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The allocation of students to courses is a wide-spread and repeated task in higher 

education, often accomplished by a simple first-come first-served (FCFS) procedure. 

FCFS is neither stable nor strategy-proof, however. The Nobel Prize in Economic Sci-

ences was awarded to Al Roth and Lloyd Shapley for their work on the theory of stable 

allocations. This theory was influential in many areas, but found surprisingly little ap-

plication in course allocation as of yet. In this paper, we survey different approaches 

for course allocation with a focus on appropriate stable matching mechanisms. We 

will discuss two such mechanisms in more detail, the Gale-Shapley student optimal 

stable mechanism (SOSM) and the efficiency adjusted deferred acceptance mecha-

nism (EADAM). EADAM can be seen as a fundamental recent contribution which re-

covers efficiency losses from SOSM at the expense of strategy-proofness. In addition 

to these two important mechanisms, we provide a survey of recent extensions with 

respect to the assignment of schedules of courses rather than individual courses. We 

complement the survey of the theoretical literature with results of a field experiment, 

which help understand the benefits of stable matching mechanisms in course alloca-

tion applications.  
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1 Introduction 

The Nobel Memorial Price in Economic Science in 2012 was awarded to Alvin E. Roth and 

Lloyd S. Shapley for “the theory of stable allocations and the practice of market design” as 

the Royal Swedish Academy of Sciences put it. Market design is an academic field at the 

intersection of computer science, economics, and the management sciences concerned with 

the design of market institutions (Roth 2002, pp. 1341-1378; Milgrom 2011, pp. 311-320), 

with many recent contributions from the Information Systems community (for example Wein-

hardt et al. (2003, pp. 635-640), Bapna et al. (2004, pp. 21-43), Bichler et al. (2009, pp. 111-

117) and Bichler et al. (2011, pp. 688-699)). 

 

Roth and Shapley were recognized for their work on stable matching between two sets of 

elements given preferences of each element over the other set. Those sets could be stu-

dents and courses for example, and in contrast to auction markets no monetary transfers are 

allowed. A matching is stable, if there does not exist any alternative pairing in which both 

students and course organizers are better off.  The problem of computing a stable matching 

is different from that of computing a maximum weight bipartite matching in the assignment 

problem, which is regularly taught in computer and management science. Gale and Shapley 

(1962, pp. 9-15) presented one of the most commonly used two-sided matching models, the 

marriage model, which matches a single man to a single woman (one-to-one). They sug-

gested the Gale-Shapley deferred acceptance algorithm to find a stable matching.  

 

Gale and Shapley (1962, pp. 9-15) show that, when preferences are strict, the deferred ac-

ceptance algorithm yields the unique stable matching in O(n²) time that is Pareto superior to 

any other stable matching from the viewpoint of the students. Therefore, the outcome of the 

student proposing deferred acceptance algorithm is also called the student optimal stable 

matching and the mechanism that associates the student optimal stable matching to any 

one-to-many matching problem as it can be found in school choice or college admission is 

known as the student optimal stable mechanism (SOSM). The underlying concept is the 

same as in the one-to-one Gale-Shapley deferred acceptance algorithm. Besides the fact 

that it gives the most efficient stable matching, another appealing feature of the SOSM is that 

it is strategy-proof (Roth 1982, pp. 617-628). Strategy-proofness means that no student has 

an incentive to misreport his true preferences and students have dominant strategies, clearly 

a very desirable property. 

 

Although SOSM is strategy-proof and stable, the matching is not necessarily Pareto efficient, 

which is another important design desideratum. Only recently, Kesten (2010, pp. 1297-1348) 
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proposed the adjusted deferred acceptance mechanism (EADAM) that allows for stability and 

Pareto efficiency at the expense of strategy-proofness. However, truth telling of students is a 

Bayesian Nash equilibrium in this mechanism. Even if there are no dominant strategies, pos-

sibilities to strategically misrepresent preferences are minimal in most applications. EADAM 

can be seen as a significant contribution to the literature. Apart from EADAM there have 

been a number of recent contributions with respect to the assignment of bundles of courses 

to a single student, and the theory of matching has drawn quite a bit of recent academic at-

tention with many open problems which can be considered fundamental for Economics and 

the Management Sciences in general.  

 

In this paper, we will focus on the one-to-many matching problem in the context of course 

allocation, as it is a wide-spread problem in higher education and beyond. We will discuss 

prime candidates for the solution of this problem and complement this survey with results 

from a field study, in which we compare two stable matching mechanisms to a first-come-

first-served (FCFS) mechanism, a standard mechanism in many institutions. Given the wide-

spread application of FCFS, it is interesting to understand the impact of stable matching 

mechanisms over FCFS in terms of stability and efficiency. Our field studies are the first to 

analyze EADAM in a real-world application to our knowledge, and we are not aware of empir-

ical work comparing stable matching mechanisms such as SOSM or EADAM to FCFS. Apart 

from strategic properties of mechanisms such as strategy-proofness and stability, these field 

experiments shed light on secondary desiderata such as the average rank of students or the 

rank distribution that result from stable matching mechanisms and the incumbent FCFS. 

Note that we do not consider time tabling problems or capacity management with respect to 

rooms available in a school, because such decisions are typically made before students reg-

ister for one or another course. 

 

In Section 2 we will introduce stable matching and discuss various applications to provide an 

introduction to the field. In Section 3, we formally introduce the course allocation problem and 

provide relevant design desiderata as well as a succinct description of SOSM, EADAM, and 

FCFS. Section 4 introduces data and the results of two field experiments. This provides an 

understanding of how such mechanisms can be evaluated in practice and how the outcomes 

of FCFS differ from those of stable matching mechanisms. In Section 6 we discuss recent 

literature on the allocation of course schedules, before we conclude the paper in Section 7. 
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2 Stable matching and its applications 

We will first give an overview of typical problems and successful applications before we focus 

on course allocation in more detail. In particular, the school choice problem has drawn a lot 

of attention and it shares many similarities with course allocation. In order to give parents the 

opportunity to choose the public school their child will attend, many U.S. states provide 

school choice systems. Each prospective student submits a list of preferences of schools to 

the central placement authority of the school district. On the other hand each school has a 

priority ordering of all students and a maximum capacity. This information is used to deter-

mine which student will be assigned to which school. Abdulkadiroğlu and Sönmez (2003, pp. 

729-747) showed that matching mechanisms that have been in use in the US did not perform 

well in terms of efficiency, incentives, and stability. As a consequence, the Boston Public 

Schools replaced a priority mechanism (the Boston mechanism) with a deferred acceptance 

mechanism in 2005. Abdulkadiroglu, Pathak et al. (2006) present further arguments against 

the Boston mechanism. This mechanism does not exhibit a dominant strategy equilibrium 

and it is not stable. Some experimental work has focused on school choice comparing these 

two approaches. For example, in Chen and Sönmez (2006, pp. 202-231) experimental sub-

jects play a one-shot game of incomplete information in which each participant is only in-

formed about his own preferences, schools’ capacities, and the matching mechanism. They 

find that from the perspective of students, the SOSM outperforms both the Boston mecha-

nism and other alternatives. Featherstone and Niederle (2008) confirm this, but also discuss 

settings with only private information of subjects, where the Boston mechanism has ad-

vantages.  

