids are revealed after each round, sometimes only prices of the currently winning bids are published.

The bidding continues until no bidder is willing to raise the bid on any of the licenses any more. In other words, if in one round no
new bids are placed, the bidders receive the spectrum for which they hold the highest active bid, then the auction ends with each bidder
winning the licenses on which he has the high bid, and paying its bid for any license won.

SMRA uses simple activity rules which enforce bidder activity throughout the auction. Monotonicity rules are regularly used, where
bidders cannot bid onmore licenses in later rounds. This forces bidders to be active from the start. Typically, bidders get eligibility points
assigned at the start of the auction, which define the number of licenses they are allowed to bid on maximally. If the number of licenses
they win in a round and the new bids they submit require less eligibility points than in the last round, then they risk losing points, which
limits the number of items they can bid on in future rounds.

Apart from the activity rules, there are typically additional rules that matter. Auctioneers set reserve prices for each license, which
describe prices below which a license will not be sold. They need to define bid increments and how bid increments might change
throughout the auction. A bid increment is the minimum amount by which a bidder needs to increase his bid beyond the ask price in the
next round. Sometimes, auctioneers allow for bid withdrawals and sometimes bidders get bid waivers, which allow bidders not to bid in
a round without losing eligibility points. Finally, auctioneers often set bidding floors and caps, which are limits on how much a winner in
the auction needs to win at a minimum and how much he can win at most. These rules should avoid unwanted outcomes such as
a monopoly after the auction or a winner who wins so little spectrum that it is not sufficient for a viable business.

The auction format is popular because it is easy to implement and the rules are simple. If the valuations of all bidders were additive,
the properties of a single-object ascending auction carry over. Unfortunately, this is rarely the case and bidders have often synergies for
specific licenses in a package or their preferences are substitutes. Only if bidders have substitutes preferences and bid straightforwardly,
then the SMRA terminates at a Walrasian equilibrium, i.e., an equilibrium with linear prices (Milgrom, 2000). Straightforward bidding
means that a bidder bids on the bundles of licenses, which together maximize the payoff at the current ask prices in each round. Milgrom
(2000) also showed that with at least three bidders and at least one non-substitutes valuation (for example super-additive valuations for
a package if licenses) no Walrasian equilibrium exists.

We assume a simple straightforward bidding strategy in each round where bidders submit bids on their payoff maximizing package.
2 Besides Industry Canada, the UK's Ofcom is the only regulator that disclosed bids data for their CCA. However, the auctions in the UK have only national licenses
and there are too few bidders and objects to conduct a simulation study as in this paper.

3 The bid data used in this paper are available for replication studies.
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The exposure problem is a key strategic challenge in the SMRA. In our simulations we assume that bidders take different levels of
exposure. Either they only bid up to the additive values of a package and ignore the synergies or they exceed the additive value of the
licenses in a package and take some exposure risk. This is a treatment variable in the experiments. More details can be found in Section
3.5 and Appendix C.
2.2. Alternative versions of the combinatorial clock auction

There are various versions of combinatorial clock auctions that have been implemented in the field: the two-stage combinatorial clock
auction (CCA) that was used in e.g. the Canadian 700 MHz auction, the two-stage combinatorial clock auction with base and OR bids in the
second stage (CCAþ) as it was used in the Canadian 2.5 GHz spectrum auction, and the single-stage combinatorial clock auction (SCCA),
which was recently used in Romania and Denmark.

2.2.1. The two-stage combinatorial clock auction (CCA)
The two-stage combinatorial clock auction was introduced by Ausubel, Cramton, and Milgrom (2006). In contrast to SMRA, the

auction avoids the exposure problem by allowing for bundle bids. Maldoom (2007) describes a version as it has been used in spectrum
auctions across Europe. In a two-stage combinatorial clock auction, bids for bundles of licenses are made throughout a number of
sequential, open rounds (the primary bid rounds or clock phase) and then a final sealed-bid round (the supplementary bids round). In the
primary bid rounds the auctioneer announces prices and bidders state their demand at the current price levels. Prices of licences with
excess demand are increased by a bid increment until there is no excess demand anymore. Jump bidding is not possible. In the primary
bid rounds, bidders can only submit a bid on one bundle per round. This rule is different to the initial proposal by Ausubel et al. (2006). If
bidders bid straightforward on their payoff maximizing bundle in each round and all goods get sold after the clock phase, allocation and
prices would be in competitive equilibrium. It might well be that there is excess supply after the clock phase, however. The sealed-bid
supplementary bids phase and a Vickrey-closest core-selecting payment rule try to induce truthful bidding and avoid incentives for
demand reduction. This is because core payments in Day and Cramton (2012) are computed such that a losing bid of a winner does not
increase his payment for his winning bid. The winner determination after the supplementary bids round considers all bids, which have
been submitted in the primary bid rounds and the supplementary bids round and selects the revenue maximizing allocation. The bids by
a single bidder are mutually exclusive (i.e., the CCA uses an XOR bidding language).

