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Combinatorial auctions are used in a variety of application domains such as transportation or industrial

procurement using a variety of bidding languages and different allocation constraints. This flexibility in the

bidding languages and the allocation constraints is essential in these domains, but has not been considered in

the theoretical literature so far. In this paper, we analyze different pricing rules for ascending combinatorial

auctions which allow for such flexibility: winning levels, and deadness levels. We determine the computational

complexity of these pricing rules and show that deadness levels actually satisfy an ex-post equilibrium, while

winning levels do not allow for a strong game-theoretical solution concept. We investigate the relationship of

deadness levels and the simple price update rules used in efficient ascending combinatorial auction formats.

We show that ascending combinatorial auctions with deadness level pricing rules maintain a strong game

theoretical solution concept and reduce the number of bids and rounds required at the expense of higher

computational effort. The calculation of exact deadness levels is a ΠP
2 -complete problem. Nevertheless,

numerical experiments show that for mid-sized auctions this is a feasible approach. The paper provides

a foundation for allocation constraints in combinatorial auctions and a theoretical framework for recent

Information Systems contributions in this field.

Key words : Electronic markets and auctions, Economics of IS, Electronic commerce, Decision support

systems
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1. Introduction

Combinatorial auctions (CAs) allow selling or buying a set of heterogeneous items to or from

multiple bidders. Bidders can specify package bids, i.e., a bid price is defined for a subset of

the items for auction (Cramton et al. 2006). The price is only valid for the entire package and

the package is indivisible. For example, in a CA a bidder might want to buy items x, y, and

z for a package price of $100, which might be more than the total of the prices for the items

sold individually. CAs can be seen as generic mechanisms for multi-object markets as they allow

expressing complex preferences such as items being substitutes or complements for bidders. They

have found application in a variety of domains such as the auctioning of spectrum licenses (Cramton
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2009), truck load transportation (Caplice 2007), bus routes (Cantillon and Pesendorfer 2006), or

industrial procurement (Bichler et al. 2006).

The design of efficient CAs has drawn considerable attention, as they raise fundamental questions

on pricing and efficiency in multi-object markets. If bidders revealed their preferences truthfully,

the auctioneer only had to solve an optimization problem to find the efficient allocation. Typically

bidders have incentives to speculate and deviate from truthful bidding. The Vickrey-Clarke-Groves

(VCG) mechanism has therefore been a significant contribution in auction theory. Green and

Laffont (1977) proved that the sealed-bid VCG mechanism is the unique auction mechanism in

which truthful bidding is a dominant strategy. In spite of this powerful result, this mechanism has

a number of practical problems when used in multi-object markets (Ausubel and Milgrom 2006b,

Rothkopf 2007). Also, many auctioneers want to have a transparent open-cry bidding process rather

than a sealed-bid format. For example, almost all spectrum auctions organized throughout the

world are iterative auctions with multiple rounds.

It is interesting to understand, whether there are also iterative CA formats, which also satisfy

strong game-theoretical solution concepts, which limit incentives for speculation. Preference elic-

itation in iterative auctions can invalidate dominant strategy equilibria existing in a single-step

version of a mechanism (Conitzer and Sandholm 2002), but ex post equilibria can be achieved

which also do not require agents to speculate about other bidders’ valuations (Shoham and Leyton-

Brown 2009). Much progress has been made on this question in the theoretical literature in the

recent years. iBundle (Parkes and Ungar 2000), the Ascending Proxy Auction (APA) (Ausubel

and Milgrom 2002), and dVSV (de Vries et al. 2007) lead to an efficient allocation, if bidders bid

straightforward1, which is an ex post equilibrium as long as the buyer submodularity condition

holds for all valuations. Buyer submodularity is a restriction on the valuations of bidders, which

defines that bidders are more valuable when added to a smaller coalition. It is interesting that

such a strong solution concept is possible in iterative CAs, even though the result does not hold

for general valuations. This line of work is heavily based on duality theory in linear programming.

All these auction formats use non-linear and personalized ask prices and increase these ask

price for losing bids by a minimum increment, which causes a large number of auction rounds

(Schneider et al. 2010).2 The APA uses proxy bidders in order to cope with the large number of

auction rounds, and to make sure that bidders follow the straightforward strategy, which turns the

1 Bidders follow the straightforward strategy if they bid only on the surplus maximizing package(s) in every round

2 We will refer to ask prices as the prices set by the auctioneer during the auction, and bid prices as the prices specified
by bidders, if it is necessary to distinguish prices. In this paper, we assume that bidders always bid on the ask price.
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mechanism into a sealed bid auction. Apart from these theoretical advances, a number of linear or

item-price auction formats have been developed. These include versions of the combinatorial clock

auction (Porter et al. 2003, Bichler et al. 2011), where item-level ask prices rise, whenever there is

overdemand on an item, but also the family of auction formats with pseudo-dual linear ask prices

(Kwasnica et al. 2005, Bichler et al. 2009). As of yet, there is little theory on equilibrium bidding

strategies in such auctions, although lab experiments yielded high levels of allocative efficiency.

Adomavicius and Gupta (2005) introduce different pricing rules for CAs. Pricing rules refer to

functions by which the auctioneer determines ask prices based on bids submitted in the auction.

Winning levels (WLs) describe the lowest possible bid which would win if no other bids are

submitted, whereas deadness levels (DLs) are a lower bound to bids, which still can become winning

in the course of the auction. DLs and WLs describe natural bounds and interesting feedback for a

losing bidder. While there is no rationale to bid below the DL, bidding at the WL could be rational

in some situations, where a bidder is the only one able to outbid a winning coalition of bidders.

WLs are equivalent to the minimal winning bids described by Rothkopf et al. (1998). These pricing

rules are independent of the allocation rules, and laboratory experiments with respective auction

formats yielded high levels of efficiency (Adomavicius et al. 2012). They are very generic and can be

considered a fundamental contribution in the emerging Information Systems literature on decision

support in smart markets (Xia et al. 2004, Bapna et al. 2007, Guo et al. 2007, Bichler et al. 2009,

Scheffel et al. 2011, Bichler et al. 2010) and in the general literature on CAs.

The analysis in Adomavicius and Gupta (2005) is focused on a pure OR bidding language

and assumes no substitutes valuations. OR bids can represent only bids that do not have any

substitutabilities, i.e., purely additive and superadditive valuations (Nisan 2006). Also, this initial

work did not analyze equilibrium strategies in such auctions. However, DLs and WLs introduce

a very generic concept, which can be applied to any bidding language. It is natural to ask, how

these generic pricing rules can be defined for auctions with XOR bidding languages and other types

of allocation constraints as well, and which game-theoretical solution concepts can be satisfied.

Auctions with strong game-theoretical solution concepts are strategically easier for bidders because

there is no need to speculate about other bidders’ valuations. This makes bidding strategically easy

and respective auction formats are more likely to lead to high efficiency.

In this paper, we introduce WLs and DLs for general CAs, which allow for XOR bids and other

constraints. Auctioneers use various types of allocation constraints to limit the number of winners

or the number of items allocated to one bidder or to a group of bidders. Such constraints are actually

the rule rather than the exception in application domains such as industrial procurement (Bichler
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et al. 2006, Sandholm and Suri 2006) or transportation (Caplice 2007). But they are typically not

considered in the literature on iterative CAs. The beauty of DLs and WLs is that their definition

is independent of the type of allocation constraints used in the winner determination. The resulting

theory is applicable to a much broader set of real-world applications, where allocation constraints

play a considerable role. We will refer to ascending CAs allowing for different types of allocation

constraints as flexible combinatorial auction (FCA) in this text. Such constraints might be added

by the auctioneer and the bidders, which allows for considerably more flexibility in the specification

of the preferences of market participants.

While generic pricing rules for different CAs with allocation constraints would also have signifi-

cant practical importance, we show that these pricing rules bare significant theoretical challenges.

The main goal of this paper is not to introduce a new auction format, but to define and analyze

computational and game-theoretical properties of WLs and DLs for FCAs. In particular, we want

to understand which pricing rules allow for ex post equilibria and how these pricing rules relate to

the theoretical framework on efficient and ascending CAs (Parkes and Ungar 2000, de Vries et al.

2007). This connects also recent IS contributions to the game-theoretical literature in this field.

The paper is structured as follows: In Section 2, we briefly discuss allocation constraints in CAs.

We define winning and deadness levels and describe respective algorithms in Section 3. In Section

4 we determine the computational complexity for these pricing rules. In Section 5 we analyze the

impact of allocation constraints on efficient CAs and perform an equilibrium analysis of ascending

CAs using either winning or deadness levels as ask prices in Section 6. In Section 7 we report on

our computational experiments, before we provide conclusions in Section 8.

2. Allocation Constraints in Combinatorial Auctions

Allocation constraints specify limits on the allocation of the available items to the bidders without

explicitly limiting bid prices or revenue of a bidder or a group of bidders. On the other hand price

constraints set price limits on items, packages, a bidder’s budget or auctioneer revenue. It has

been shown that incentive-compatible auctions are impossible in general if there are private budget

limits (Dobzinski et al. 2008), and also reserve prices by the auctioneer increase expected revenue

at the expense of efficiency (Myerson 1981). Table 1 provides an overview of allocaton and price

constraints in CAs, subsumed by the term side constraints. We focus on efficient auctions, and

therefore will limit ourselves to allocation constraints. One can also divide side constraints into

bidder specific ones (bidder level) and such constraints, which concern more than a single bidder

(group level). The latter are typically specified by the auctioneer, while bidder specific constraints
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could be imposed by the bidder or the auctioneer, especially when the OR bidding language is

used.