 

In Germany, the assignment of students to universities via the Zentralstelle für die Vergabe 

von Studienplätzen (ZVS) is a large-scale application of matching. One part of the capacity is 

reserved for excellent students and students with long waiting times via a Boston mecha-

nism. The remaining places are allocated on the basis of universities‘ preferences via a uni-

versity-proposing Gale-Shapley deferred acceptance mechanism. The two parts are adminis-

tered sequentially in the aforementioned order (Westkamp 2012, pp. 561-589). Braun, 

Dwenger et al. (2007) present evidence from the field that some applicants behave strategi-

cally and not truthfully in this combined mechanism. Another widely cited application of one-

to-many stable matching is the assignment of graduating medical students to their first hospi-

tal appointments by the National Resident Match Program in the US (Roth 1984, pp. 991-

1016). A number of other applications can be found online (http://www.matching-in-

practice.eu/).  
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The Gale-Shapley deferred acceptance mechanism has dominated the stable matching liter-

ature for many years and most comparisons are with the Boston mechanism, probably driven 

by the school choice problem. The outcomes of both mechanisms are not necessarily Pareto 

efficient, however. Unfortunately, Kesten (2010, pp. 1297-1348) shows that there cannot 

exist a mechanism always returns a Pareto optimal and stable matching.  

 

There are Pareto efficient and strategy-proof (but not stable) mechanisms for school choice 

proposed by Abdulkadiroğlu and Sönmez (2003, pp. 729-747), which are based on the top 

trading cycle algorithm (Shapley and Scarf 1974, pp. 23-37). This mechanism enables a stu-

dent to obtain a higher priority at a desirable school by trading his priority for a less desirable 

school with another student. In the context of school choice problems, the idea of trading 

priorities has been perceived as a problem. Alternatively, a simple random serial dictatorship 

can be used, where students are randomly ordered and then assigned to their first prefer-

ence among the remaining schools. Also this mechanism is efficient and strategy-proof, but 

not stable. Similar to the top trading cycle, it has not been used for school choice or college 

admission as far as we know. Roth (2002, pp. 1341-1378) argues based on empirical obser-

vations that stability is a key feature of successful matching mechanisms in practice.  

 

Gale and Shapley (1962, pp. 9-15) showed that the deferred acceptance algorithm leads to 

stable matchings if preferences are strict and complete. In practice, preference lists might be 

incomplete and the schools that are not on the preference list of a student might just not be 

acceptable to a student. Such problems can be accommodated by a version of SOSM 

(Manlove et al. 2002, pp. 261-279).  It might also be that there are ties in the preferences or 

that unlisted schools have the lowest preference for students and they are tied but accepta-

ble. A common practice in case of ties is to randomly break the ties. Erdil and Ergin (2008, 

pp. 669-689) show that there can be efficiency losses by SOSM when ties in priorities are 

broken in some random way. They introduce one mechanism that restores such artificial wel-

fare losses. EADAM is an alternative way to recover welfare losses originating from random 

tie-breaking, which is another appealing feature of the mechanism and a reason, why we 

discuss it in this paper.  

 

Note that there are also related versions of the stable matching problem that are computa-

tionally hard. For example, if there are ties, the preferences are incomplete, and the schools 

which are not listed are unacceptable, then finding a maximum cardinality stable matching is 

an NP-complete problem (Manlove et al. 2002, pp. 261-279). Related work has looked into 

approximation algorithms for hard stable matching problems (Halldórsson et al. 2003, pp. 

431-447). We will not discuss questions of computational complexity further in this paper. In 
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our field studies below we assume the preferences of students to be strict and courses not 

ranked by the students are considered unacceptable. We also refer the interested reader to 

Manlove (2013) for a comprehensive study of algorithmic aspects of matching problems. 

 

Although the course allocation problem is similar to school choice it has not received as 

much attention in the literature, and different mechanisms are being used in practice. We are 

not aware of applications of the Boston mechanism, random serial dictatorship, or the top-

trading cycle for course allocation, for example. Typically, monetary transfers are not allowed 

for course assignment in higher education so that auctions are not an option. However, some 

business schools in the USA use course bidding, where students are given a bid endowment 

in a virtual currency to allocate across the courses they consider taking. This virtual currency 

does not have outside value and there are various possibilities for manipulation (see Sönmez 

and Ünver (2010, pp. 99-123) and Krishna and Ünver (2008, pp. 262-282)). Krishna and 

Unver (2005) report on a field experiment with 535 students comparing course bidding with 

the Gale-Shapley stable matching mechanism and find that the latter could vastly improve 

efficiency. 

 

3 Course allocation problem 

Similar to school choice one can argue that stability is a desirable feature of course allocation 

mechanisms (Roth 2002, pp. 1341-1378). We want to discuss the relative merits of stable 

matching mechanisms for course allocation in this paper and compare them to FCFS. For 

this we will define the course allocation problem more formally in the next section and dis-

cuss prime candidates for stable course allocation mechanisms, as well as the FCFS proce-

dure.  

 

3.1 Matchings, matching mechanisms, and their properties 

A course allocation problem consists of a finite set of students                 and a finite 

set of courses                with the maximum capacities   (   
    

      
). To en-

sure that a feasible matching exists we assume      for all     and   ∑      . Each 

student has a preference relation    over the courses C (called student preferences), each 

course (organizer) a preference relation    over the students S (called course organizer 

preferences). These are essentially priority orderings of the course organizer over the stu-

dents, which means that the course organizers will not be considered as strategic. We will 

assume strict preferences although SOSM and EADA extend easily for the case of indiffer-

ences.  
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The vectors for these relations are denoted    (  )    and    (  )   . Let   denote the 

set of all possible preference relations over   and  | | the set of all preference vectors for all 

students. 

Definition 1 (Matching). A matching is a mapping   of students   to courses   that 

satisfies: 

(i)    ( )    for all     

(ii)     ( )    for all    , and  

(iii) for any     and    , we have  ( )    if and only if      ( ) 

A matching is feasible if |   ( )|     for all    , which means that no course is over-

crowded. The following simple example adapted from Kesten (2010, pp. 1297-1348) should 

illustrate these definitions.  

Example 1. Consider the course allocation problem with four students                   and 

four courses                  , each course having one seat. The course organizer prefer-

ences (  ) and the student preferences (  ) are given below:  

Tab. 1 Course organizer preferences (  ) and student preferences (  ) for Example 1. Underlined 

preferences describe a matching. 

                                 

                         

                        

                  

One desirable property of matchings is Pareto efficiency such that no student can be made 

better off without making any other student worse off. 

Definition 2 (Pareto efficiency of matchings). A matching   is Pareto efficient with respect 

to the students if there is no other feasible matching    such that   ( )    ( ) for all students 

    and   ( )    ( ) for some    . 

Stability means, that there should be no unmatched pair of a student and a course (   ) 

where student   prefers course   to her current assignment and she has higher priority than 

some other student who is assigned to course  . Stability can be seen as capturing no justi-

fied envy. 
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Definition 3 (Stability). A matching   is stable if  (  )    ( ) implies     (  )   for all 

       . 