Activity rules should provide incentives for bidders to reveal their preferences truthfully and bid straightforwardly already in the
primary bid rounds. Bidders should not be able to shade their bids and then provide large jump bids in the supplementary bids round. An
eligibility-points rule is used to determine activity and eligibility to bid in the primary bid rounds. Each license in a band requires
a certain number of eligibility points, and a bidder cannot increase his activity across rounds. In the supplementary bids round, revealed
preferences during the primary bid rounds are used to derive relative caps on the supplementary bids that impose consistency of
preferences between the primary and supplementary bids submitted. The consequence of these rules is that all bids are constrained
relative to the bid for the final primary package by a difference determined by the primary bids. This should set incentives for
straightforward bidding in the primary bid rounds.

2.2.2. The two-stage combinatorial clock auction with OR bids (CCAþ)
The two-stage combinatorial clock auction reaches full efficiency if bidders bid on their payoff maximizing package during the

primary phase and truthfully on all packages in the supplementary phase. The number of packages increases exponentially in the number
of items and in the Canadian auction this would not be possible for national bidders. To counter this “missing bids” problem (see Bichler,
Shabalin, and Wolf (2013a)), Industry Canada introduced the possibility to submit one or more mutually exclusive collections of OR
bids4 in the supplementary round, in addition to the mutually exclusive XOR bids. These OR bid collections4 are used in conjunction
with the bidder's final primary package and can be used to express additive valuations on top of the final primary package bid in
a concise manner.

2.2.3. The single-stage combinatorial clock auction (SCCA)
We also analyze the single-stage combinatorial clock auction as it has been described by Porter et al. (2003). This format was used in

Romania5 in 2012, and in the recent the Danish 1800 Mhz auction6 in 2016. Here, bidders can place a bid on one or multiple package
bids at the current ask prices in each round. The pricing rule is simple: As long as at least one item is over-demanded, the prices for these
over-demanded items increase by a bid increment. If at some point the supply equals demand, the auction terminates and assigns the
items to all bidders. In the case of excess supply, the auctioneer considers all bids, including those of the previous rounds, and solves
a winner determination problem. If the all winning bidders in the current round are in the winner determination problem's solution, the
auction terminates. Otherwise, a new round begins with increased prices on all items that were not allocated in the previous round. Note
that the Danish 1800 MHz auction had some additional rules about the prices one can specify for package bids in each round that were
not considered in our simulations. We argue that these differences do not influence the results of the research question in this paper
significantly.
4 http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf10730.html#aD-s10
5 http://www.ancom.org.ro/en/uploads/forms_files/terms_of_reference1331893175.pdf
6 https://ens.dk/sites/ens.dk/files/Tele/information_memorandum_june_2016.pdf
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3. Experimental design

Our experiments were conducted by using an auction framework which allows the run of all of the major spectrum auction formats,
i.e. the SMRA, the single-stage and two-stage CCA (SCCA, CCA), and the two-stage CCA with OR bids (CCAþ). The implementation
follows the very rules specified in the documents that we referenced in the previous sections. In addition, we used the exact band plan,
the licenses and caps of the Canadian 700MHz auction. Next, we introduce the value model and the strategies of the automated bidders,
before we summarize the experimental design.

3.1. Market environment

We will briefly summarize the environment of the Canadian 700 MHz auction in 2014. We used the very same band plan, the same
start prices, and the same spectrum caps as in this auction.7

3.1.1. Licenses
The band plan consists of five paired spectrum licenses (A, B, C, C1, and C2), and two unpaired licenses (D, E) in 14 service areas. B

and C as well as C1 and C2 were treated as generic licenses, i.e., substitutes. Although the licenses are all in the 700 MHz band, they are
technically not similar enough to sell all of them as generic licenses of one type.

3.1.2. Market participants
The auction was dominated by three national carriers Bell, Rogers, and Telus. Rogers was the strongest bidder and contributed

62.45% to the overall revenue, while Telus paid 21.69% and Bell 10.73%. Rogers did not bid on C1/C2 and aimed for licenses in A, and
B/C throughout the auction, while Bell and Telus also bid on C1/C2 in certain service areas. The smaller bidders mainly bid on
remaining C1/C2 licenses. Bell and Telus had to coordinate and find an allocation such that they both got sufficient coverage in the
lower 700 MHz band (A, B and C licenses), which explains much of the bid data. The bid data generated for our experiments was based
on the field data.

3.1.3. Caps
In order to facilitate the market entry for new entrants, Industry Canada set up spectrum caps. All eight bidders were restricted to at

most 2 paired frequency licenses in each service area. Large national wireless service providers such as Rogers, Bell, and Telus were
further limited in that they could only bid on one paired license in each service area among licenses B, C, C1 and C2. This cap on large
wireless service providers did not, however, include license A. Still, the national bidders could bid on 2 * 3 * 3¼ 18 packages per region
including the empty package, which leads to1814≈3:75*1017 packages across all regions. In contrast, in the Canadian 700 MHz auction,
Rogers submitted 12 supplementary bids, Bell 543 and Telus 547 bids.

3.1.4. Activity rules
All implemented iterative auction formats use an eligibility point or, in all CCA formats, a revealed preference/eligibility point

activity rule during the rounds. Bidders begin each round with a number of eligibility points and they can only bid on a set of licenses
that in sum requires a less or equal number of eligibility points. The rounds' activity requirement is 100%, i.e., a bidder loses all eli-
gibility points that he does not use in a round. Industry Canada allowed bidders to bid on packages even beyond the current eligibility
point limit, as long as this choice is consistent with the bidder's revealed preferences up to this point.