Allocation constraints are important in many domains. Spectrum auctions, which have been

the driving application for much research in this area, regularly face spectrum caps (max #

items/bidder) (Seifert and Ehrhart 2005). In industrial procurement or the auction for transporta-

tion services allocation constraints are the rule rather than the exception (Caplice 2007, Bichler

et al. 2006, Sandholm 2003, Sandholm and Suri 2006). Buyers need to specify lower or upper bounds

on the number of suppliers overall or per group (min/max # winning bidders): lower bounds in

order to hedge the risk that some suppliers fail to deliver and upper bounds in order to avoid

administrative expenses. Market share constraints are defined on a group of bidders. For example,

due to corporate requirements at least one minority supplier must be included in the set of winners

on a particular set of items. Auctioneers also need to impose lower or upper bounds on the number

of items (min/max # items/bidder), which can be awarded to a particular bidder or a group of

bidders. Exclusive disjunction describes constraints such that a bidder is allowed to win one set

of items or another one, but not both. For example, an auctioneer allows a bidder to win one of

two different regions A and B, but not both. Such constraints can also be specified on a group of

bidders. The XOR language can be seen as a separate bidder specific allocation constraint.

While the XOR language already captures many further allocation constraints, experimental

analysis has been shown that OR bidding languages are often more efficient than XOR languages

due to the reduced number of package bids that need to be submitted (Brunner et al. 2010).

OR bids can represent only bids that do not have any substitutabilities, i.e., purely additive and

superadditive valuations (Nisan 2006). If a bidder uses an OR bidding language, it might also be

useful to specify constraints on the number of items (min/max # items/bidder) or budget awarded,

in order to avoid the exposure problem, which can occur with substitutes valuations (e.g., a bidder

is winning packages AB and CD, but only wants two lots at a maximum) or to express his capacity

constraints in case he is a supplier in a procurement auction. Constraints of exclusive disjunction

are relevant to the auctioneer in case of an OR bidding language, when a bidder is allowed to

win one set of items or another one, but not both. Carriers in a transportation auction use such

disjunctive constraints to communicate the message “give me this set of lanes, or this set of lanes,

but not both” (Caplice 2007).

Having flexibility in the bidding language and the allocation constraints used by the auctioneer

and the bidders allows for a much broader applicability of CAs, and this can be considered a

prerequisite for most applications in transportation and industrial procurement.
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side constraint allocation constraint price constraint
bidder level min/max # items/bidder budget

exclusive disjunction
group level min/max # winning bidders reserve prices

market share budget
exclusive disjunction

Table 1 Side constraints

3. Pricing Rules

Before we provide a formal definition, we will first provide an example to informally introduce the

pricing rules DL and WL. We will contrast these with pricing rules as they are used in iBundle

or in auction formats with pseudo-dual linear ask prices, such as RAD (Kwasnica et al. 2005) to

highlight the connections among these different pricing rules.

packages AB BC AC B C
bids 22∗1,162 243 204 75 8∗6
RAD 22 24 14 16 8
iBundle 221, 172 253 214 85 86

DL 22 24 20 7 8
WL 22 30 23 10 8

Table 2 Example with six bids and different ask prices.

The upper part of Table 2 describes six bids from different bidders B1 to B6, submitted on

subsets of three items A, B, and C, while the lower part shows the resulting prices in various

auction formats. Subscripts indicate bidders, i.e., 221 indicates a bid of $22 from bidder B1. Prices

have subscripts only if they are personalized. Asterisks denote the provisional winning bids.

The calculation of RAD prices requires solving a number of linear programs. Note that these

linear prices can be lower than a losing bid (see the bid on AC of bidder B4). Another problem with

pseudo-dual ask prices is the fact that they can also decrease if the competition shifts, and that

the calculation does not take into account allocation constraints explicitly. This makes it difficult

to define an equilibrium analysis and as of now there is little theory. Bichler et al. (2009) analyze

the problems in defining pseudo-dual linear ask prices.

For the rest of the paper, we will focus on the family of efficient and ascending auctions (iBundle,

APA, and dVSV). Apart from the use of proxy agents, APA and iBundle are equivalent and follow

a subgradient algorithm, whereas dVSV uses a primal-dual approach (de Vries et al. 2007). Line 4

in our example shows a new set of ask prices in iBundle. The auction format increases the bids of

all losing bidders by a minimum bid increment ($1 in this example) (Parkes and Ungar 2000). DLs

and WLs describe generic pricing rules, i.e., they are independent of the allocation constraints
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used by the auctioneer. DLs describe deadness level ask prices, which are simply the bids of all

bidders in the last round in this example without any constraints. In this case, DLs do not need to

be personalized. Losing bidders need to bid higher than this by a minimum bid increment. With a

minimum bid increment of one, the DL would be at the iBundle ask price for the losing bidders

B3, B4, and B5. In the presence of allocation constraints, DL ask prices can be much higher than

the ones of iBundle, as we will see later.

The WL describes the lowest bid prices, at which a single bid would become winning without a

new complementary bid of another bidder. Bidders B4 and B5 could become winning at a lower

price, if they would form a coalition. A known problem with package bidding is the threshold

problem, in which bidders seeking larger packages may be favoured, because small bidders do not

have the incentive or capability to top the tentative winning bids of the large bidder. In such a

problem, the WL for a small bidder might be way too high to outbid a winning bidder unilaterally,

and with only WL ask prices, it will become difficult for bidders to coordinate. The spread between

DLs and WLs can often be quite large in realistic value models.

Of course, one can also think of personalized and non-linear ask prices inbetween DLs and WLs.

The coalition of B4 and B5 in our example would need to increase their bids by a combined $3 plus

increment in order to become winning. Both bidders would become winning, if bidder B4 bid $21.5

and bidder B5 bid $8.5, for example We refer to such prices as coalitional winning levels (CWL).

A CWL could provide an alternative to linear-price auction formats, and help mitigate threshold

problems and coordinate bidders. However, computing CWLs turns out to be challenging. First,

the number of losing coalitions can grow very fast with the number of items and bids in the auction.

Second, and more importantly, there are a many ways how the costs to outbid the winning coalition

can be shared among the bidders in a losing coalition. One can think about cost sharing which

is proportional to the bids in the previous round or a cost sharing that satisfies certain fairness

criteria. Independent of how CWLs are set, there will be incentives to free-ride on other bidders

in a losing coalition. Due to the ambiguities in the definition of CWLs, we will focus on DLs

and WLs in this paper, which describe natural upper and lower bounds for bids in an ascending

auction, and leave the analysis of CWLs for future research.

3.1. Winning Levels

We first introduce the necessary terminology. Let K denote the set of items and I the set of bidders.

A subauction on itemset S ⊆K refers to an auction where only items l ∈ S are auctioned. Auction

state k ∈N refers to the auction after the first k bids are submitted. A bid is a tuple b= (S,v, k, i)

where S denotes the package the bid refers to, v the amount bid, k the auction state after the bid
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submission3 and i the bidder. Given bid b, we use the notation S(b), v(b), k(b) and i(b) to refer to

its respective elements. A bid b= (S,v, k, j) is foreign w.r.t. bidder i if j 6= i. BS,k = {(T, v, k′, i)|T ⊆

S,k′ ≤ k} is the set of all bids in S and BS,k,−i = {b∈BS,k|i(b) 6= i} is the set of all bids in S which

are foreign to bidder i. An allocation C of packages to bidders is a set of nonoverlapping bids, i.e.

for every b, b′ ∈C,b 6= b′⇒ S(b)∩S′(b) = ∅. An allocation constraint is a function C→{0,1} where

the value 1 indicates fulfillment of the constraint. Our analysis applies to every possible allocation

constraint in this form which can be verified in polynomial time4. An allocation C is feasible only

if it satisfies every allocation constraint, in which case we write feas(C) = 1. The set of all feasible

allocations is denoted by Ck = {C ⊆ BK,k|b, b′ ∈ C,b 6= b′ ⇒ S(b) ∩ S′(b) = ∅, feas(C) = 1}. The

combinatorial allocation problem (CAP ), also known as winner determination problem (WDP),

solves maxC∈Ck
∑

b∈C v(b). CAP k(K) denotes the maximum value of this optimization problem

(henceforth we will refer to it simply as value) and WINk(K)∈Ck the value-maximizing allocation

at state k.5 CAP (S) is the value of subauction S.

The winning level of a package S for bidder i at auction state k, WLk(S, i), is the minimal price

i must bid to win S at auction state k+ 1.

Definition 1. WLk(S, i) = argmin
v

: (S,v, k+ 1, i)∈WINk+1(K).

Adomavicius and Gupta (2005) define the anonymous WL of package S at auction state k by6

WLOR
k (S) =CAP k(K)−CAP k(K\S) (1)

Intuitively a bid on S can only win, if the bid price together with the value of the complementary

set of items K\S exceeds the actual value of the whole auction. Implicitly, the following assump-

tions are made: (i) OR bidding language and (ii) absence of allocation constraints. When these

assumptions are relaxed, the calculation of WLs as in equation (1) is inappropriate. A first reason

is that allocation constraints, which are not bidder specific, cannot be globally validated when

solving subauction CAP (K\S). In addition, WLs must be personalized as the following example

demonstrates.

Example 1. Consider an auction with items A, B, C, bidders B1, B2 and B3 and the constraint

that each bidder cannot win more than two items. Bidder B1 bids at k= 1 $5 on AB, B2 at k= 2

$1 on AB and at k= 3 $2 on C and B3 bids at k= 4 $3 on AB . WL(C) is for B1 $4 whereas for

B2 it is only $2.

3 For example, a bid with state k= 3 is the third bid submitted in chronological order.

4 To the best our knowledge no allocation constraint has been proposed which does not fulfill this property.

5 Depending on the context we may omit index k.

6 The problem of finding this minimal price is introduced by Rothkopf et al. (1998) and referred to as the minimal
winning bid problem.
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We introduce the following formula to calculate personalized WLs that takes XOR bidding and

allocation constraints into account:

Proposition 1.

WLk(S, i) =CAP k(K)−CAP k(K, Si) (2)

The proof is relegated to Appendix A. CAP k(K, Si) denotes the value of the whole auction

provided that bidder i wins package S for free. Thus the auction value CAP k(K, Si) is raised from

the items in K\S, as it is the case in CAP (K\S). If the OR bidding language is used and no

allocation constraints exist, the computation in (2) yields the same WLs as (1).