Next we will discuss mechanisms to compute matchings and their properties. A mechanism 

returns a matching for given preferences of students and courses. More formally, let   de-

note the set of all feasible matchings. A matching mechanism   can be described as a func-

tion     | |    that returns a feasible matching of students to courses for every prefer-

ence profile of the students. For a submitted preference profile     | | of the students, 

 (  ) is the associated matching. For a student   the assigned course is   (  )   . For a 

course   the set of the assigned students is   (  )   . 

A mechanism is Pareto efficient if it always selects a Pareto-efficient matching. Also, a 

mechanism is stable if it always selects a stable matching. Another important property of a 

mechanism is strategy-proofness. This means, that there is no incentive for any student not 

to submit her truthful preferences, no matter what the other students submit. 

Definition 4 (Strategy-proofness). A mechanism   is strategy-proof if for any     | | with 

    and       we have    (  )     (  
        ).  

  (  
        ) describes the preference profile, where the preferences of student s,   

 , differ 

from his true preferences   . Unfortunately, there exists no strategy-proof matching mecha-

nisms that is both efficient and stable (Kesten 2010, pp. 1297-1348).   

For an illustration of the above definitions, we will introduce the random serial dictatorship 

mechanism, which is arguably one of the simplest matching mechanisms.  

Algorithm 1. 

Draw uniformly at random a permutation   of          .  of the 

students in   . For   from   to   | | assign student   ( ) to her 

top choice among the remaining slots.  

Consider the permutation 

  (
 
 
   
 
 
   
 
 
   
 
 
) 

which could be the result of a lottery. This would lead to the following ordering of the students 

(           ). Then the mechanism would work as described in Table 2. 
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Tab. 2 Example of the serial dictatorship mechanism 

 

Step 

Student to 

be assigned             

1          

2           

3            

4                

The matching 

   (
  
  

   
  
  

   
  
  

   
  
  

) 

would be the result. This result is underlined in Table 1.  

The random serial dictatorship mechanism is Pareto efficient and strategy-proof, which is 

straightforward to see. Unfortunately, the mechanism is not stable, as the following shows. 

Student    and course    are unmatched, where student    prefers course    to her current 

assignment (  ) and she has higher priority to    than student    who is assigned to course 

  . By setting      and       we get 

    (  )   (  )     ( )   (  )     and             , 

contradicting the definition of stability. Another disadvantage of random serial dictatorship is 

that course-specific priorities are not possible because there is only one single ordering of 

the students for all courses.  

In the following subsections, we describe stable matching mechanisms to solve the course 

allocation problem. SOSM is well known, while the EADAM is a more recent approach, which 

gives up on strategy-proofness for a weaker game-theoretical solution concept, that of a 

Bayes-Nash equilibrium, to gain efficiency. Then we will briefly introduce FCFS as it used in 

many universities. 



10 

3.2 Gale-Shapley student-optimal stable mechanism (SOSM) 

The Gale-Shapley student-optimal stable mechanism (SOSM) is a modified version of the 

Gale-Shapley deferred acceptance algorithm from (Gale and Shapley 1962, pp. 9-15), which 

allows for one-to-many assignments. This algorithm works as follows:  

 

Algorithm 2. 

Step 1: Each student proposes to her first choice course. For 

each course   with a capacity   , those    proposers who have the 

highest priority for   are tentatively assigned to  , the remain-

ing proposers are rejected. 

In general, at 

Step  ,    : Each student who was rejected in the previous step 

(   ) proposes to her next choice course. For each course  , from 

the new proposers and those who were tentatively assigned at a 

previous step, the    with the highest priority are tentatively 

assigned to  , the rest is rejected. 

The algorithm terminates when no student is rejected any more.  

Example 2. Consider the problem given in Example 1: 

Tab. 3 Course organizer preferences (  ) and student preferences (  ) for Example 2 

                                 

                         

                        

                  

 

The steps of the algorithm applied to this problem are shown in the following table. The stu-

dents that are tentatively assigned to a course are shown in a box, the rejected students are 

not shown in a box. 
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Tab. 4 Example of the Gale-Shapley student-optimal stable mechanism 

Step             

1               

2             

3            

4            

5             

The resulting matching is 

   (
  
  

   
  
  

   
  
  

   
  
  

) 

and is underlined in Table 3. 

As the name suggests, SOSM is stable (see Gale and Shapley (1962, pp. 9-15) for the proof) 

and strategy-proof (Abdulkadiroğlu and Sönmez 2003, pp. 729-747)  (Proposition 2)). It is 

used in the public school systems of Boston and New York City, and both properties were 

used as an argument to switch to this mechanism.  

One can easily verify, however, that the matching    is not Pareto efficient. If the students   , 

   and    would be assigned to their first choice course and    would not be changed, then 

three students would be better off. This means, that SOSM may produce welfare losses on 

the students side and these losses can be significant. The top trading cycle algorithm is an 

alternative algorithm, which is strategy-proof and efficient, but not stable (Abdulkadiroğlu and 

Sönmez 2003), but in school choice applications stability has typically been preferred over 

efficiency.  

The Boston mechanism is another algorithm that has been used for school choice. It works 

as follows. Let us assume that there are m schools. For round k=1 to m it does the following. 

In each round k, those students who have not been allocated a seat yet are considered to be 

allocated a seat at their k-th most preferred school. The seats are allocated according to the 

priorities of the schools as long as capacity is not used up.  By the end of round m, each stu-

dent has been allocated a school seat. The Boston mechanism is manipulable and truthful 

revelation is not a dominant strategy (Abdulkadiroğlu and Sönmez 2003, pp.729-747). Multi-

ple sources discuss strategies that yield better outcomes than truth-telling such as not rank-

ing unachievable courses (Abdulkadiroğlu et al. 2006). Also the EADAM mechanism intro-
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duced in the next subsection does not provide strategy-proofness, but truth-telling is a 

Bayes-Nash equilibrium strategy.  

3.3 Efficiency adjusted deferred acceptance mechanism (EADAM) 

Kesten (2010, pp. 1297-1348) introduced a matching mechanism, which reduces  welfare 

losses on the student side as described above, but gives up on strategy-proofness. If we 

again look at Example 2, we can see that there is a rejection chain from step   to  , which is 

initiated by student    at course    who rejects    in step  . 

This rejection induces the rejections at the steps  ,    and  , where    is rejected from 

course   . Student    does not benefit from being tentatively assigned to course    from step 

  to step   and only hurts the other students (  ,    and   ). Hence, Kesten calls any student 

like    an interrupter and a pair like (     ) an interrupting pair. If student    would waive his 

priority for the critical course    the other students would be assigned to their first choice 

course.   

Definition 5 (Interrupter) (Kesten 2010). Given a problem to which the DA algorithm is ap-

plied, let   be a student who is tentatively placed to a course   at some Step   and rejected 

from it at some later Step   . If there is at least one other student who is rejected from course 

  after Step     and before Step   , i.e., rejected at a step                 , then we 

call student   an interrupter for course  , and the pair (   ) an interrupting pair of Step   .  

The following algorithm describes the above mechanism.  

Algorithm 3 (Kesten 2010). 

Step  : Run the DA algorithm.   