The two-stage CCA formats apply this rule also to all supplementary bids: All bids submitted in this stage have to be consistent with
the bidder's revealed preferences, taking into account his bid in the final clock round and all eligibility-reducing rounds starting from the
last round in which the bidder's eligibility was at least as high as the total points associated with the current bid.8

3.2. Estimates of base valuations

In order get reasonable problem instances, we constructed bidder-specific value models for all participants from the auction data.
The Canadian regulator published all bids from the 700 Mhz spectrum auction, which allowed us to estimate realistic valuations. We do
not aim to get precise value estimates with the goal to reproduce the outcomes of the Canadian 700 MHz auction. Rather we aim to
obtain realistic valuations from the observed package bids in the supplementary stage of the Canadian auction which have a reasonable
order of magnitude with respect to the starting and end prices in the auction. For this, we fitted a L1 linear regression to the supple-
mentary bids. As an abstract example, suppose there are three items, A, B, and C, and a bidder submits the following package bids:
b(AB)¼ 10, b(AC)¼ 10, b(BC)¼ 10, and b(ABC)¼ X. Then an L1 regression that explains these bids in terms of underlying license values
yields vA¼ vB¼ vC¼ 5 irrespective of X.9 The estimated valuations of course depend on the estimation technique, but our main simulation
results are robust and hold for very different samples.

Interestingly, we find that the linear model fits the data well (see Appendix A for details), which suggests that the regression results
7 The detailed auction rules of the 2014 Canadian 700 Mhz auction can be found at http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf01714.html.
8 Details of the activity rule can also be found at http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf01714.html.
9 An L2 regression would instead yield vA ¼ vB ¼ vC ¼ (X þ 20) ∕ 7.
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provide reasonable estimates of the bidders' license values. As in the abstract example, there were some non-negligible residuals for
larger packages but this is to be expected given the synergistic nature of bidders’ values. We purposefully do not try to estimate these
package synergies. First, this would be difficult given that only a small proportion from the exponential set of possible package bids were
submitted.10 More importantly, we are not interested in reproducing the outcomes of one particular auction, i.e. the Canadian 700 MHz,
but want to robustly compare the performance of the SMRA and CCA under various “out-of-sample” synergy conditions.

3.3. Synergy model

We will consider two synergy models: with “linear” synergies the marginal value of each license rises linearly with the total number
of licenses won. In contrast, with “extreme national synergies” the marginal value of a license is independent of the number of licenses
won unless all licenses in a national package are won. To illustrate, consider an abstract example with K items that all have one eligibility
point. Denote a bidder's individual license values by ϑk for k ¼ 1; …; K. When there are synergies, the individual license values go up
when they are part of a larger package. Suppose license k is part of a set of L licenses that the bidder wins then

ϑkðLÞ ¼ ϑk

�
1þ ðα� 1Þ L

K

�
(1)

where the synergy coefficient, α � 0, determines the scale of package valuations. We are mainly interested in the case where licenses are
complements (α > 1), but the value parametrization in (1) also applies to the substitutes case (α < 1). When α¼ 1, there are no synergies
(neither positive nor negative) and values are simply additive.

With the “linear synergy”model that license values rise linearly with the number of licenses won. In the “extreme national synergy”
model, non-additive valuations are limited to

ϑkðLÞ ¼
�
ϑkif 1 � L<K
αϑkif L ¼ K

With extreme national synergies the marginal value of each license is independent of the number of licenses won unless all licenses in
the national package are won, see also Goeree and Lien (2014). The fact that synergies are only applied for a selected few out of all
possible packages is an extreme case. In the field we have seen similar models where super-additive valuations were only determined for
a small number of packages as it is often difficult to determine the right polynomial. However, there is no public information about the
structure of such valuation models and the level of synergies that we are aware of. We will see that with such a synergy model, package
auctions d o achieve higher efficiency, but this is not the case with the linear synergy value model.

The experiments use the following parameters:α 2 f1; 2;2:5g and both synergymodels. A difference with the abstract example above
is that in the Canadian 700 MHz auction not all licenses had the same eligibility points, but it in the case of the linear model it is
straightforward to account for those.11 Another difference is that in the Canadian auction there were “national bidders”, i.e. Telus, Bell,
and Rogers, and “regional bidders”. In the experiments we assume that only the national carriers enjoy synergies. A final detail is that
national bidders could cover the country once or twice with a specific set of paired licenses: In the case of covering the country twice, the
synergy coefficient for the national package was α, whereas if a bidder covers the nation within a specific paired frequency block once,12

his synergy coefficient is α � 0.5.

3.4. Efficient allocation

Given the large number of licenses and bidders the computation of the optimal allocation is challenging. Obviously, we cannot
enumerate all valuations for all possible packages of all bidders. Instead, we solve a mixed integer program, which leverages the
structure of the valuation models described above without having to enumerate all possible packages. The model is described in Ap-
pendix B.13 A version of this model is also used to compute the payoff-maximizing package in each round for bidders.