3.2. Deadness Levels

The deadness level of package S at auction state k, DLk(S, i), is the minimal price a bidder must

bid to have a chance to win S in any future auction state.

Definition 2. DLk(S, i) = argmin
v

: ∃k′ >k : (S,v, k+ 1, i)∈WINk′(K).

DLs constitute lower bounds on bid prices and all future bids below are “dead”, i.e., they cannot

win any more no matter which bids are submitted in future auction states k′ >k. This implies that

DLk(S, i) is monotonically increasing through the progress of any iterative auction.7

Proposition 2.

a)DLk(S, i)≤DLk+1(S, i) b)DLk(S, i)≤WLk(S, i) c)DLk(K, i) =WLk(K, i)

The proofs are based on the definitions of the metrics and are given in Appendix A.

Adomavicius and Gupta (2005) define the anonymous DL of a package S by

DLOR
k (S) =CAP k(S) (3)

In words, a bid on S cannot be part of the winning allocation if it is below the value of subauction

S (i.e. CAP (S)). For example if S = AB and there are already bids A= $10 and B = $15, then

any bid on AB below $25 is dead.

The DL in equation (3) is not valid if there are allocation constraints or any of the bidders uses an

XOR bidding language. In these cases DLs must be personalized. We also need to understand what

influence the additional allocation constraints might have in future auction states. For instance,

consider again Example 1. B3 loses AB at current state k= 4. But if in the future state k= 5 B1

7 Through our analysis, we assume no bid revocability, otherwise DLs would be always zero.
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bids $8 on C, then his previous winning bid on AB loses due to the allocation constraint8. Thus

B3 can win AB for $3 and his personal DL at k = 4 is $3. We say that the bid of B1 on AB has

been ”blocked” at k= 5 due to the constraint.

A bid on package S loses in an auction with allocation constraints if at least one of the following

conditions is met: (i) There exists a higher bid or bid combination in subauction S that wins in the

whole auction (without violating allocation constraints). (ii) S is not part of the value maximizing

allocation. (iii) The bid in interaction with other bids that win in the whole auction violates an

allocation constraint.

The first two conditions are common for every CA, with or without constraints. The third one

leads us to the definition of blocked bids, which we use later on; a bid b is blocked if it does not

win due to allocation constraints. In this case, one or more winning bids in the complementary

subauction, which we denote by B′, prevent the blocked bid to win. If the bids in B′ had not

existed, b would have won. The winning bids after the removal of a bid set B′ are denoted by

WIN−B
′

k (K). In the context of Example 1 extended by a bid of $8 of bidder B1 on item C, and of

$8 of B1 on additional item D, the bid set B′ comprises these two bids. The removal of both bids

in B′ would turn the bid b of B1 on AB into winning. Since b ∈WIN−B
′

k (K), b is blocked by B′

and does not win due to allocation constraints.

Definition 3. Bid b= (S,v, k−, i) is blocked at state k̄ ≥ k− if b /∈WINk̄(K) and ∃B′ ⊆BK\S,k̄
with b∈WIN−B

′

k̄
(K).

Computing DLk(S, i) requires knowing which currently winning bids in S can be blocked in future

auction states. We call these bids blockable.

Definition 4. Bid b= (S,v, k−, i) is blockable at state k if b∈WINk(K) with k≥ k− and ∃k̄ > k

so that b is blocked at state k̄.

Removing a blockable foreign to i bid in S causes another lower foreign bid (or bids) in S to win.

If a distinct future state k̄ can be reached where both the second and the first bid are blocked, then

the DLk(S, i) becomes even lower, since i does not have to overbid any of them. We will say that

the two bids are simultaneously blockable at current state k and simultaneously blocked at k̄ > k.

To see this happen, consider again Example 1 with an additional item D and seek for DL(AB,B2).

We have already argued that the highest bid on AB by B1 is blockable. Removing it causes the

bid of B3 to win. This second bid is also blockable due to a similar reason as the first blockable

bid (B3 may bid high on D). More importantly, these two bids are simultaneously blockable since

8 A bid of $5 would produce the same effect. With $8 we indicate here and in the sequel an arbitrarily high future
bid, submitted due to increased competition.
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there is a future state with both bids blocked (see Table 3). Had item D not existed, this would

not have been possible. Only one of the bids would have been blockable but the two of them would

not have been simultaneously blockable.

A B C D
B1 651 85 0
B2 12 23 0
B3 634 0 86

Table 3 Bids in bold block crossed out bids and DL(AB,B2) = 1, k is denoted as superskript

We just highlighted the central role of simultaneously blockable bid sets in computing DLk(S, i).

These are bids by rivals of i, thus foreign to him, submitted in S. We denote a simultaneously block-

able bid set in subauction S, at state k, comprising bids foreign to bidder i, as Bblock
S,k,−i. Undoubtedly,

foreign bids on packages which overlap with S but are not entirely in S are also preventing i to win

S but these bids are not relevant at the most favorable future state for i that DL(S, i) represents.

The reason is that in this most favorable state the value of subauction K\S is high enough such

that S is part of the winning allocation. Before providing the formal definition for Bblock
S,k,−i, it is

meaningful to sketch the algorithm which utilizes these sets to compute DL(S, i).

The algorithm identifies all simultaneously blockable bid sets. In our running example there was

only one set when item D was present, comprising the bids of B1 and B3 on AB and two single-

item sets when D was not present, which were the two bids separately. The algorithm removes each

identified set in turn and computes the value of CAP (S). The lowest value is DL(S, i), because

DL(S, i) represents the most favorable future state for i to win S.

Having outlined the algorithm, we can state the conditions a set must fulfill in order to be

declared as simultaneously blockable at current state k, with k̄ being the future state where the set

will be actually blocked. We begin with the indispensable conditions and continue with conditions

which only accelerate the sketched algorithm. Their enumeration and motivation precedes the

formal descrpition given in 5. We have already discussed that going from k to k̄ in order to block

bids in S, we add only bids in K\S since if they would overlap with S, they would prevent i from

winning S. Their set is B′ =BK,k̄\BK,k, i.e. all bids between k and k̄. Bids in B′ must be winning

else they cannot block any bids, or generally impact the allocation or prices. The first condition

states that after the submission of B′ it must be feasible that i wins S (condition i). Secondly,

inherent to the definition of a blocked bid is the condition that every bid in Bblock
S,k,−i must be losing

at k̄ (condition ii).
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Moving to conditions which only accelerate the sketched algorithm, we observe that if all bids

in the simultaneosuly blockable set are losing at k, their removal will not lower the price i has to

pay for S, hence at least one of them must be winning at k (condition iii). In Table 3 removing

only bid 4 has no impact. Furthermore, it is not meaningful that a blockable bid set contains a bid

that never wins, even after the removal of the rest bids of the set. As we begin to block some bids,

previously losing bids turn to winning and these are the ones that lower the price of S if blocked.

Hence we demand b ∈ Bblock
S,k,−i⇒ b ∈WIN

−(BblockS,k,−i\b)
k (K) (condition iv). Furthermore, we observe

that it is redundant to block a foreign bid on T ⊆ S if it is lower than a bid already submitted

by i on T ′ ⊆ T , since i can never pay less than his own bid. The set of all these bids, which we

call non-i-dominated, is denoted by Bndom
S,k̄,−i and the corresponding condition states that all bids in

Bblocked
S,k̄,−i are non-i-dominated (condition v). The concluding condition specifies that simultaneously

blockable bid sets must be maximal (condition vi) since blocking and removing an extra bid can

only lower the value of CAP (S). A set is defined as maximal if it satisfies a property (in our case

the property is the satisfaction of conditions i to v) and there exist no strict superset of it that also

satisfies the property. Hence adding an item in a maximal set causes violation of the property. In

Table 3 bid 1 is not identified as simultanoeously blockable only because it is not maximal.

Definition 5. Bid set Bblock
S,k,−i is simultaneously blockable at state k if:

∃B′ = (BK,k̄\BK,k)⊆ (BK\S,k̄ ∩WINk̄(K)) :

i) feas(WINk̄(K\S)∪ b) = 1, where S(b) = S, i(b) = i

ii) Bblock
S,k,−i ∩WINk̄(K) = ∅

iii) Bblock
S,k,−i ∩WINk(K) 6= ∅

iv) b∈Bblock
S,k,i ⇒ b∈WIN

−(BblockS,k,−i\b)
k (K)

v) Bblock
S,k,−i ⊆Bndom

S,k,−i

vi) @B′′ ⊃Bblock
S,k,−i with B′′ satisfying conditions i) to v).

With this definition we can introduce the general method to compute DLk(S, i) for arbitrary

allocation constraints.

General Method to Compute DLk(S, i)

In the first phase, the method takes as input all bids which are candidates to form simultaneously

blockable bid sets. These are the bids in Bndom
S,k,−i. The output of the first phase is the set of all

simultaneously blockable bid sets in S. We can represent the first phase as a function f with

argument Bndom
S,k,−i and value the output of this phase, i.e. f :Bndom

S,k,−i→{Bblock
S,k,−i}. We consider here f

as a black box since for the general description of the method only f ’s argument and value matters.
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In the second phase each of the identified sets Bblock
S,k,−i ∈ f(Bndom

S,k,−i) is removed consecutively and the

value of subauction S, denoted as CAP k(S,BS,k\Bblock
S,k,−i) is computed. The lowest of these values

equals to DL(S, i). It is not always necessary to compute all these values. If we encounter a value

not greater than the value of the bids of i in S, we do not need to continue since i must overbid

the own bids. Equation 4 summarizes the general two-phase method.

Proposition 3.

(4 )DLk(S, i) = min
Bblock
S,k,−i

{
CAP k(S,BS,k\Bblock

S,k,−i) : Bblock
S,k,−i ∈ f(Bndom

S,k,−i)
}

Proof: The proof draws on the definition of DLk(S, i) and of simultaneously blockable bid sets.