Step  : Find the last step (of the DA algorithm run in Step  ) 

at which a consenting interrupter is rejected from the course 

for which he is an interrupter. Identify all interrupting pairs 

of that step each of which contains a consenting interrupter. 

If there are no interrupting pairs, then stop. For each identi-

fied interrupting pair (   ), remove course   from the prefer-

ences of student   without changing the relative order of the 

remaining courses. Re-run the DA algorithm with the new prefer-

ence profile. 
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In general, 

Step  ,    : Find the last step (of the DA algorithm run in 

Step    ) at which a consenting interrupter is rejected from 

the course for which he is an interrupter. Identify all inter-

rupting pairs of that step each of which contains a consenting 

interrupter. If there are no interrupting pairs, then stop. For 

each identified interrupting pair (   ) remove course   from the 

preferences of student   without changing the relative order of 

the remaining courses. Re-run the DA algorithm with the new 

preference profile. 

Example 3. Again, we look at the problem given in Example 1, assuming for simplicity that all 

students consent.   

Step 0: See Example 2. 

Step 1: Since student    is rejected from course    at Step   and since student    has been 

rejected from course    while student    was tentatively assigned to course   , we identify 

(      ) as the last and the only interrupting pair. Suppose student    consents. Then we 

remove course    from student   ’s preferences 

Tab. 5 Course organizer preferences (  ) and updated student preferences (  ) for Example 3 

                                 

                         

                        

                  

 

and re-run the DA algorithm with the new preference profile shown in Table 5. 

Tab. 6 Example of the efficiency adjusted deferred acceptance mechanism 

Step             

1             

The resulting matching is  
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   (
  
  

   
  
  

   
  
  

   
  
  

). 

The outcomes of SOSM (underlined) and EADAM (in boxes) are shown in Table 5 and 6 

resp. Kesten (2010, pp. 1297-1348) also describes a straightforward extension for the match-

ing with indifferences. While EADAM is not strategy-proof, speculation is difficult and truth-

telling is a Bayesian Nash equilibrium. 

 

3.4 First-come-first-served course allocation system (FCFS) 

Other than the two prominent stable matching mechanisms, we introduce a simple first-

come-first-served course allocation system used at many universities. During the application 

period students can assign to exactly one course wherever free seats are available based on 

their time of arrival after the registration time starts. Changing the course assignment later is 

only possible after the existing course assignment is canceled by a student. Sometimes stu-

dents just cannot be the first to register due to circumstances beyond their control and the 

outcome might be unstable and inefficient. Also, the registration process for groups of cours-

es is often ordered sequentially, such that students have to decide in one period whether 

they register for a particular set of courses or wait for a later period with a course of higher 

priority. Now, students need to speculate on their probability of getting a seat in a more popu-

lar course with a later registration time, or they rather register for a less preferred course ear-

ly. 

4 Field experiments 

Apart from the theoretical properties of the matching mechanisms described above it is inter-

esting to understand, which differences in the outcome can be expected in the field. In what 

follows, we will discuss the data elicitation for field experiments and introduce the metrics, 

which allow for the comparison of outcomes. 

4.1 Data collection 

We collected preferences from students for two courses in the summer term 2012 and the 

winter term 2012/13. 

 

The first field experiment was on a lecture with 136 students, who had to be assigned to 8 

courses with a capacity of 17 seats. The students provided their preferences in the FCFS 

system and their ordinal preferences in a second system at about the same time. The com-

parison was only done with respect to the 136 students who provided their preferences in 

both systems. The students were told about SOSM and the fact that the mechanism is strat-
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egy-proof, and we would decide randomly on the outcome of one of the systems to finally 

determine the assignment.  

 

We used the same data to compute efficient matchings in EADAM. While EADAM is not 

strategy-proof for students, truth-telling is an ordinal Bayesian Nash equilibrium and we sus-

pect   that students would not be able to game the mechanism strategically in such an  envi-

ronment. So, when we compute the EADAM outcomes, we assume that the students would 

also provide their preferences truthfully and consent to waive a certain priority since a con-

senting student causes himself no harm in EADAM. 

 

 

Figure 1 Histogram of number of preferences of the students in the first field experiment 

Figure 1 shows the histogram of the number of preferences the students submitted. For in-

stance 26 students submitted 3 preferences for the courses. We can also see that 63 stu-

dents submitted preferences over all 8 courses. 

 

The second field experiment in the summer term 2012 was on a large class with 794 stu-

dents overall, and the students provided their preferences for 45 lab courses taking place at 

different times of the week. After the students registered in the first weeks of the semester in 

the FCFS system, we asked them to provide their preferences in an ordinal ranking within 

the subsequent 3 weeks. The sizes of the courses range from 14 to 22 students restricted by 

the room size. The 45 courses would have a capacity of 858 course seats. 

 

The lecture was very large and for organizational reasons, we could not elicit all preferences 

as in the first field experiment. Overall, 418 of the 794 students provided their ordinal prefer-

ences, and only those students who provided their preferences and who were matched in the 

FCFS system were considered in a comparison. As a consequence, the group size of the 
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courses was reduced proportionally by 
   

   
      

 

 
 to allow for a comparison of the two 

approaches. 

 

As indicated in the last section, in the FCFS system the students can often only register for 

groups of courses one after the other. This is done with large classes to avoid overload of the 

system. The registration process in this study began at 4 different points in time. The courses 

were classified by the weekday they were held. The time difference between these 4 points  

was 2 hours each. This can lead to speculation where students register for a group at an 

earlier time to prevent not getting a seat in any group. 

 

 

Figure 2 Histogram of number of preferences of the students in the second field experiment 

The histogram of the number of preferences the students submitted in the second field ex-

periment is shown in Figure 2. 10 students submitted preferences over all 45 courses. The 

45 courses for this large class were distributed over 18 time slots with up to 5 courses. Alt-

hough, we could not elicit all student preferences for this experiment for organizational rea-

sons, we believe that the data provides another valuable observation and an estimate on 

how well stable matching performs as compared to an FCFS approach for large course allo-

cation problems.  

 

4.2 Generation of course organizers preferences 

In both real applications course organizers did not use preferences on the assignment of 

students to different courses. We also wanted to get an understanding of the differences be-

tween SOSM and EADAM in case course organizers have preferences. In our department 



17 

such preferences typically concern the type of study, the grades of a student, and taken pre-

courses.  In order to compare the matching mechanisms with preferences of course organiz-

ers we generated preferences of course organizers with indifferences across groups of stu-

dents in four different ways, which are natural in our application domain. 

 

First, we know the type of study (Computer Science (CS), Information Systems (IS), Mathe-

matics, and Business) of all students participating in the experiments. In order to introduce 

realistic correlation among the student and the course organizer preferences we first looked 

at the top five student preferences for the different types of study. Depending on that we 

generated the type of study preferences for the courses. For example the course organizer of 

a course that is very popular among IS students would prefer IS students with a higher likeli-

hood. 