3.5. Bidding strategies

There are no closed-form equilibrium bidding strategies for the SMRA or the CCA in complex environments such as the Canadian
700 MHz auction. But strategic manipulation would be difficult given the large number of licenses and packages bidders are interested
in, which is why we assume bidders naively optimize in each round of the auction. Such straightforward biddingmeans that a bidder bids
on the package with the highest net value taking into account current prices. Formally, a straightforward bidβSFj ðvj; pjÞ is defined as
10 Telus submitted the most supplementary bids: 547. But this is only 0.00000000000015% of all possible package bids.
11 Let ek denote the eligibility points associated with licensek ¼ 1; …; K. Suppose license k is part of a winning set S. Definee ¼PK

k¼1ek and eS ¼Pk2Sek then ϑkðLÞ ¼
ϑk
�
1þ ðα� 1Þ eSe

�
.

12 As an example, winning one licence in each region in the A frequency block would cause a higher surplus, whereas covering the nation once with a mix of A and BC
licences would not.
13 The optimization model is an effective way to determine payoff-maximizing packages in each round with both synergy models. Unfortunately, with non-linear, e.g.
quadratic, synergies the integer programming problem becomes intractable.
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Table 1
Treatment variables

Variables Values

Auction formats SMRA, SCCA(1), SCCA(2), CCA(0), CCA(200), CCAþ(200)
Synergy model No, National-2.0, National-2.5, Linear-2.0, Linear-2.5
Exposure No, þ 50%, þ 100%, Full
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βSFj
�
vj; pj

	 2 arg maxS⊆I
�
vjðSÞ � pjðSÞ

	
where S is the set of items bidder j wants to bid on from all possible items I, vj(S) is the bidder's valuation for the package S and pj(S) the
price he has to pay for it. In the case of an exposure limit λ, we limit the value vj(S) so that vλj ðSÞ ¼ minðvjðSÞ; λ

P
i2SvjðiÞÞ for all S where

pjðSÞ>
P

i2SvjðiÞ.14
3.6. Experimental design

The main treatment variables in our experiments are the auction format, the synergies in the two value models (αl or αn), and the
exposure risk that bidders are willing to take in SMRA. We also consider limits on the number of bids that bidders are willing to submit.

We compare SMRA against various versions of the combinatorial clock auction format, which include the single stage CCA where
bidders submit one or two bids per round, SCCA(1) and SCCA(2), the two stage CCA with zero15 or 200 additional bids, CCA(0),
CCA(200). We also analyze the CCA with an OR bid language in the supplementary stage, in addition to 200 supplementary bids,
CCAþ(200).

We draw 100 sets of random valuations based on the derived value models from a uniform distribution of ±5% around the item
valuations and subsequently use these valuations for all treatment combinations, which are described in Table 1. In total, we have 9 *
4 þ 6 ¼ 42 treatment combinations and 4200 simulation runs with approx. 1500 h of simulation run time.

We use efficiency E(X) as the primary aggregate measure.16 Let the optimal allocation be denoted X* then:

EðXÞ ¼

P
j2J

vjðXÞP
j2J

vjðX*Þ

We also measure the revenue distribution R(X), which compares the auctioneers revenue against the optimally achievable surplus.

RðXÞ ¼

P
j2J

pjðXÞP
j2J

vjðX*Þ

4. Results

In the following, we summarize the main results of the numerical experiments. The efficiency of the auction formats is quite high and
with a synergy value of less or equal to 2, efficiency is typically higher than 80% of the optimal surplus. This is surprising given that the
auctions are simple heuristics and the worst-case approximation ratio for the allocation problem are low, as we discussed in the
introduction.

Results 1. The two synergy models lead to significantly different results:

� With linear synergies, the efficiency level of the SMRA exceeds those of the various CCA versions. This is true even for a high value of the
synergy coefficient αl. Among the CCA versions, the two stage CCA is more efficient than the single stage SCCA.

� With the extreme national synergies, the single- and two-stage CCA yield comparable efficiency levels, which exceed those of the SMRA.
CCA þ has a significantly higher efficiency than all other formats. Efficiency in the SMRA and in the CCA formats decreases for higher levels
αn, but not for the CCAþ.

For the national synergy model, efficiency levels are ranked as follows: CCAþ≻*** SCCA≻** CCA≻*** CCA (clock)≻*** SMRA. For the
linear synergy model, the ranking is: SMRA≻*** CCAþ� CCA≻*** SCCA≻*** CCA (clock).

We provide box plots with the efficiency levels in the appendix in Figs. 1–10, which show the results for different levels of synergy.
14 As an example, assume a bidder with v(i1) ¼ 5,v(i2) ¼ 5,v(i3) ¼ 20 and v({i1,i2}) ¼ 100. Assume further a fixed number 5 < ρ < 10, p(i1) ¼ p(i2) ¼ p and p(i3) ¼ 2ρ,
and a winning cap of two items per bidder. With λ < 2,βSFj is {i3}, whereas with a λ > 2, the bidder strictly prefers the package {i1,i2}.
15 This means that bidders submit only supplementary bids on combinations they already bid for in the clock phase. The result of the clock phase of the two stage CCA
is also added for comparison.
16 A formulation of the mixed integer program can be found in Appendix B.
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Fig. 1. Efficiency in the additive value model.