Let c be the right side of equation 4 and Bblock
∗ the argument of the minimum. First we show that

for b = (S, c, k−, i) ∃k∗ > k− : b ∈WINk∗(K). We define k∗ as the state at which: a) the bids in

Bblock
∗ are actually blocked and do not win due to condition i, b) a bid set B′ in K\S is submitted

so that B′ ⊆WINk∗(K) and c) ∀b with k(b)∈ (k, k∗], i(b) 6= i,S(b)⊆K\S (i.e. no new foreign bids

overlapping with S are submitted). We can ensure that the bids in Bblock
∗ lose at k∗ without the

need of submission of overlapping bids at states in (k, k∗] due to condition ii. Thus the bid b∗ with

value c=CAP k(S,BS,k\Bblock
∗ ) is part of the winning allocation (due to condition i and that the

winning allocation maximizes CAP over all feasible allocations). Similarly it can be argued that

for b′ = (S, c− ε, k, i) @k′ >k : b∈WIN ′k(K): After removing each simultaneously blockable bid set

Bblock
S,k,−i, there is a feasible allocation which includes the bids which maximize CAP k(S,BS,k\Bblock

S,k,−i)

and have a value at least c. Thus b′ cannot be part of the winning allocation. Collectively, we

showed that c= argmin
v

: ∃k′ > k : (S,v, k+ 1, i) ∈WINk′(K). This is the definition of DLk(S, i).

Q.E.D.

With an OR bidding language and without allocation constraints (4) reduces to (3), since with-

out these constraints, there are no blockable bids and thus DLk(S, i) = CAP k(S,BS,k\Bblock
S,k,−i) =

CAP k(S,BS,k\∅) =CAP k(S,BS,k) =CAP k(S).

Example 2. Consider an auction with items A, B, C, D, bidders B1 to B5 and the XOR

bidding language. The bids in AB are: (AB,$9,1,B1), (A,$5,2,B2), (B,$8,3,B2), (A,$10,4,B3),

(AB,$15,5,B4) and (AB,$19,6,B5). We computeDL6(AB,B1) using the above formula. Function

f ’s argument Bndom
AB,6,−B1 contains all bids except the bid of B1 and f returns all simultaneously

blockable sets Bblock
AB,6,−B1 and

f(Bndom
AB,6,−B1) = {{2,3,6},{4,6},{5,6}}

Bids are referred by their state. Bids {2,3,6} are blockable due to XOR bidding if B2 and B5 win

C and D respectively, bids {4,6} if B3 and B5 win C and D respectively and bids {5,6} if B4 and
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A B C D
B1 91 0
B2 52 83 0
B3 104 0
B4 155 0
B5 196∗ 0

Table 4 Bids of five bidders on items A,B,C and D. The superskript denotes k and * currently winning. What is

the DL of the package AB for bidder B1?

B5 win C and D respectively. Note that {2,5,6} is not listed since even if bids 5,6 are removed, bid

2 does not win and violates condition iv of definition 5. Sets without bid 6, like {2,3,4}, {2,3,5},

{4,5} violate condition iii since none of their bids currently wins. The sets {3,6} and {2,6} are not

maximal, since their superset {2,3,6} is simultaneously blockable. Subsequently we remove each

simultaneously blockable set from subauction AB and compute CAP . After removing the first set

CAP = $15, after the second one CAP = $15 and after the third one $18. The minimum CAP is

$15, thus DL6(AB,B1) = $15. B1 could win AB for $15 in a future state in which B2 wins C and

B5 wins D.

Function f is specific to allocation constraints and the bidding language, which determine

whether a bid set is simultaneously blockable or not. In Appendix B we provide an algorithm

to calculate DLs for the XOR bidding language without additional allocation constraints. The

XOR bidding language is fully expressive (Nisan and Segal 2006), and it is used in high-stakes

applications such as in spectrum auctions across Europe nowadays.

4. Computational Complexity

Computational complexity has turned out to be a practically relevant topic for the winner determi-

nation problem in CAs. We show that computational complexity is also a problem when computing

pricing rules and that the computation of DLs is even one of the rare examples of a ΠP
2 -complete

problem.

The CAP is a well-known NP-complete problem in its decision version. The NP-completeness

is proven for a variety of cases and bidding languages. Lehmann et al. (2006) prove the NP-

completeness of CAP for the OR and XOR bidding language by reducing from the independent

set problem (Garey and Johnson 1972) using intersection graphs. Sandholm and Suri (2001) prove

the completeness for numerous cases dealing with side constraints such as bounds on the maximal

number of winners. It is easy to see that the computation of WLs must be at least as hard as

CAP .

Proposition 4. Deciding WL(S, i) is NP − complete.



Petrakis, Ziegler, Bichler: Combinatorial Auctions with Allocation Constraints
Information Systems Research 00(0), pp. 000–000, c© 0000 INFORMS 15

Proof: Every instance of CAP can be viewed as an instance of WL for S = K. For S = K,

equation (2) yields WL(K, i) =CAP (K)−CAP (K,Ki) =CAP (K). Thus WL contains CAP as a

special case which is NP -complete. Q.E.D.

Interestingly, the DL problem (equation (4)) is even harder to solve. It requires to solve one

CAP for every simultaneously blockable bid set. The number of bids in S is O(2|S||I|). Hence

the number of bid sets is O(22|S||I|). Due to the set maximality property many of these double

exponential bid sets need not to be evaluated. That means in the worst case only
( 2|S||I|
b(2|S||I|)/2c

)
CAPs need to be solved (Engel 1997), which is still super exponential to the number of items in

S. The actual number of blockable bid sets depends strongly on the allocation constraints.

Obviously the problem belongs to a higher complexity class than NP . This class is ΠP
2 if the

decision version is formulated as DL(S, i)> c and the ΣP
2 if DL(S, i)≤ c. Completeness in these

classes informs of what can (or cannot) be done in polynomial time with access to an NP oracle9,

i.e. an oracle which is able to decide the decision version of the winner determination problem

in a single operation. Every CA employs a method to solve CAP . If we assume the presence of

such an efficient method, completeness in these classes plays exactly the role of NP -completeness

for “ordinary” optimization problems - it distinguishes the intractable from the efficiently solvable

(Umans 2000). ΠP
2 = coNPNP and ΣP

2 =NPNP .

We first show DL(S, i)∈ΠP
2 with the decision problem DL(S, i)> c.

Lemma 1. DL(S, i) is in ΠP
2 .

Proof: We show that there exists a polynomially balanced, polynomial-time decidable 3-ary

relation R such that DL= {x : ∀y1∃y2 such that (x, y1, y2 ∈R)}. x represents the graph containing

all bids in S. Each node in x represents a $1 bid and nodes are connected if and only if the bids

they represent are compatible (e.g. do not overlap). y1 represents a subgraph of x which is induced

according to function f (i.e. each subgraph represents a bid set after removing a simultaneously

blockable bid set). y2 is an independent set of y1. Note that its cardinality equals the value of the

auction. Relation R decides in polynomial time that y1 is a subgraph of x, y2 an independent set

of y1 and that y2 contains more than c nodes. Thus R is polynomially decidable. Furthermore R is

polynomially balanced (since the lengths of y1 and y2 are bounded by a polynomial in the length

of x). Q.E.D.

9 The exponent NP denotes that the non-deterministic Turing machine accepting ΣP2 and the complement of ΠP
2

uses a NP oracle. We refer to Papadimitriou (1993) for formal definitions.
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Intuitively the DL is greater than c if all bid combinations prescribed by f result in a subauction

value greater than c. In graph terms, all of the induced subgraphs must have an independent set

of cardinality greater than c. Remember that DL is a minimization problem and if it exists one

subgraph with value not greater than c then the answer to the question becomes negative. That

explains the necessity of the first quantifier ∀ and is central for the complexity of the problem,

which is a min-max optimization problem (Ko and Lin 1995).

We now prove the completeness of DL(S, i) in ΠP
2 . We make use of the structures of a fairly

restrictive case of the problem, as it is common ground in such proofs (Lehmann et al. 2006), to

reduce from the minmax-Clique problem defined in Ko and Lin (1995).

Definition 6. minmax-Clique: Given is a graph G = (V,E) with its vertices V partitioned

into subsets Vi,j, 1 ≤ i ≤ I, 1 ≤ j ≤ J . For any function t : {1, ..., I} → {1, ..., J}, Gt denotes the

induced subgraph of G on the vertex set Vt =
⋃I

i=1 Vi,t(i). Find fClique(G) = mint maxQ{|Q|: Q ⊂

V is a clique in Gt}.

Intuitively the graph represents a network with I components, with each component Vi having J

subcomponents Vi,1, ..., Vi,J . At any time t only one subcomponent Vi,t(i) of each Vi is active and the

problem is to find the maximum clique size of all possible active subgraphs Gt. The minmax-Clique

problem is ΠP
2 -complete by reduction from SAT2. The completeness is shown for J = 2 and subsets

Vi,j of same cardinality.

Theorem 1. Deciding DL(S, i) is ΠP
2 -complete.

Proof: We reduce from minmax-Clique. For each subcomponent Vi,j we create a bidder who

participates in subauction S. Since J = 2, each component corresponds to a pair of bidders. We

introduce the allocation constraint that no two bidders belonging to the same pair are allowed

to win together in K\S. For each node we create a $1 bid on T with T ⊆ S submitted from the

bidder associated to the subcomponent the node belongs to. Whenever two nodes in G are con-

nected, their associated bids are compatible.10 It can be observed now that fClique(G) =DL(S, i).

There is a one-to-one correspondence between the 2|I| possible active subgraphs Gt and the bid-

der (bid) sets that remain after removing each of the 2|I| simultaneously blockable bidder (bid)

sets of cardinality |I|, due to the constraint in K\S. Furthermore, the max-Clique problem on the

complementary intersection graphs is equivalent to the maximum independent set problem on the

actual intersection graph and thus equivalent to CAP . Q.E.D.