 

A second possibility for generating course organizers preferences are pre-courses being 

desired prerequisites for certain courses. We assumed five pre-courses that we determined 

for all of the courses according to the actual prerequisites. Based on real distributions on the 

taken pre-courses for the different types of study at our department we assigned the pre-

courses to the students depending on their type of study. For instance a CS student has a 

higher probability to have taken a CS pre-course than a Business student. On the course 

organizers’ side we randomly assigned the pre-courses according to the distribution of types 

of study in a course. As we had more CS students than Math students, more CS pre-course 

attendees were assigned to the courses. A course organizer prefers those students who 

have taken pre-courses for his course. 

 

Third, we generated course organizers’ preferences by looking at the grades of students. As 

we do not have the real grades of the students available due to privacy restrictions, we took 

the real distribution of average grades in our department and assigned grades to the stu-

dents according to this distribution. Course organizers prefer higher grades across all cours-

es, so their preferences are all the same for this preference. 

 

Finally, we generated combined preferences by first assigning pre-course preferences to a 

course. Ties were broken by type of study and then by grade. We will report on the mean of 

400 runs with different course organizer preferences, 100 for each method described above. 

This appears to be a likely type of preferences in our matching applications. 
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4.3 Metrics for matchings 

In order to compare matching mechanisms, we will now introduce three metrics that allow for 

a comparison of the empirical results.  

 

Average rank 

Using the information on the ranks the students (courses) achieved is a standard way of 

gauging the welfare of the students (courses). In particular, the average rank has been used 

as a metric to gauge the difference in welfare of matching algorithms in Budish and Cantillon 

(2012, pp. 2237-2271) and Abdulkadiroğlu et. al. (2009, pp. 1954-1978), two of the few ex-

perimental papers on matching mechanisms. The following two tables show a comparison of 

SOSM (Example 2) and EADAM (Example 3) for students (Table 7) and courses (Table 8). 

 

Tab. 7 Comparison of student average rank of SOSM and EADAM 

 SOSM  EADAM  

Stu-

dent 

Assigned 

course 

Rank of  

assigned course  

Assigned 

course 

Rank of  

assigned course  

s1 c4 2  c4 2  

s2 c2 2  c1 1  

s3 c3 2  c2 1  

s4 c1 2  c3 1  

Average rank 2   1.25  

 

 

The average rank for a single course with multiple seats is the average of the ranks of its 

assigned students. The average overall course rank is the mean of the average ranks per 

course. 

 

Tab. 8 Comparison of course average rank of SOSM and EADAM 

 SOSM  EADAM  

Course 

Assigned 

student 

Rank of  

assigned student  

Assigned 

student 

Rank of  

assigned student  

c1 s4 1  s2 3  

c2 s2 1  s3 2  

c3 s3 1  s4 2  
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c4 s1 1  s1 1  

Average rank 1   2  

 

Popularity 

As defined in Abraham et al. (2007, pp. 1030-1045), a matching    is more popular than an-

other matching   (     ), if the number of students (courses) that prefer    to   exceeds the 

number of students (courses) that prefer   to   . The preference of a course or student is the 

sign of the difference of the ranks. A comparison of the popularity of SOSM (Example 2) and 

EADAM (Example 3) for students is shown in Table 9. A similar popularity metric can be de-

rived for the course organizers. 

 

Tab. 9 Comparison of student popularity of SOSM and EADAM 

  SOSM  EADAM    

Student  

Rank of  

assigned course  

Rank of  

assigned course  

Rank 

difference Preference 

s1  2  2  0 SOSM  ~ EADAM 

s2  2  1  1 SOSM   EADAM 

s3  2  1  1 SOSM   EADAM 

s4  2  1  1 SOSM   EADAM 

      Popularity SOSM   EADAM 

 

 

Rank distribution 

The rank distribution compares how many students were assigned to their first choice, how 

many to their second choice, and so on. Similarly, for courses it compares how many stu-

dents were assigned to the first choice of a course. Table 10 shows a comparison of SOSM 

(Example 2) and EADAM (Example 3) for students   (left) and courses   (right) with the rank 

distribution metric. 

 

Tab. 10 Comparison of rank distribution of SOSM and EADAM for students and courses 

Students  Courses 

 SOSM  EADAM   SOSM  EADAM 

Rank #Students  #Students  Rank #Students  #Students 
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1 0  3  1 4  1 

2 4  1  2 0  2 

     3 0  1 

 

 

4.4 Results of the first field experiment 

With the preferences of the 136 students from the first field experiment and the data about 

the courses we ran SOSM and EADAM in order to compute a matching of the students and 

courses. We first provide a comparison, where course organizers do not have preferences, 

and a second comparison, where we generated preferences of course organizers over stu-

dents (see Section 3.2). Note that without preferences of group organizers there is no differ-

ence between SOSM and EADAM. Students will only be rejected when the group is full. This 

means that no student will be tentatively placed to a group when other students are rejected 

from that group and later on also be rejected from that group. If there are no interrupters, the 

preferences of the students will not be changed and EADAM will stop in step 1, thus return-

ing the same result as SOSM. However, we decided to report both results (SOSM and 

EADAM) in both subsections for completeness. 

 

4.4.1 No preferences of course organizers 

The average rank metric (Table 11) shows that both SOSM and EADAM result in better 

matchings than the FCFS, even though the differences are small. The shorthand n/p refers to 

students being assigned to courses they have no preference for. If these courses are unac-

ceptable, these students would not be matched. 

Tab. 11 Student average ranks of FCFS, SOSM and EADAM without group preferences 

 FCFS  SOSM  EADAM 

Average rank      (     )       (     )       (     ) 

 

The popularity metric in Table 12 also shows the superiority of SOSM and EADAM. 

 

Tab. 12 Student popularity of FCFS, SOSM and EADAM without group preferences 

  FCFS vs. SOSM  FCFS vs. EADAM  SOSM vs. EADAM 

#Students    16  16  0 

#Students    20  20  0 
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Popularity  FCFS   SOSM  FCFS   EADAM  SOSM   EADAM 

 

The rank distribution metric (Table 13) demonstrates that 114 students would be matched to 

their first preference with SOSM or EADAM, whereas only 105 are matched to the first pref-

erence in the first-come-first-served course allocation system. 

Tab. 13 Student rank distribution of FCFS, SOSM and EADAM without group preferences 

Rank  FCFS  SOSM  EADAM 

1  105 (77.2%)  114 (83.8%)  114 (83.8%) 

2  13 (9.6%)  5 (3.7%)  5 (3.7%) 

3  12 (8.8%)  6 (4.4%)  6 (4.4%) 

4  -  4 (2.9%)  4 (2.9%) 

5  1 (0.7%)  1 (0.7%)  1 (0.7%) 

n/p  5 (3.7%)  6 (4.4%)  6 (4.4%) 

 

Note that the first-come-first-served course allocation system assigned 5 students to a group 

where the students have no preference (n/p) for, SOSM or EADAM would assign 6 students 

to a group where they have no preference for as they require a stable matching. Typically, it 

is students who submit only a small number of course preferences, who are assigned a 

course for which they have provided no preference. Nevertheless, this illustrates that FCFS 

can lead to mores students being matched to a course for which they have provided a pref-

erence, compared to SOSM and EADAM. Other than that, the metrics show that SOSM and 

EADAM result in better matchings than the first-come-first-served course allocation system 

when no group preferences exist. 