Fig. 2. Efficiency in the National-2.0 value model.

Fig. 3. Efficiency in the National-2.5 value model.
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Fig. 1 shows box plots in a market with purely additive valuations where the efficiency of all auction formats is very high. SMRA
achieves full efficiency while the combinatorial clock auction formats have a slightly lower efficiency with a median above 97%. This
efficiency loss might be due to the missing bids problem, as bidders can only reveal a small subset of all their bundle preferences in
a combinatorial auction of this size. SMRANo refers to an implementation of SMRA with bidding agents who do not take any exposure
risk, while they bid up to their full package valuation in SMRAFull.

Fig. 2 shows the box plots for the extreme national synergy model with a synergy coefficient of αn ¼ 2.0 while Fig. 3 shows the box
plots for αn ¼ 2.5. With national synergies, the median efficiency of the SMRA with bidders who do not take exposure risk (SMRANo) is
0.77 or 0.69 respectively. If bidders would take full exposure, some of the efficiency would be recovered. The efficiency of the CCA
formats is high at around 0.96 and 0.85 for the CCAþ and CCA, respectively.

Figs. 4 and 5 show efficiency for the linear synergy model with synergy coefficients of αl ¼ 2.0 and αl ¼ 2.5. Interestingly, efficiency
of SMRA remains very high for both synergy levels. An explanation for this is the auction format and the caps in the Canadian auction.
The caps limited the size of the packages any national bidder could win. None of the bidders could win all a huge package with all
licenses. All national bidders were also able to win larger packages in SMRA, which all result in some level of complementarity in the
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Fig. 4. Efficiency in the Linear-2.0 value model.

Fig. 5. Efficiency in the Linear-2.5 value model.

Fig. 6. Revenue in the additive value model.

Fig. 7. Revenue in the National-2.0 value model.
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Fig. 8. Revenue in the National-2.5 value model.

Fig. 9. Revenue in the Linear-2.0 value model.

Fig. 10. Revenue in the Linear-2.5 value model.
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linear synergy model. The average efficiency of the combinatorial clock auctions is substantially lower.
The pattern in the box plots is reflected in the regression analysis. Table 2 summarizes the OLS estimates for the extreme national

synergy model and Table 3 does the same for the linear synergy model (the dependent variable in each case is efficiency). SMRA de-
scribes the baseline auction format in this regression and no exposure the baseline for the various exposure levels that the bidders take.
In Table 2 all combinatorial clock auction formats have a positive and significant influence on efficiency compared to SMRA. Differences
among the combinatorial clock auction formats are small. In contrast, in Table 2 all the regression coefficients are negative indicating
a negative impact of alternative auction formats on efficiency compared to SMRA. The CCA auction with the OR bid language (CCAþ)
was best among the combinatorial clock auction format as bidders revealed a significantly larger number of package valuations.

One of the specifics of the Canadian value model is the number of three national competitors. We ran also simulations with four
national bidders,17 but the main results regarding the comparison of auction formats remain.
17 A fourth national bidder was created by first averaging the estimated valuations of the three national bidders. We then drew 100 sets of random valuations based on
this model from a uniform distribution of±5%, identically to the procedure used for our main simulations.
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Table 2
Regression results for the extreme national synergy model (base: SMRANo, no exposure) with efficiency and revenue as dependent variables.

Coefficients E(X) p-value R(X) p-value

Intercept 0.8568 < 0.001 0.5965 < 0.001

Auction Format
CCA (clock) 0.1050 < 0.001 0.0989 < 0.001
CCA(0) 0.1176 < 0.001 0.1497 < 0.001
CCA(200) 0.1177 < 0.001 0.1499 < 0.001
CCAþ(200) 0.2253 < 0.001 0.1505 < 0.001
SCCA(1) 0.1256 < 0.001 0.1266 < 0.001
SCCA(2) 0.1310 < 0.001 0.1282 < 0.001

Synergy �0.0556 < 0.001 �0.0911 < 0.001

Exposure
þ50% 0.0344 < 0.001 0.0506 < 0.001
þ100% 0.0395 < 0.001 0.0933 < 0.001
Full 0.0390 < 0.001 0.0931 < 0.001

Adjusted R2 0.79 0.84

Table 3
Regression results for the linear synergy model (base: SMRANo, no exposure) for efficiency and revenue as dependent variables.

Coefficients E(X) p-value R(X) p-value

Intercept 1.0125 < 0.001 0.4941 < 0.001

Auction Format
CCA (clock) �0.1425 < 0.001 �0.0796 < 0.001
CCA(0) �0.0246 < 0.001 �0.0784 < 0.001
CCA(200) �0.0244 < 0.001 �0.0781 < 0.001
CCAþ(200) �0.0243 < 0.001 �0.0784 < 0.001
SCCA(1) �0.1185 < 0.001 �0.0037 -
SCCA(2) �0.1158 < 0.001 �0.0006 -

Synergy �0.0104 < 0.001 �0.0159 < 0.001

Exposure
þ50% 0.0062 < 0.1 0.0030 -
þ100% 0.0084 < 0.05 0.0272 < 0.001
Full 0.0106 < 0.01 0.0663 < 0.001

Adjusted R2 0.74 0.66

A. Goetzendorff et al. Telecommunications Policy 42 (2018) 91–105
Result 2. Allowing OR bids in the supplementary phase of the two-stage CCA significantly raises efficiency and revenue compared to the CCA
with XOR bid language (p-value:<0.001) in the extreme national synergy model, but not in the linear synergy model. Bidding up to 200 additional
supplementary bids does not significantly improve efficiency compared to a two-stage CCA without additional package bids.