10 The graph we work on is complementary to the intersections graphs described by Lehmann et al. (2006).
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An interpretation of the constraint we introduced to prove completeness is that the auctioneer

is not willing to deal with more than a single winner from a region, assuming that bidders are

paired according to their region. We conjecture that the DL problem without such constraints

cannot be easier since the number of the simultaneously blockable bidders and thus the number

of CAPs which must be solved becomes much greater. To see this, consider an example with 8

foreign bidders in S and |K\S| = 4. Without the constraint the bidder sets amount to
(

8
4

)
whereas

with the constraint only 24 bidder sets need to be evaluated.

5. Allocation Constraints and their Impact on Equilibrium Strategies
in Efficient Auction Designs

In what follows, we want to understand equilibrium strategies in CAs with allocation constraints.

In order to analyze such CAs with respect to efficiency and incentive compatibility we first need

to understand the impact of allocation constraints on those CA formats, which are known to

be efficient with a strong game-theoretical solution concept. First, we analyze the VCG auction,

which is known to be the unique CA format that is strategy proof, efficient and individually

rational (Green and Laffont 1977). Second, we focus on ascending CAs as iBundle, the APA, and

dVSV in which straightforward bidding is an ex post equilibrium for buyer submodular valuations.

The analysis integrates the auction mechanisms in Adomavicius and Gupta (2005) in this game-

theoretical framework and provides conditions, when this auction format leads to an ex post Nash

equilibrium.

Definition 7. A strategy profile s∗ = (s∗1, ..., s
∗
n) is an ex-post Nash equilibrium iff the utility

functions ui satisfy

ui(s
∗, t)≥ ui(s

′

i, s
∗
−i, t) ∀s

′
i, t, i

In other words, truthful bidding in every round of an auction is an ex-post (Nash) equilibrium,

if for every bidder i ∈ I, if all other bidders follow the truthful bidding strategy, then bidder i

maximizes his payoff in the auction by following the truthful bidding strategy independent of the

type t of other bidders (Mishra and Parkes 2007). Ex post equilibria avoid speculation about other

bidders’ valuations or types and could therefore reduce the strategic complexity for bidders con-

siderably, leading to higher efficiency, and also an increased adoption of ascending CAs. Note that

this is weaker than a dominant strategy equilibrium, where bidders do not have to speculate about

other bidders’ valuations and strategies. In contrast to dominant strategy and ex post equilibria,

Bayes-Nash equilibria do always exist, but they require bidders to speculate on both, the type and

the strategy of others. We refer to dominant and ex post equilibria as strong solution concepts. For
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ascending auctions we focus on ex post equilibria, as preference elicitation in an indirect mechanism

typically does not allow for dominant strategy equilibria (Conitzer and Sandholm 2002).

Let us first introduce two definitions to describe bidder valuations, before we discuss individual

auction formats.

Definition 8. A coalitional value function V maps a set of bidders J to a real number V (J),

equal to the total value created from trade among these bidders and the auctioneer.

CAP implements a coalitional value function in the context of CAs. Bidder submodularity

describes a property of the coalitional value function, which allows for strong solution concepts in

ascending CAs and core outcomes in the VCG auction, as we will see below.

Definition 9. (bidder submodular (BSM) condition) A coalitional value function V is bidder

submodular if bidders are more valuable when added to smaller coalitions: for all i ∈ I and all

coalitions J and J ′ satisfying J ⊂ J ′, V (J ∪{i})−V (J)≥ V (J ′ ∪{i})−V (J ′).

Since allocation constraints may alter (lower) V (J), imposing them may turn a coalitional value

function from not BSM to BSM or vice versa11. The simplest example to see this, is to impose

the allocation constraint “max one winner”. Any function will then turn into BSM. The constraint

“min three winners” turns any function into not BSM. In the following, when we refer to V (J) or

BSM, these are computed by taking into account present allocation constraints.

5.1. The VCG Mechanism

The VCG outcome serves as a baseline for all other efficient auction formats. For example, under

BSM valuations APA, iBundle, and dVSV terminate with VCG prices which are in the core,

eliminating incentives for speculation. Core prices have the property that no coalition of bidders can

renegotiate the outcome with the auctioneer in order to increase everyones payoff in this coalition.

The VCG auction is a sealed bid auction allowing for package bids on all combinations of items.

Bidders place sealed XOR bids on their desired packages without getting any feedback by the

auctioneer or knowing bids of other bidders. The auctioneer calculates a feasible allocation X∗ that

maximizes the sum of bid prices. Bidders payments are calculated in a second step. Winning bidders

pay their bid prices bi(S) reduced by a discount which is equal to their marginal contribution to

the whole economy. pi(S) = bi(S)− (V (I)−V (I\i)) ∀S ∈X∗ and zero otherwise.

We concentrate on allocation constraints in this paper. While Ausubel and Milgrom (2006b)

show that budget constraints can lead to inefficiency in the VCG mechanism, allocation constraints

do not affect its properties. However, the calculation of the VCG prices and in particular of the

11 Also the implication by Ausubel and Milgrom (2002) (Goods Are Subtitutes)⇒ BSM does not hold in the presence
of allocation constraints.
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coalitional value from V (J) with J ⊂I has to consider the allocation constraints, as otherwise the

auctioneer could suffer a negative payoff and participation would not be individually rational.

Definition 10. (Shoham and Leyton-Brown (2009)) An environment exhibits the no-single-

agent effect if ∀i,∀v−i,∀X there exists an allocation X ′ that is feasible without i and
∑
j 6=i

vj(X
′)≥∑

j 6=i

vj(X).

A mechanism is weakly budget balanced when it will not lose money, this means if the mechanism

is not weakly budget balanced the auctioneer might be confronted with a negative payoff which

would contradict individual rationality of the mechanism.

Theorem 2. (Shoham and Leyton-Brown (2009)) The VCG mechanism is weakly budget bal-

anced when the no single agent effect property holds.

CAs without allocation constraints are always weakly budget balanced since the no single agent

effect property always holds (Shoham and Leyton-Brown 2009). The theorem extends to VCG

auctions with allocation constraints but in this case the no single agent effect property may not

hold. Hence these auctions are not always weakly budget balanced.

Corollary 1. The VCG mechanism with allocation constraints is not always weakly budget

balanced.

Proof: It may happen that V (I\i) in the VCG payment computation is zero because of allo-

cation constraints. Consider an example where the auctioneer requires 2 winning bidders and only

2 bidders participate, such that the no-single-agent effect does not hold. Bidder B1 values item A

at $10 and B2 values B at $10. The Vickrey payments are p1(A) = p2(B) = 10− (20−0) =−10≤ 0

and the auctioneer loses money. Q.E.D.

If the no-single-agent effect does not hold, the auctioneer might want to consider bids by bidders

i /∈ J to assure a feasible allocation, while maximizing V (J).

5.2. Efficient Ascending CAs

The recent game-theoretical research has led to a coherent theoretical framework and a family of

ascending CAs (iBundle, APA, dVSV) which satisfy an ex post equilibrium under BSM. These

efficient ascending CAs use personalized and non-linear prices. They calculate a provisional value

maximizing allocation at the end of every round and increase the prices for a certain group of

bidders. The different approaches can be interpreted as implementations of primal-dual algorithms

(dVSV) or subgradient algorithms (iBundle, APA) to solve an underlying linear programming

problem (de Vries et al. 2007). This linear program (CAP3) always yields integral solutions and the
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dual variables have a natural interpretation as non-linear and personalized ask prices (Bikhchandani

and Ostroy 2002).

We want to understand, whether additional allocation constraints have an impact on equilib-

rium strategies and efficiency in these auction formats. For this reason, we analyze the impact of

allocation constraints on CAP3. The original CAP3 formulation changes with additional allocation

constraints. An arbitrary allocation constraint can make certain allocations infeasible. Rather than

modeling specific allocation constraints, we keep our analysis general and partition the set of all

allocations in two subsets: the feasible allocations C and the infeasible ones Cu, which turn infea-

sible due to the violation of certain allocation constraints (e.g. the maximum number of winners).

This extends CAP3 by constraint set (LP4):

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t.∑
S⊆K

xi(S) ≤ 1 ∀i (πi) (LP1)

xi(S) ≤
∑

X∈C∪Cu:Si∈X
y(X) ∀i, S (pi(S)) (LP2)∑

X∈C∪Cu
y(X) ≤ 1 (πs) (LP3)

y(X) ≤ 0 ∀X ∈Cu (t(X)) (LP4)
xi(S), y(X) ≥ 0 ∀i, S,X ∈C∪Cu

(5)

The dual to the extended CAP3 in (5) is:

min
πi,πs

∑
i∈I

πi+πs

s.t.
πi+ pi(S) ≥ vi(S) ∀i, S (xi(S)) (DLP1)

πs−
∑
Si∈X

pi(S) ≥ 0 ∀X ∈C (y(X)) (DLP2a)

πs+ t(X)−
∑
Si∈X

pi(S) ≥ 0 ∀X ∈Cu (y(X)) (DLP2b)

πi, πs, pi(S) ≥ 0 ∀i, S

(6)

The decision variables of the primal are: xi(S) denoting whether bidder i wins package S and y(X)

denoting whether allocation X is realized or not. In the dual, πs and πi denote the auctioneers’ and

bidder i’s profit respectively whereas pi(S) denotes the ask price for the package S and bidder i.