 

4.4.2 With preferences of course organizers 

In order to compare the matching mechanisms with preferences of course organizers we 

generated random group preferences with indifferences over the 136 students. The following 

results show the mean of 400 runs with the generated group preferences with indifferences. 

As can be expected, FCFS yields unstable results. Unstable means that blocking pairs of 

unmatched students and schools exist, who would prefer to be matched with each other ra-

ther than their current assignment. We have identified 25 blocking pairs (18% of all students) 

on average. 
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Students 

For the students the average rank metric (Table 14) shows that EADAM would provide the 

best results. On the same metric, SOSM would result in a better matching than FCFS. 

Tab. 14 Student average ranks of FCFS, SOSM and EADAM with generated group preferences 

 FCFS  SOSM  EADAM 

Average rank 1.31 (5 n/p)  1.28 (6.88 n/p)  1.26 (6.88 n/p) 

 

In contrast to the average rank metric, the popularity metric (see Tab. 15) shows a different 

result for the comparison of the FCFS course allocation system and SOSM. In this case 

FCFS is more popular than SOSM. This discrepancy is due to the fact that the 19.19 stu-

dents (mean of 400 runs) who were better off with SOSM were matched to a much better 

ranked group than the 19.33 students being better off with FCFS. Hence the average rank for 

SOSM is lower than for FCFS. Still, EADAM shows the best results.  

Tab. 15 Student popularity of FCFS, SOSM and EADAM with generated group preferences 

  FCFS vs. SOSM  FCFS vs. EADAM  SOSM vs. EADAM 

#Students    19.33  18.23  0.00 

#Students    19.19  19.76  2.40 

Popularity  FCFS   SOSM  FCFS   EADAM  SOSM   EADAM 

 

The same result as the average rank metric is found based on the rank distribution metric in 

Table 16 with EADAM matching the most students to their first preference. 

 

Tab. 16 Student rank distribution of FCFS, SOSM and EADAM with generated group preferences 

Rank  FCFS  SOSM  EADAM 

1  105 (77.2%)  106.4 (78.2%)  108.6 (79.8%) 

2  13 (9.6%)  12.2 (9.0%)  10.5 (7.7%) 

3  12 (8.8%)  8.3 (6.1%)  7.9 (5.8%) 

4  -   1.9 (1.4%)  1.8 (1.3%) 

5  1 (0.7%)  0.3 (0.2%)  0.3 (0.2%) 

6  -   0.1 (0.1%)  0.1 (0.1%) 

n/p  5 (3.7%)  6.9 (5.1%)  6.9 (5.1%) 

 

With preferences of course organizers, EADAM results in the best matching for the students. 
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Courses 

For the courses the average rank metric (Table 17) shows that SOSM produces the best 

matchings regarding the preferences of course organizers, but SOSM and EADAM would 

both be preferred to FCFS by course organizers. 

Tab. 17 Group average ranks of FCFS, SOSM and EADAM with generated group preferences 

 FCFS  SOSM  EADAM 

Average rank 66.90 (0 n/p)  63.33 (0 n/p)  64.44 (0 n/p) 

 

The same observation can also be made with regard to the popularity metric that is shown in 

Table 18. 

Tab. 18 Group popularity of FCFS, SOSM and EADAM with generated group preferences 

  FCFS vs. SOSM  FCFS vs. EADAM  SOSM vs. EADAM 

#Courses    3.62  3.69  2.02 

#Courses    4.38  4.31  0.84 

Popularity  FCFS   SOSM  FCFS   EADAM  SOSM   EADAM 

 

The reason EADAM is less preferable to the course organizers is that it aims to increase the 

welfare of the students when it does improvements of the students. Also, the rank distribution 

metric shows that course organizers would prefer SOSM. 

 

Tab. 19 Group rank distribution of FCFS, SOSM and EADAM with generated group preferences 

Rank  FCFS  SOSM  EADAM 

1  1.1 (0.8%)  1.2 (0.9%)  1.1 (0.8%) 

2  1.0 (0.7%)  1.1 (0.8%)  1.1 (0.8%) 

3  0.9 (0.7%)  1.1 (0.8%)  1.1 (0.8%) 

4  1.0 (0.7%)  1.0 (0.7%)  1.1 (0.8%) 

5  1.1 (0.8%)  1.1 (0.8%)  1.2 (0.9%) 

6  1.1 (0.8%)  1.1 (0.8%)  1.0 (0.7%) 

7  1.1 (0.8%)  1.1 (0.8%)  1.1 (0.8%) 

8  1.2 (0.9%)  1.3 (1.0%)  1.2 (0.9%) 

9  1.0 (0.7%)  1.0 (0.7%)  1.0 (0.7%) 

10  1.1 (0.8%)  1.1 (0.8%)  1.2 (0.9%) 

11-20  10.8 (7.9%)  11.7 (8.6%)  11.3 (8.3%) 

21-30  10.3 (7.6%)  11.5 (8.5%)  10.9 (8.0%) 
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31-50  19.9 (14.7%)  21.8 (16.1%)  21.2 (15.6%) 

51-100  50.9 (37.4%)  50.9 (37.5%)  51.1 (37.6%) 

101-136  33.5 (24.6%)  28.8 (21.2%)  30.2 (22.2%) 

 

Overall, EADAM and SOSM would result in the better outcomes than FCFS for both students 

and course organizers, with or without preferences of course organizers in this field experi-

ment.  

 

4.5 Results of the second field experiment 

In the second field experiment, we again analyze situations with or without preferences of 

group organizers. The second experiment is larger and we wanted to understand if the re-

sults from the first experiment carry over. 

 

4.5.1 No preferences of course organizers 

The average rank metric (Table 20) shows that with FCFS the students would be assigned to 

their 2.91th choice on average with 38 students being assigned to a course where they have 

no preference (n/p) for. However, with SOSM or EADAM the students would be assigned to 

their 1.78th choice and 53 students to a course they have no preference for. 

 

Tab. 20 Student average ranks of FCFS, SOSM and EADAM without group preferences 

 FCFS  SOSM  EADAM 

Average rank 2.91 (38 n/p)  1.78 (53 n/p)  1.78 (53 n/p) 

 

The popularity metric is shown in Table 21, which demonstrates that both SOSM and 

EADAM would be more popular than FCFS: Only 90 students would prefer FCFS to SOSM 

or EADAM, but 146 would prefer SOSM or EADAM to the first-come-first-served course allo-

cation system. 

Tab. 21 Student popularity of FCFS, SOSM and EADAM without group preferences 

  FCFS vs. SOSM  FCFS vs. EADAM  SOSM vs. EADAM 

#Students    90  90  0 

#Students    146  146  0 

Popularity  FCFS   SOSM  FCFS   EADAM  SOSM   EADAM 
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If we look at the rank distribution metric (see Table 22) it shows that with SOSM or EADAM 

280 students would be assigned to their first choice, whereas only 223 got their first choice 

with the first-come-first-served course allocation system. The first-come-first-served course 

allocation system assigned 38 students to a group where the students have no preference 

(n/p) for, SOSM or EADAM would assign 53 students to a group where they have no prefer-

ence for. The reason for this could be the fact, that many students submitted very few prefer-

ences, as we saw in Figure 2. 