Straightforward bidding is fully efficient in the two stage CCA if bidders are able to provide their preference for all packages. In larger
combinatorial auctions such as the Canadian auction, this is not possible with a fully combinatorial XOR bid language. Bidding only on
a small fraction of the 1017 possible packages in the supplementary phase does not improve the allocation significantly, even if bidders
bid on up to 200 of their most valuable packages. The addition of OR bids in the supplementary phase does improve the efficiency of the
auction outcome, but this can only be observed in the extreme national synergy model.

Result 3. With national synergies, revenue is lowest in the SMRA when bidders do not take any exposure. With linear synergies, revenue of the
two-stage CCA (and CCAþ) is lowest. The single-stage CCA achieves higher revenue than the two-stage CCA on average in the linear synergy
model.

Fig. 6 shows the revenue results of the additive model, where the two-stage CCA, both CCA(0) and CCA(200), is worst. Figs. 7 and 8
provide box plots for the extreme national synergymodel, while Figs. 9 and 10 shows those for the linear synergymodel. Since efficiency
is lowwith extreme national synergies, also revenue is low. The opposite is true for linear synergies. The revenue of the single-stage CCA,
SCCA(1) and SCCA(2), is always higher on average than that of the two-stage CCA, CCA(0) and CCA(200).

Table 2 summarizes the robust regression estimates for the extreme national synergy model and Table 3 shows those for the linear
synergy model (with revenue as the dependent variable). We see a similar pattern as for efficiency. With national synergies, revenue is
significantly higher in the CCA formats. But with linear synergies it is significantly higher in SMRA. A summary of the results for ef-
ficiency and revenue across all auction formats and value models can be found in Tables 5 and 6.

5. Conclusions

Much has been written about the design of efficient spectrum auctions in the past two decades (see e.g. Bichler and Goeree (2017) for
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an up-to-date overview). Traditionally, game-theoretic analyses and laboratory experiments have been used to analyze different auction
formats. These methods have their limitations. In particular, spectrum auctions in the field typically have many licenses, complex ac-
tivity rules, and spectrum caps. Such design elements are important, but typically ignored in theoretical and lab studies. Simulation
studies complement theory and experiments. They allow economists to study alternative auction formats under exactly the same rules as
used in the field. One contribution of the paper is the implementation of the SMRA and various versions of the CCA formats in a unified
simulation framework, as well as an instance generator that estimates bidder valuations based on drop out bids from the Canadian
700 MHz spectrum auction.

The economic environment in this simulation mirrors the Canadian market with all its institutional details, and it allows us to study
the efficiency of wide-spread spectrum auction formats with different levels of synergies in the valuations of bidders. We assume that
bidders maximize payoff in each round. This can serve as a reasonable approximation of bidder behavior in larger markets such as the
Canadian auction. In any case, it is important to understand the average approximation ratio of simple auction algorithms in realistic
environments when bidders bid straightforward.

The main results of the experiments go against wide-spread wisdom. Even high synergies do not always lead to higher efficiency in
the combinatorial clock auctions compared to SMRA, and the relative efficiency ranking depends on the type of synergies. We analyzed
two types of synergies motivated from observations in the field. In the “extreme national” synergy model synergies only occur when
a bidder wins all licenses in a national package (and not if the bidder wins, say, 99% of the licenses). The extreme national synergies
create the largest possible risk for a bidder who wants to aggregate licenses in the SMRA and, not surprisingly, the SMRA results in low
efficiencies in this model. More moderate synergies occur when the marginal value of a license rises linearly with the number of licenses
won. Surprisingly, under this assumption of “linear” synergies, the SMRA outperforms various versions of the CCA, in terms of efficiency
as well as revenue. Overall, it is interesting to observe that the average efficiency loss in both models is remarkably low considering the
simplicity of the algorithms and the worst-case approximation ratio of the allocation problem in combinatorial auctions.
Appendix A. The Bidders' Value Models

We estimate value models for the individual bidders from the bid data in an attempt to get realistic valuations. While we do not aim
to estimate the true valuations of bidders from the data, we want to get valuations which resemble those in the field. In an initial step, we
preprocessed the data and based our estimates on the supplementary bids. We also removed a few outliers, bids that were substantially
higher or lower than the other bids of a bidder, and which might have had strategic reasons.

Instead of a standard L2 linear regression, we used an L1 linear regression, which is constrained to have no intercept. L1 regressions
are more robust against outliers (Andersen, 2008). In this regression, the package bid is the dependent variable, the vector of licenses
included in a package bid describes exogenous variables. Such regressions were run for each bidder. The R2 of the resulting models for
the three national bidders Rogers, Bell, and Telus are 0.60, 0.89, and 0.96, respectively. We provide the value models in our data
companion. These estimated valuations provide the means of a distribution describing the value of each type of license. For each
valuation set used in a simulation, we draw different valuations for the individual licenses of different bidders. Synergies for packages
were then modeled on top as described in our experimental design.
Appendix B. The Efficient Allocation

In what follows, we provide a quick introduction into the mixed integer program (MIP) that is used to compute the efficient allo-
cation in all our experiments. A similar formulation (albeit only for a single bidder) can be used to compute a bidder's best response and
is used in the simulation framework to compute the bidders' payoff-maximizing package in their straightforward bidding strategy.