Prices are summarized by p. Theorem 3.1 in Bikhchandani and Ostroy (2002) shows that allocation

X and prices p form a competitive equilibrium (CE), if X is an optimal solution to the primal

CAP3 and (p,πi, πS), where πi, πS are payoffs resulting from X and prices p are an optimal solution

to the corresponding dual linear program. Their proof is based on the resulting complementary

slackness conditions. We show that additional allocation constraints causing additional infeasible

solutions do not impact the theorem and the equivalence between competitive equilibrium and

optimal solution to (5) is still given. Let us first enumerate the complementary slackness (CS)

conditions:
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(∑
S

xi(S)− 1

)
πi = 0 ∀i (CS1) (πi+ pi(S)− vi(S))xi(S) = 0 ∀i, S (CS5)(

xi(S)−
∑
Si∈k

y(X)

)
pi(S) = 0 ∀i, S (CS2)

(
πs−

∑
Si∈X

pi(S)

)
y(X) = 0 ∀X ∈C (CS6)(∑

X

y(X)− 1

)
πs = 0 (CS3)

(
πs+ t(X)−

∑
Si∈X

pi(S)

)
y(X) = 0 ∀X ∈Cu (CS7)

y(X)t(X) = 0 ∀X ∈Cu (CS4)

The competitive equilibrium (CE) conditions are:

πi = max
S

(vi(S)− pi(S)) ∀i (CE1) πs = max
X∈C

∑
Si∈X

pi(S) (CE2)

Lemma 2. (X∗, p∗) is a CE if and only if the integral solution dictated by X∗ is an optimal

solution to primal CAP3 (5) and (p∗, π∗i , π
∗
S) is an optimal solution to dual CAP3 (6).

Proof: We follow the proof of Theorem 3.1 by Bikhchandani and Ostroy (2002), and show

that the additional infeasible allocations due to additional allocation constraints do not violate the

equivalence of competitive equilibrium and optimality of the winner determination problem. The

due to the allocation constraints additional (CS4) and (CS7) do always hold, as y(X) = 0 for the

infeasible allocations (cf. (LP4) and y(X)≥ 0). Denote with S∗i the package bidder i is assigned

under allocation X∗.

Sufficiency: Suppose the LP (5) has an integral solution X∗ with xi(S) = 1 iff S = S∗i and y(X) = 1

iff X = X∗. Let (π∗s , π
∗
i , p
∗, t(X∗)) be an optimal solution of the DLP (6). t(X∗) ≥

∑
Si∈X

pi(S)

because it does not appear anywhere else than in (DLP2b) and the program minimizes πs. (CS5)

and (DLP1) imply the first CE condition (CE1). (DLP2a) and (DLP2b) imply

πs ≥ max

{
max
X∈C

∑
Si∈X

pi(S),max
X∈Cu

∑
Si∈X

(pi(S)− t(X))

}
.

Due to t(X∗)≥
∑

Si∈X
pi(S) the last term is always smaller or equal to zero, while the first term is

always greater or equal to zero. Due to (CS6) the above inequality implies the second CE condition

(CE2). Hence (X∗, p∗) is a CE.

Necessity: Let (X∗, p∗) be a CE. Therefore by definition:

π∗i ≡ vi(S∗)− pi(S∗i ) = max
S

(vi(S)− pi(S)) ∀i (CE1)

π∗s ≡
∑

Si∈X∗
pi(S) = max

X∈C

∑
Si∈X

pi(S) (CE2)

Let xi(S) = 1 iff S = S∗i and y(X) = 1 iff X = X∗, else 0. X∗ is a feasible solution to LP (5)

since the allocation is supported in a CE equilibrium. Similarly (π∗s , π
∗
i , p
∗, t(X∗)) is feasible to DLP

(6). The dual variable t(X) does not impact this equivalence. The remaining proof showing that

the integral solution we just constructed is optimal, is identical to the proof of Theorem 3.1 in

Bikhchandani and Ostroy (2002). Q.E.D.
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Definition 11. A straightforward bidder bids only for those packages that maximize his payoff

given the current ask prices.

Corollary 2. The CAP3 formulation with allocation constraints (5) yields integral solutions

and thus the efficient ascending CAs (iBundle, APA, dVSV) terminate at a CE even if allocation

constraints are present and bidders follow the straightforward bidding strategy.

This follows directly from Lemma 2 and the original proofs of the efficiency of iBundle (Parkes

and Ungar 2000) and dVSV (de Vries et al. 2007). Parkes and Ungar (2000) show that all com-

plementary slackness conditions except (CS1) are satisfied in each round of the iBundle auction.

(CS1) states that every bidder with a positive utility for some packages at the current prices must

receive a package in the allocation. Only in the last round this condition is satisfied for all bidders.

The new complementary slackness conditions (CS4) and (CS7) due to allocation constraints are

trivially satisfied, because y(X) is null, and do not impact the proof. While the price updates in

dVSV follow a primal-dual algorithm, iBundle and APA can be considered subgradient algorithms

(de Vries et al. 2007).

Ausubel and Milgrom (2006a) show that the APA (and therefore iBundle) terminates with an

efficient solution and straightforward bidding is an ex post Nash equilibrium strategy when the

BSM condition holds. The proof is defined on some coalitional value function, which might be

implemented by CAP3 but also a CAP3 with additional allocation constraints, and it is therefore

not affected by allocation constraints. In summary, allocation constraints neither have an impact

on the efficiency of the family of efficient ascending CAs, nor on the incentive properties. While

iBundle, the APA, and dVSV allow for allocation constraints, they do not explicitly take them

into account in the pricing rule, but implement simple price increments for subsets of bidders.

6. Efficiency and Equilibrium Analysis of FCAs

In what follows, we want to understand economical characteristics of FCAs and whether pricing

rules such as WL, and DL can also achieve 100% efficiency with a strong solution concept, and

how they relate to other efficient ascending CAs such as iBundle, APA, and dVSV introduced

earlier. Except from the ask price calculation (i.e., pricing rules) the following auctions (FCAWL

and FCADL) are equivalent to APA and iBundle. As in all other efficient ascending CAs we will

first assume a straightforward bidding strategy where the bidders only have to reveal their demand

set in each round. We will show that while FCAWL does not even lead to an efficient solution

with this bidding strategy, FCADL leads to an efficient outcome and straightforward bidding is

an ex-post equilibrium with buyer submodular valuations. Throughout we will assume an XOR

bidding language.
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6.1. FCAWL

In the FCAWL auction losing bidders in a round get an ask price of WL(S, i) + ε for a package S.

In each round WLs for losing bids of losing bidders have to be calculated. This causes the FCAWL

to be an ascending CA, although generally, WLs are not monotonically increasing as DLs are (cf.

Section 3, Proposition 2).

Proposition 5. FCAWL is an ascending CA.

Proof: It is more convenient to speak of auction rounds r than of states here. WLr(S, i) is

only updated right after the submission of a bid (S,v, r− 1, i) and therefore WLr(S, i) can never

be lower than the bid’s value v. But v is equal to the WLr′(S, i) presented to the bidder before

the submission, hence for any r′ < r it holds WLr′(S, i) ≤WLr(S, i) (the round r′ is either the

previous round the bidder had bid on S or the first round). Q.E.D.

The efficiency of a FCAWL can be as low as 0% if the bidders bid straightforward and valuations

are demand masking.

Definition 12. A demand masking set of bidder valuations is given if the following properties

are fulfilled. For each item, there is one bidder. Each l-th bidder values the big package which

contains all items with Vb and the l-th single item with Vs. All other package valuations are zero.

We set mVs >Vb >Vs so that at the efficient allocation every bidder wins a single item.

K item l item l′ 6= l
l-th bidder Vb Vs 0

Table 5 Demand masking set of bidder valuations

Let m= |K| be the number of items. We will first provide an example with m= 4, Vs = $2 and

Vb = $5, where FCAWL is inefficient.

Example 3. There are four bidders, B1 to B4 and four items A to D. Table 6 indicates the

auction progress. Prices are initialized to $0. At the beginning, all bidders bid on the big package.

When its price increases to $3, then the losing bidders bid also on the single items, since their

payoff is $2, i.e. equals the payoff of the big package. Their bids on the single items are unsuccessful

and the prices are updated to $4. These updated prices exceed their valuations Vs = $2, therefore

they never bid again on the single items and the auction fails to reach the efficient solution.

Theorem 3. If bidder valuations are demand masking, the efficiency of FCAWL with straight-

forward bidding converges to 2/m in the worst case with m> 1.
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FCAWL

packages A B C D ABCD ∅
valuations 21 22 23 24 51,52,53,54

round 1 0∗1, 02, 03, 04

round 2 01, 1∗2, 13, 14

round 3 2∗1, 12, 23, 24

round 4 02 03 04 21, 3∗2, 33, 34

round 5 01 32, 4∗3, 44

round 6 5∗1, 52, 43, 54 01, 0∗2, 0∗4
round 7 5∗1, 52, 53, 54 01, 0∗2, 0∗3, 0∗4

Termination

Table 6 FCAWL process

Proof: We distinguish two cases:

Vb ≥ 2Vs (7)

If inequality (7) holds, FCAWL is inefficient. At the beginning, all bidders bid on the big package K.

They do so until the round r at which its winning level exceeds Vb−Vs and thus its payoff falls below

the payoff of a single item. Denote with w the winner of the big package at this round. All other

bidders lose. Their payoffs are higher for the single items than the big package and therefore they

bid on them at the current price 0 (payoff(item l) = Vs−0> payoff(K) = Vb− (Vb−Vs +δ) = Vs−δ,

whereby δ denotes a small constant). These bids of zero value are unsuccessful and the single item

prices (i.e. winning levels) for the next round amount to the winning bid of w which was Vb−Vs.

Their payoff(item l) = Vs − Vb + Vs = 2Vs − Vb and payoff(K) = Vb − Vb + Vs = Vs > payoff(item l)

since Vb > Vs. Thus they bid again on the big package. Furthermore, due to (7) their payoffs for

the single items (equal to 2Vs − Vb) are negative and they will never bid on them again. The

auction ends by assigning the big package to an arbitrary bidder. The efficiency is Vb/(mVs) and for

Vb = 2Vs + δ, it becomes (2 + δ′)/m. Thus for a large m, it converges to 0%. On the contrary, if (7)

does not hold, the bidders will bid again on the small items at price Vb−Vs when the payoff of the

big package falls below payoff(item l) = 2Vs− Vb. They win the single items and the auction ends

with the efficient outcome. Note also that for m= 2 the reverse inequality (7) cannot be satisfied

due to requirement mVs >Vb and hence the auction is efficient for m= 2 and inefficient for m> 2.