 

Tab. 22 Student rank distribution of FCFS, SOSM and EADAM without group preferences 

Rank  

 

FCFS 

 

SOSM 

 

EADAM 

1  

 

223  (53.3%)  

 

280  (67.0%)  

 

280  (67.0%)  

2  

 

30  (7.2%)  

 

25  (6.0%)  

 

25  (6.0%)  

3  

 

31  (7.4%)  

 

18  (4.3%)  

 

18  (4.3%)  

4  

 

30  (7.2%)  

 

14  (3.3%)  

 

14  (3.3%)  

5  

 

18  (4.3%)  

 

7  (1.7%)  

 

7  (1.7%)  

6  

 

8  (1.9%)  

 

4  (1.0%)  

 

4  (1.0%)  

7  

 

13  (3.1%)  

 

7  (1.7%)  

 

7  (1.7%)  

8  

 

4  (1.0%)  

 

2  (0.5%)  

 

2  (0.5%)  

9  

 

5  (1.2%)  

 

1  (0.2%)  

 

1  (0.2%)  

10  

 

6  (1.4%)  

 

3  (0.7%)  

 

3  (0.7%)  

11  

 

1  (0.2%)  

 

1  (0.2%)  

 

1  (0.2%)  

12  

 

1  (0.2%)  

 

2  (0.5%)  

 

2  (0.5%)  

13  

 

1  (0.2%)  

 

1  (0.2%)  

 

1  (0.2%)  

16  

 

2  (0.5%)  

 

- 

 

- 

17  

 

1  (0.2%)  

 

- 

 

- 

19  

 

1  (0.2%)  

 

- 

 

- 

20  

 

2  (0.5%)  

 

- 

 

- 

23  

 

1  (0.2%)  

 

- 

 

- 

35  

 

1  (0.2%)  

 

- 

 

- 

41  

 

1  (0.2%)  

 

- 

 

- 

n/p  

 

38  (9.1%)  

 

53  (12.7%)  

 

53  (12.7%)  

 

The three metrics average rank, popularity and rank distribution all show that without group 

preferences, SOSM or EADAM would result in a better matching for the students. Again, a 

disadvantage is the higher number of students matched to a group where they do not have 
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preferences for, which is a consequence of the fact that students often only provided prefer-

ences for a few courses. 

 

4.5.2 With preferences of course organizers 

In this case FCFS induces 189 blocking pairs (45% of all students) on average, meaning that 

189 pairs of student and school could improve their assignment by switching. 

 

Students 

The average ranks for students if course organizers have preferences are shown in Table 

23. Using SOSM instead of FCFS the average rank improvement for each student would be 

0.73. With EADAM rather than FCFS the average rank improvement would be 0.87. This 

does not mean that every student would improve by 0.87 ranks. Some might not improve or 

even worsen, and some would improve by more than one rank. 

Tab. 23 Student average ranks of FCFS, SOSM and EADAM with generated group preferences 

 FCFS  SOSM  EADAM 

Average rank 2.91 (38 n/p)  2.18 (51.26 n/p)  2.04 (51.24 n/p) 

 

The popularity metric (see Table 24) leads to the same result as the average rank metric with 

EADAM showing the best results for the students. 

 

Tab. 24 Student popularity of FCFS, SOSM and EADAM with generated group preferences 

  FCFS vs. SOSM  FCFS vs. EADAM  SOSM vs. EADAM 

#Students    125.81  115.99  0.00 

#Students    138.39  141.04  27.35 

Popularity  FCFS   SOSM  FCFS   EADAM  SOSM   EADAM 

 

As shown in Table 25 the rank distribution metric provides the same results as the popularity 

metric. EADAM matches almost 75% of the students to their top three choice courses while 

SOSM shows worse results than FCFS. The comparison of FCFS and SOSM shows that 

with FCFS slightly more students are matched to their first choice course than with SOSM, 

but looking at the top three choices, SOSM shows the better results. Similar to the results in 

Section 5.1 with SOSM and EADAM more students would be matched to courses they do not 

have preferences for (n/p). 
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Tab. 25 Student rank distribution of FCFS, SOSM and EADAM with generated group preferences 

Rank  FCFS  SOSM  EADAM 

1  223 (53.3%)  219.9 (52.6%)  236.5 (56.6%) 

2  30 (7.2%)  52.5 (12.6%)  46.2 (11.1%) 

3  31 (7.4%)  29.8 (7.1%)  27.0 (6.5%) 

4  30 (7.2%)  23.4 (5.6%)  21.6 (5.2%) 

5  18 (4.3%)  13.4 (3.2%)  11.4 (2.7%) 

6  8 (1.9%)  8.8 (2.1%)  7.4 (1.8%) 

7  13 (3.1%)  6.0 (1.4%)  5.4 (1.3%) 

8  4 (1%)  4.6 (1.1%)  3.9 (0.9%) 

9  5 (1.2%)  2.7 (0.6%)  2.3 (0.6%) 

10  6 (1.4%)  2.3 (0.6%)  1.9 (0.5%) 

11  1 (0.2%)  0.8 (0.2%)  0.6 (0.1%) 

12  1 (0.2%)  1.1 (0.3%)  1.1 (0.3%) 

13  1 (0.2%)  0.6 (0.1%)  0.5 (0.1%) 

14  -   0.1 (0%)  0.1 (0%) 

15  -   0.3 (0.1%)  0.2 (0%) 

16  2 (0.5%)  0.1 (0%)  0.1 (0%) 

17  1 (0.2%)  0.2 (0%)  0.2 (0%) 

19  1 (0.2%)  0.1 (0%)  0.1 (0%) 

20  2 (0.5%)  0.1 (0%)  0.1 (0%) 

23  1 (0.2%)  -   -  

35  1 (0.2%)  -   -  

41  1 (0.2%)  -   -  

n/p  38 (9.1%)  51.3 (12.3%)  51.2 (12.3%) 

 

The significant differences between the results of SOSM and EADAM emphasize the welfare 

losses for students that could be produced by SOSM. 

 

The difference in the results for the students without group preferences (Section 5.1) is due 

to the fact that the group preferences affect the assignment process. For the case with group 

preferences a student could be rejected from a course after being tentatively assigned to it. 

This could not happen without group preferences.  
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Courses 

The average rank metric (see Table 26) for courses shows that both SOSM and EADAM 

result in better matchings for the courses with SOSM as the better alternative. It is clear that 

SOSM and EADAM provide better results than the first-come-first-served course allocation 

system since they are considering the group preferences. The better result of SOSM versus 

EADAM can again be explained by the fact that EADAM is improving the welfare of the stu-

dents, thus   negatively affecting the course organizers. 

Tab. 26 Group average ranks of FCFS, SOSM and EADAM with generated group preferences 

 FCFS  SOSM  EADAM 

Average rank 198.66 (0 n/p)  178.57 (0 n/p)  186.78 (0 n/p) 

 

Table 27 provides the popularity metric for the courses. The outcomes are the same as we 

saw with the average rank metric. Accordingly, SOSM brings the best results for the courses 

and it is more popular than the other two mechanisms.   