The allocation of licences can be modeled as a multi-knapsack problem, in which each licencei 2 I with capacity or quantity q(i) will
be assigned to a bidder j 2 J. Part of the objective function is the sum of the bidder's additive valuationsvAj ðiÞ for a licence i times whether
he actually won the licence xi,j ((3)) or not. Assigning at most q(i) licences for each licence type is checked at ((7)). Each licence also has
e(i) eligibility points associated with it and which will be tested against bidder's maximum allowed eps emax

j (10). Equations (8) and (9)
apply the capping rules defined by the Canadian regulator. Note that the national bidders JN⊂J are slightly more constrained across the
available regions R. Each bidder can potentially have one or multiple non-additive demand vectors rNj;k 2 ðf�1g∪N0ÞjIj, where �1,0
andN signals indifference, should not receive, and the minimum quantity, respectively. If a demand vector is fulfilled, equation (13)
through (16) make sure the associated non-additive valuation vNj ðkÞ is added to the objective (4). This part of the algorithm is used to
model the National Synergy Value Model. Similarly, a bidder can have an incremental bonus that reaches its maximum relative com-
plementaritybTj , when all of the bidders relevant bonus itemsIBj reach the required quantityrBj ðiÞ (equation (6)). In order to stay in linear
space, the relative factors were linearized, as seen in (6) and (17)–(19). Please refer to B.Table 4 for a summary of all involved pa-
rameters and variables.
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Table 4
Sealed Model Parameters and Variables
Parameters

I Items
J Bidders
JN national bidders
bj <∕b> < b> < ∕b> < b>T added complementarity (1.0 ¼ 100% ¼ additivity)
e<∕b> < b> < ∕b> < b>Tj total eps of the bidder's bonus package
e(i) eps of item
e<∕b> < b> < ∕b> < b>maxj maximum eps of the bidder
r <∕b> < b> < ∕b> < b>BjðiÞ quantity j requires for bonus of i
band(i) band of item
R available regions
v<∕b> < b> < ∕b> < b>AjðiÞ additive surplus
v<∕b> < b> < ∕b> < b>NjðkÞ nonadditive surplus
r <∕b> < b> < ∕b> < b>Nj;k;i required quantity of i in bidder j's package k
q(i) available quantity of i

Variables
xi;j 2 N quantity bidder j receives of item i
yj;k 2 B the bidder won package k
yj;k;i 2 B variable for non-additive packages, item-wise
bj;i1 ;i2 2 B bonus active for i1,i2
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max
X
j2J

�
zaddj þ znaj

�
(2)

s:t:
X
i2I

vAj ðiÞ⋅xi;j ¼ zaddj ∀j 2 J (3)

X
k2Kj

vNj ðkÞ⋅yj;kþ (4)

bT�1
j

epTj

X
i12IBj

X
i22IBj

rjði1Þ (5)

⋅eði1Þ⋅rjði2Þ⋅vAj ði2Þ⋅bj;i1 ;i2 � znaj ∀j 2 J (6)

X
j2J

xi;j � qðiÞ ∀i 2 I (7)

X
i2Ir :bandðiÞ!¼0DE0

xi;j � 2 ∀r 2 R; ∀j 2 J (8)

X
i2Ir :bandðiÞ2f’ BC ’ ; ’ C1C2 ’g

xi;j � 1 ∀r 2 R; ∀j 2 JN (9)

X
i2I

eðiÞ⋅xi;j � emax
j ∀j (10)

X
i

yj;k;i � jIj⋅�1� yj;k
	
∀j; ∀k (11)

1�
X
i

yj;k;i � jIj⋅yj;k ∀j; ∀k (12)

rNj;k;i � xi;j � qðiÞ⋅yj;k;i∀j 2 J; ∀k 2 Kj; ∀i 2 I : rNj;k;i >0 (13)
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1� rNj;k;i þ xi;j � qðiÞ⋅�1� yj;k;i
	
∀j 2 J; ∀k 2 Kj; ∀i 2 I : rNj;k;i >0 (14)

xi;j � qðiÞ⋅yj;k;i ∀j 2 J; ∀k 2 Kj; ∀i 2 I : rNj;k;i ¼ 0 (15)

1� xi;j � qðiÞ⋅�1� yj;k;i
	
∀j 2 J; ∀k 2 Kj; ∀i 2 I : rNj;k;i ¼ 0 (16)

rBj ðiÞ⋅bj;i;i � xi;j ∀j 2 J; ∀i 2 I (17)

bj;i1 ;i2 � bj;i1 ;i1 ∀j 2 J; ∀i1 2 IBj ; ∀i2 2 IBj : i1≠i2 (18)

bj;i1 ;i2 � bj;i2 ;i2 ∀j 2 J; ∀i1 2 IBj ; ∀i2 2 IBj : i1≠i2 (19)

xi;j 2 N0∀j 2 J; ∀i 2 I
yj;k 2 N0∀j 2 J; ∀k 2 K
yj;k;i 2 N0∀j 2 J; ∀k 2 K; ∀i 2 I