Q.E.D.

While there might also be other bidder valuations leading to low efficiency, it is sufficient for our

purposes to show that the efficiency of FCAWL can actually be as low.

6.2. FCADL

Contrary to the negative results on FCAWL, we show that FCADL leads to full efficiency with

straightforward bidding, but it requires less rounds and less bids than iBundle and the APA.
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The only difference between FCADL and FCAWL is that in FCADL, ask prices are updated to

DL(S, i) + ε.

Lemma 3. DL ask prices are always higher or equal to iBundle prices given the same bids.

Proof: Let pki (S) be the iBundle price after k bids are submitted. iBundle uses an XOR

bidding language, and let CAPk(S, i) denote the highest bid of i in S (bids of one bidder cannot

be combined due to XOR): CAPk(S, i) = max{v|(T, v, k′, i), T ⊆ S,k′ ≤ k}. Equation (4) implies

DLk(S, i) ≥ CAPk(S, i). The price update rules in iBundle ensure that in each round pki (S) =

max{v|(T, v, k′, i), T ⊆ S,k′ ≤ k}+ ε (Parkes and Ungar 2000)12. Thus CAPk(S, i) + ε= pki (S) and

DLk(S, i) + ε≥ pki (S). Q.E.D.

To prove the efficiency of FCADL, we draw on the proof of optimality by Parkes and Ungar

(2000) and show that optimality is not affected by the requirement to bid DLs + ε instead of

only an ε above the last losing bid. Their proof works on a primal and a dual version of CAP ,

due to Bikhchandani and Ostroy (2002). This version is known as CAP2 and is very similar to

CAP3. The main difference is that its prices are anonymous and it corresponds to the auction

iBundle(2). To prove the efficiency of iBundle(2), it is assumed that no single bidder bids on

two non-overlapping (safety condition. The efficiency of iBundle(3) or simply iBundle follows

then directly from iBundle(2) (Parkes and Ungar 2000) and it can be dispensed with the safety

condition.

Lemma 4. FCADL terminates with the efficient solution and with CE prices if bidders bid

straightforward.

Proof: The only modification of FCADL, i.e. to quote DLs instead of simple price updates,

only affects the proof with respect to the complementary slackness condition CS-6. We only need

to show that CS-6, which states that “the allocation must maximize the auctioneer’s profit at

prices p(S), over all possible allocations and irrespective of bids received by agents”, is satisfied

by FCADL too. Replace p(S) by DL(S). From the DL computation follows that there is always

a bidder or group of bidders willing to pay DL(S) for every package in the value-maximizing

allocation X∗DL that is computed based on the prices (DLs) and irrespective of the bids. For this,

observe that the highest possible DL(S), which is the case when no bids are blockable, is equal

to CAP (S) considering all submitted bids. Hence there is always a bidder or a group of bidders

willing to pay DL(S). Therefore, allocation X∗DL with auctioneer’s profit
∑

S∗∈X∗
DL
DL(S∗) can

12 Due to the free disposal assumption implying that packages are priced at least as high as the greatest price of any
package they contain, i.e. pki (S)≥ pki (T ) for S ⊇ T .
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be realized by assigning each S∗ to a subset of bidders J(S∗), J(S∗)⊆ I with
⋂
J(S∗) = ∅. Every

bidder receives at most one package and hence the XOR constraint is not violated. The reason is

that packages S∗ form a feasible allocation and are obviously non-overlapping and no single bidder

bids on non-overlapping packages due to the bid safety condition. In summary, we showed that it

is always possible for the auctioneer to realize the profit-maximizing allocation at prices DL(S)

irrespective of bids received, since the computation of DLs ensures there are always bidders willing

to take these prices13. Q.E.D.

Theorem 4. FCADL is efficient if bidders follow the straightforward bidding strategy. This strat-

egy is an ex-post Nash equilibrium if the BSM condition holds.

Theorem 4 follows directly from Lemma 4 and Ausubel and Milgrom (2006a).

FCADL can reduce the number of auction rounds, which is a considerable problem of iBundle

as shown by Scheffel et al. (2011) and Schneider et al. (2010). The reason is that dead bids in

iBundle, which will never be part of the winning allocation, are skipped and prices increase faster.

We provide a simple example that FCADL can terminate with strictly less rounds than iBundle.

Example 4. Consider items A,B,C are auctioned among bidders B1 to B4 in iBundle and

FCADL using an increment of ε = 1. Bidders bid straightforward and are single minded which

means they value only one package positively and all others with zero. The exact valuations of each

bidder and the auction rounds are described in Table 7. Ties are broken in favor of more winners.

iBundle FCADL

packages A B C ABC A B C ABC

valuations 51 52 53 84 51 52 53 84

round 1 1∗1 1∗2 1∗3 14 1∗1 1∗2 1∗3 14

round 2 1∗1 1∗2 1∗3 24 11 12 13 4∗4
round 3 1∗1 1∗2 1∗3 34 2∗1 2∗2 2∗3 44

round 4 11 12 13 4∗4 21 22 23 7∗4
round 5 2∗1 2∗2 2∗3 44 3∗1 3∗2 3∗3 74

round 6 2∗1 2∗2 2∗3 54 3∗1 3∗2 3∗3 ∅∗4
round 7 2∗1 2∗2 2∗3 64 Termination

round 8 21 22 23 7∗4
round 9 3∗1 3∗2 3∗3 74

round 10 3∗1 3∗2 3∗3 84,∅∗4
Termination

Table 7 iBundle and FCADL process

13 To see why this is not the case by WLs, consider only one bid $10 on AB. Then WL(A) = $10 but no bidder is
willing to pay the price. DL(A) is instead $0.
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The example illustrated in Table 7 shows that FCADL reduces the number of auction rounds,

the communication effort (since dead bids are not submitted) and also the computational effort.

In general the reduction of auction rounds and communication effort comes at the price of higher

computational effort as the ΠP
2 -hard DL determination problem has to be solved several times.

In what follows, we introduce two economically motivated value models to demonstrate the

benefits of FCADL concerning the number of auction rounds and the communication effort. Let

RRR= rounds iBundle−rounds FCADL
rounds iBundle

denote the round reduction rate. Let C denote the communica-

tion effort measured as the number of all bids and ask prices exchanged. CRR= C iBundle−C FCADL
C iBundle

is the corresponding reduction rate.

Definition 13. Value model VM1 comprises m single minded regional bidders who value pair-

wise non-overlapping packages to at least $ε and one global bidder who values package K of all

items to at least the sum of the valuations of the regional bidders.

Definition 14. Value model VM2 comprises m single minded bidders with identical valuations

for a specific package S, with |S|>m− |K|+1, i.e. the complementary to S subauction is not too

large and ensures the existence of blockable bids and thus high DL.

Theorem 5. In VM1 RRR= m−1
m+1

and CRR= 1
2
− 1

2m
. In VM2 RRR=CRR= 1

m
.

The proofs are in Appendix A. It follows that in VM1 RRR→ 100% and CRR→ 50% for m→∞.

Surprisingly, in a realistic value model with regional and global bidders, which resembls the setting

of FCC sprectum auctions, FCADL can substantially decrease the number of rounds and commu-

nication effort. In more generic VM2, which is the case when many bidders have homogeneous

valuations, RRR→ 50% and CRR→ 50% for m= 2.

7. Numerical Experiments

The computational complexity results for exact DLs suggest that the computational costs outweigh

the benefits. We supplement the theoretical analysis with an experimental comparison of FCADL

and iBundle. Since there are hardly any real-world CA data sets available, we have adopted value

models of the Combinatorial Auctions Test Suite (CATS) (Leyton-Brown et al. 2000). In addition

to CATS value models, we have used an extended version of the Pairwise Synergy value model from

An et al. (2005). A more detailed description of the value models is provided in Appendix C, while

the computation of DLs is described in Appendix B. For each value model we created 30 auction

instances with different valuations, and ran each of them with both auction formats. All auctions

used a bid increment of 1. Table 8 depicts the results for small and medium sized auctions. We used

the Symphony MIP solver (http://www.coin-or.org/SYMPHONY/) and computers with an Intel
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Core 2 CPU with 2.67GHz and 4GB main memory. Efficiency and final pay prices of both auction

formats were the same (in accordance with Section 6.2). Hence, we report only on the reduction

in rounds RRR and communication effort CRR and the computation times.

iBundle(3) DL

Real Estate RRRmax 7.547%
CRRmax 49.222%

2x2 items ∅ R = 43.8 ∅ RRR 3.395%
10 bidders ∅ C = 3943.1 ∅ CRR 44.995%

∅ RF 1.425
∅ PCT 3.402ms

Transportation RRRmax 17.021%
CRRmax 13.584%

4 items ∅ R = 108.4 ∅ RRR 5.333%
10 bidders ∅ C = 842.2 ∅ CRR 5.635%

∅ RF 0.986
∅ PCT 1.252ms

Pairwise Synergy+ RRRmax 47.945%
CRRmax 39.447%

3 items ∅ R = 110.9 ∅ RRR 36.625%
9 bidders ∅ C = 1055.9 ∅ CRR 30.028%

∅ RF 0.714
∅ PCT 1.025ms

iBundle(3) DL

Real Estate RRRmax 1.190%
CRRmax 49.029%

3x3 items ∅ R = 96.3 ∅ RRR 0.513%
12 bidders ∅ C = 341261.6 ∅ CRR 45.976%

∅ RF 30.756
∅ PCT 169.377ms

Transportation RRRmax 0.000%
CRRmax 19.790%

9 items ∅ R = 104.7 ∅ RRR 0.000%
12 bidders ∅ C = 1448.4 ∅ CRR 4.519%

∅ RF 1.094
∅ PCT 1.596ms

Pairwise Synergy+ RRRmax 29.132%
CRRmax 24.314%

8 items ∅ R = 302.5 ∅ RRR 5.001%
12 bidders ∅ C = 115947.0 ∅ CRR 21.022%

∅ RF 5.467
∅ PCT 8.862ms

Table 8 Comparison of FCADL to iBundle. Left part for small size and right part for medium size auctions.