Tab. 27 Group popularity of FCFS, SOSM and EADAM with generated group preferences 

  FCFS vs. SOSM  FCFS vs. EADAM  SOSM vs. EADAM 

#Courses    17.00  17.72  18.85 

#Courses    28.00  27.28  6.10 

Popularity  FCFS   SOSM  FCFS   EADAM  SOSM   EADAM 

 

In Table 28 the rank distribution for courses is provided. For example using SOSM, 15.6 stu-

dents (3.7%) would be matched to the top 10 ranks of a course. Also in that case, the results 

show that SOSM would be the best matching mechanism for the courses with EADAM 

providing better results than the first-come-first-served course allocation system. 

 

Tab. 28 Group rank distribution of FCFS, SOSM and EADAM with generated group preferences 

Rank  FCFS  SOSM  EADAM 

1  1.3 (0.3%)  1.7 (0.4%)  1.4 (0.3%) 

2  1.1 (0.3%)  1.6 (0.4%)  1.3 (0.3%) 

3  1.2 (0.3%)  1.4 (0.3%)  1.3 (0.3%) 

4  1.2 (0.3%)  1.6 (0.4%)  1.5 (0.4%) 

5  1.3 (0.3%)  1.6 (0.4%)  1.5 (0.4%) 

6  1.2 (0.3%)  1.4 (0.3%)  1.3 (0.3%) 

7  1.2 (0.3%)  1.6 (0.4%)  1.2 (0.3%) 
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8  1.3 (0.3%)  1.6 (0.4%)  1.4 (0.3%) 

9  1.2 (0.3%)  1.4 (0.3%)  1.3 (0.3%) 

10  1.1 (0.3%)  1.7 (0.4%)  1.4 (0.3%) 

11-20  11.7 (2.8%)  15.8 (3.8%)  13.4 (3.2%) 

21-30  12.2 (2.9%)  16.8 (4%)  14.0 (3.3%) 

31-50  23.1 (5.5%)  29.5 (7.1%)  26.3 (6.3%) 

51-100  54.9 (13.1%)  61.0 (14.6%)  58.6 (14%) 

101-150  52.7 (12.6%)  53.1 (12.7%)  53.3 (12.7%) 

151-200  51.5 (12.3%)  50.8 (12.2%)  51.3 (12.3%) 

201-300  99.9 (23.9%)  91.5 (21.9%)  96.6 (23.1%) 

301-418  100.0 (23.9%)  84.0 (20.1%)  91.0 (21.8%) 

 

Overall, EADAM resulted in better outcomes than FCFS for students and courses with or 

without preferences of course organizers. The experiments provide some useful information. 

First, the results suggest that EADAM is the preferred alternative, although the differences 

are not substantial. Second, there are trade-offs and the stable matching mechanism on av-

erage have more students unmatched, which might be an important criterion in some appli-

cations.  

5 Towards multiunit and combinatorial assignments 

Course assignment has become a popular research topic with many recent developments, 

as applications are wide-spread. One none-trivial extension that researchers have consid-

ered only recently are minimum quotas for courses. This is practically relevant if course or-

ganizers want to avoid situations where they have only a few students in their class. It is 

known that there is no strategy-proof mechanism that completely eliminates justified envy 

when minimum quotas are imposed (Hamada et al. 2011, pp. 180-191). Ueda et al. (2012, 

pp. 1327-1328) recently proposed strategy-proof mechanisms, which allows for minimum 

quotas and achieve efficiency with a weaker notion of stability. 

 

Much of the new developments have been on the assignment of multiple course seats to one 

student, i.e., the multiunit assignment problem or combinatorial assignment problem, resp. 

Budish and Cantillon (2012, pp. 2237-2271) analyze multiunit assignment problems, where 

students want to get seats, not only a single out of many possible courses, and their prefer-

ences are ordinal and responsive. Responsiveness describes a form of separability of pref-

erences about different courses: If a student prefers one course   over the other,   , he also 

prefers a bundle of courses       to a bundle of courses       . Theoretical analyses 

show  that serial dictatorships are the only strategy-proof and efficient mechanisms for this 
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problem (Pápai 2001, pp. 257-271; Ehlers and Klaus 2003, pp. 265-280). Unfortunately, they 

lead to highly unfair outcomes in which some students get all the courses they like most, 

whereas others only a few. Budish and Cantillon (2012, pp. 2237-2271) suggest a mecha-

nism with proxy agents, which tries to get fairness of the distribution and efficiency at the 

expense of strategy-proofness. 

 

The combinatorial assignment problem can be seen as an extension of the multiunit assign-

ment problem, where a set of course seats is to be allocated amongst a set of agents with 

preferences over bundles of course seats in different courses. Each student wants to get 0 or 

1 seat in a course, but his preferences for particular bundles of courses might be substitutes 

or complements as opposed to the responsive preferences assumed in the multiunit assign-

ment problem. This is similar to a combinatorial auction in which no monetary transfers are 

allowed. In recent work by Budish (2011, pp. 1061-1103) suggests a mechanism, which 

adapts the idea of Competitive Equilibrium from Equal Incomes (Varian 1976, pp. 249-260) 

to environments with indivisible goods and proofs approximations of efficiency, strategy-

proofness, and fairness properties. Othman et al. (2010, pp. 873-880) describe computation-

al methods to implement the mechanism.  

 

Another interesting extension of SOSM in the context of the hospitals/residents problem is 

the consideration of couples. The set of residents also includes couples who must be as-

signed together, either to the same hospital or to a specific pair of hospitals chosen by the 

couple. The addition of couples to the hospitals/residents problem renders the problem NP-

complete (Gusfield and Irving 1989). 

6 Conclusion 

We have discussed established and more recent algorithmic developments for course alloca-

tion problems. The Gale-Shapley student optimal stable mechanism (SOSM) is a well-

established matching mechanism which is applied for the assignment of students to public 

universities in the U.S. and in the school choice problems, for instance. While strategy-proof 

for students and stable, SOSM may not always be efficient. Kesten’s efficiency adjusted de-

ferred acceptance mechanism (EADAM) (Kesten 2010, pp. 1297-1348) eliminates welfare 

losses on the students' side at the expense of strategy-proofness. It is a bit surprising that 

these algorithms have found little application in the large number of matching problems in 

university environments so far and first-come-first-served (FCFS) approaches are still in 

wide-spread use.  
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In this paper, we provided a brief survey of this field, which has seen a number of recent ad-

vances. In addition, we discuss the results of two field experiments, in which we compare an 

FCFS mechanism with SOSM and EADAM. The FCFS matching and the matchings of 

SOSM and EADAM were compared using average rank metrics, popularity, and rank distri-

bution metrics. By and large, the outcomes of stable matching mechanisms were preferable 

to FCFS in both experiments, however, the differences were not substantial. Actually, the 

number of unmatched students was lower in FCFS throughout. For practitioners it is worth-

while to understand the different design desiderata and metrics before introducing a new 

matching mechanism. Still, one of the biggest advantages of SOSM and EADAM beyond the 

stability of the outcomes might be the fact that there are strong incentives for telling the truth 

and there are no benefits to being first during the registration period, which might lead to un-

fair outcomes as some students can just not be first due to circumstances beyond their con-

trol. 
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