Appendix C. Modeling the Exposure Risk

A limit to how much a bidder should expose himself can be directly included in the bidders individual bidding selection mixed
integer problem. We do this by first deciding on an exposure factor exposurej he should not surpass, i.e.:

exposurej �
zaddj þ znaj

zaddj

We take the individual parts of the bidders target function zj of the bidder, i.e., its additive part,zaddj and the non-additive part znaj ,
which we want to limit. After reformulating the formula above we get the following inequality

znaj � �exposurej � 1
	 X

i2I
vAj ðiÞ⋅xi;j

!

which can then be integrated into the selection MIP to further limit the value of znaj .

Appendix D. Results Tables

What follows are the mean and standard deviation for all aggregate metrics.
Table 5
Efficiency - mean, (std. Deviation)

Additive National-2.0 National-2.5 Linear-2.0 Linear-2.5
104
SMRANo
 0.9994 (0.0003)
 0.7735 (0.0060)
 0.6902 (0.0484)
 0.9952 (0.0037)
 0.9830 (0.0251)

SMRAþ50%
 0.9994 (0.0003)
 0.8130 (0.0040)
 0.7194 (0.0319)
 0.9954 (0.0033)
 0.9952 (0.0035)

SMRAþ100%
 0.9994 (0.0003)
 0.8130 (0.0040)
 0.7296 (0.0210)
 0.9998 (0.0004)
 0.9952 (0.0035)

SMRAFull
 0.9994 (0.0003)
 0.8130 (0.0040)
 0.7286 (0.0214)
 0.9998 (0.0005)
 0.9997 (0.0007)

SCCA(1)
 0.9737 (0.0258)
 0.8502 (0.0076)
 0.8647 (0.0030)
 0.8733 (0.0629)
 0.8679 (0.0530)

SCCA(2)
 0.9754 (0.0260)
 0.8554 (0.0098)
 0.8702 (0.0031)
 0.8763 (0.0641)
 0.8703 (0.0509)

CCA (clock)
 0.9674 (0.0281)
 0.8296 (0.0284)
 0.8441 (0.0343)
 0.8596 (0.0622)
 0.8338 (0.0576)

CCA(0)
 0.9742 (0.0192)
 0.8445 (0.0225)
 0.8544 (0.0272)
 0.9642 (0.0132)
 0.9648 (0.0148)

CCA(200)
 0.9742 (0.0192)
 0.8446 (0.0226)
 0.8544 (0.0272)
 0.9644 (0.0132)
 0.9649 (0.0148)

CCAþ(200)
 0.9790 (0.0215)
 0.9554 (0.0195)
 0.9590 (0.0268)
 0.9641 (0.0067)
 0.9654 (0.0042)
Table 6
Revenue - mean, (std. Deviation)

Additive National-2.0 National-2.5 Linear-2.0 Linear-2.5
VCG
 0.3820 (0.0038)
 0.6182 (0.0078)
 0.5634 (0.0071)
 0.4879 (0.0043)
 0.4946 (0.0043)

SMRANo
 0.4048 (0.0049)
 0.4272 (0.0052)
 0.3559 (0.0040)
 0.4821 (0.0090)
 0.4347 (0.0094)

SMRAþ50%
 0.4048 (0.0049)
 0.4822 (0.0052)
 0.4019 (0.0119)
 0.4840 (0.0057)
 0.4390 (0.0056)

SMRAþ100%
 0.4048 (0.0049)
 0.4822 (0.0051)
 0.4874 (0.0183)
 0.5235 (0.0066)
 0.4482 (0.0073)

SMRAFull
 0.4048 (0.0049)
 0.4823 (0.0053)
 0.4869 (0.0165)
 0.5235 (0.0071)
 0.5258 (0.0075)

SCCA(1)
 0.3974 (0.0263)
 0.5408 (0.0315)
 0.4954 (0.0101)
 0.4379 (0.0492)
 0.4713 (0.0348)

SCCA(2)
 0.3998 (0.0266)
 0.5374 (0.0109)
 0.5019 (0.0104)
 0.4438 (0.0497)
 0.4717 (0.0380)
(continued on next page)
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Table 6 (continued )
Additive
 National-2.0
105
National-2.5
 Linear-2.0
 Linear-2.5
CCA (clock)
 0.3912 (0.0257)
 0.5060 (0.0274)
 0.4748 (0.0342)
 0.3915 (0.0631)
 0.3662 (0.0590)

CCA(0)
 0.3098 (0.0256)
 0.5769 (0.0211)
 0.5055 (0.0084)
 0.3665 (0.0269)
 0.3932 (0.0229)

CCA(200)
 0.3098 (0.0256)
 0.5772 (0.0212)
 0.5056 (0.0084)
 0.3741 (0.0266)
 0.3863 (0.0218)

CCAþ(200)
 0.3097 (0.0271)
 0.5713 (0.0136)
 0.5127 (0.0174)
 0.3739 (0.0278)
 0.3860 (0.0217)
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