RRRmax = Max Round Reduction Rate, CRRmax = Max Communication Reduction Rate,

∅ RRR = Average Round Reduction Rate, ∅ CRR = Average Communication Reduction Rate,

∅ RF = Average Runtime Factor, ∅ PCT = Average Price Calculation Time

In small size auctions (see Table 8) we observe a considerable reduction of the auction rounds

across all value models and particularly in Pairwise Synergy+, where the maximum over the 30

auctions (RRRmax) is 47.945%. This is due to the existence of two bidder segments, regional and

global, which leads to high RRR. The average CRR is over 30% in all value models except the

Transportation value model, where bidders are only interested in a very limited set of packages. RF

is the ratio of total run time of FCADL to iBundle. Surprisingly, despite of the high computational

complexity of DLs, the run times of FCADL is sometimes even lower than that of iBundle (see

8 where RF < 1). The reason is the lower number of bids submitted, which shortens the winner

determination in each round. The average computation time of a DL, denoted as PCT , ranges

from 1.0 to 3.4 milliseconds only.

The mid-sized auctions with up to 9 items led to higher computation times than iBundle since

many more DLs had to be computed. Also in these experiments computing a DL took between
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1ms and 170ms only. The communication between auctioneer and bidders (CRR) was reduced

substantially in all value models, but the total runtime RF increased.

We conducted additional experiments with 10 items and 9 bidders in different value models,

where bidders submit bids on every possible package. Also in these larger instances, the computation

lasted only 1.48s on average. Obviously, the computation time depends on many parameters such

as the package size, the size of the complementary subauction, the number of bidders and their

bids. However, our results indicate that computing DLs in ascending auctions might well be used

in practical applications.

8. Conclusion

Designing efficient combinatorial auctions turned out to be a challenging task. A few recent papers

have described efficient and ascending combinatorial auctions which satisfy strong game-theoretical

solution concepts. In many applications the consideration of additional allocation constraints and

flexibility in the choice of the bidding language are essential. These requirements have not been

considered in the design of price feedback in the theoretical literature so far. It is important to

extend the theory respectively. This could increase the applicability of ascending combinatorial auc-

tions in domains such as transportation or industrial procurement considerably and bare significant

practical potential.

We consider ascending combinatorial auctions allowing for side constraints and OR as well as

XOR bidding languages. We draw on the work by Adomavicius and Gupta (2005) and define win-

ning and deadness levels (WLs and DLs) as a general pricing rule for ascending combinatorial

auctions, which allow for different bidding languages and allocation constraints. This extension

leads to a number of theoretical challenges. We show that straightforward bidding is an ex post

equilibrium in ascending combinatorial auctions with DLs, and how this pricing rule can be inte-

grated in the theoretical framework of efficient and ascending combinatorial auctions.

While both, iBundle and the FCADL allow for allocation constraints, DLs take allocation con-

straints into account and actually lead to a lower number of auction rounds and bids that need

to be submitted. The high number of auction rounds turned out to be one of the main obstacles

for efficient ascending combinatorial auctions such as iBundle, the Ascending Proxy Auction, and

dVSV. DLs come at a computational cost, however. The computation is a ΠP
2 -complete problem.

We show, however, that such ask prices can be calculated for up to 10 items and 9 bidders with

realistic value models in less than 1.5 seconds in experiments, which suggests that these approaches

might well be used in applications. Approximations to the exact computation of DLs could poten-

tially be an area of future research.
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These results provide a theoretical foundation for practical auction design. Such designs can

leverage different pricing rules. Experimental research is required to gain insights on bidding behav-

ior and efficiency in complex markets with allocation constraints.
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Appendix A: Proofs

Proposition 1: WLk(S, i) =CAPk(K)−CAPk(K, Si)

Proof: We give a self-contained proof that is based on the proof of Theorem 2 of Adomavicius and Gupta

(2005). We introduce the symbol CEk (S) = {C ′ ∈ C ∪E|C ∈ Ck,E ∈
⋃I

i=1(S,0,0, i)∪ ∅}14 to denote the set

of feasible allocations that can also include bids of zero value on S15. We define a binary relation ≺ on bid

allocations to compare the values of two allocations: C ′ ≺ C ′′⇒ v(C ′) < v(C ′′) where v(C) =
∑

b∈C v(b) is

14 In the referenced proof Ck(S) denotes the set of feasible allocations for subauction S. In our setting, note that
B1 ∈ Ck(S) and B2 ∈ Ck(K\S) does not imply that B1 ∪B2 ∈ Ck(K) due to allocation constraints. Thus, generally
Ck(S) where S ⊂K is not defined.

15 We need this extension since otherwise allocations where a bidder wins a package for free would not be feasible.
These allocations are considered in CAPk(K, Si).
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the value of the allocation C. S(C) =
⋃
b∈C S(b) denotes the items covered in allocation C. WINE

k (K, S, i) =

max≺{C ∈CEk (K)|(S,0,0, i) ∈ C} represents the winning allocation of the whole auction at state k subject

to the condition that bidder i wins S for free. We consider a new bid bk+1 of bidder i on package S at state

k+ 1. Let C1 = {C ∈Ck+1(K)|bk+1 ∈C} and C2 = {C ∈Ck+1(K)|bk+1 /∈C} be the set of all allocations with

and without bk+1 respectively. It holds C1 ∩ C2 = ∅ since they cannot share a common allocation (every

allocation in C1 contains bk+1 and every allocation in C2 does not) and C1 ∪C2 =Ck+1(K). Therefore:

(8)WINk+1(K) = max≺{C ∈ Ck+1(K)} = max≺{C1 ∪ C2} = max≺{max≺C1,max≺C2}

(9)and since bk+1 /∈ C ∀C ∈ C2, it follows C2 = Ck(K) and max≺C2 = max≺Ck(K) = WINk(K)

Furthermore:
max ≺C1 = max≺{C ∈ Ck+1(K)|bk+1 ∈ C}

= {bk+1} ∪max
≺
{C\{bk+1}|C ∈ Ck+1, bk+1 ∈ C}

= {bk+1} ∪max
≺
{C|C ∈ Ck(K), S(C) ∩ S(bk+1) = ∅}

= {bk+1} ∪max
≺
{C ∈ CEk (K), (S(bk+1),0,0, i(bk+1)) ∈ C}

= {bk+1} ∪WINE
k (K, S(bk+1), i(bk+1))

The last equation together with (8) and (9) imply:

WINk+1(K) = max≺{WINk(K),{bk+1} ∪WINE
k (K, S(bk+1), i(bk+1))}

and bk+1 ∈WINk+1 ⇐⇒ v(WINk) < v(bk+1) + v(WINE
k (K, S(bk+1), i(bk+1)))

Thus, for a new bid bk+1 to win, its value v(bk+1) together with v(WINE
k (K, S(bk+1), i(bk+1))) which

is the value of CAP subject to the constraint that the bidder i(bk+1) wins S(bk+1) for free (we

denoted this CAP as CAP k(K, Si)), must exceed v(WINk) which is the current value CAP k(K).

This completes the proof. Q.E.D.

Proposition 2:

a)DLk(S, i)≤DLk+1(S, i) b)DLk(S, i)≤WLk(S, i) c)DLk(K, i) =WLk(K, i)

Proof: 16 a)Assume DLk+1(S, i)<DLk(S, i). Denote with ε a very small positive number. Then DLk(S, i)

implies that @k′ >k : (S,DLk(S, i)−ε, k′, i)∈WINk′(K)⇒ @k′ >k : (S,DLk+1(S, i), k′, i)∈WINk′(K) (since

we assumed DLk+1(S, i) < DLk(S, i)). But DLk+1(S, i) implies that ∃k′ > k + 1 : (S,DLk+1(S, i), k′, i) ∈

WINk′(K). Contradiction.

In words, all bids below DLk(S, i) are destined to lose whatever happens in future auction states. But in

the future state k+ 1 a bid amounting to DLk+1(S, i) and thus below DLk has a chance to win in a state

greater than k+ 1. Therefore DLk(S, i) is not minimal and by definition not a DL.

16 We provide a definition-based proof without using a formula which calculates DLs. We have not derived such a
formula yet.
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b)Assume DLk(S, i) > WLk(S, i). The WL definition implies that the bid (S,WLk(S, i), k + 1, i) ∈
WINk+1(K). The DL definition together with the assumption DLk(S, i)>WLk(S, i) implies that @k′ > k :

(S,WLk(S, i), k
′, i)∈WINk′(K). Contradiction.

In words, the DL is the minimal price to win the item in a possible future auction state. The WL is the

minimal price to win it at the next state, thus it cannot be lower.

c)(K, v, k+1, i)∈WINk+1(K)⇒ v≥CAPk(K). Thus the minimum v, i.e. the WL, is WLk(K) =CAPk(K).

Furthermore if v < CAPk(K) ⇒ @k′ > k : (S,v, k + 1, i) ∈ WINk′(K) since by CAP definition k′ > k ⇒
CAPk′(K)≥CAPk(K). Thus DLk(K, i) =CAPk(K) =WLk(K, i).

In words, to win in the next auction state all auctioned items, a bidder must bid at least the current

auction value. Every lower bid will not be winning in any future auction state since the auction value will

not sink. Q.E.D.

Theorem 5: In VM1 RRR= m−1
m+1

and CRR= 1
2
− 1

2m
. In VM2 RRR=CRR= 1

m
.

Proof: VM1: In each round, either the coalition of the global bidder alone wins or the coalition of all

regional bidders. Denote a round as G if the global bidder wins, else as S. We consider the sequence of

rounds which comprises of two consecutive winning rounds for the global bidder. In FCADL the coalitions

win alternately, thus the sequence is GSG. After a G, each regional bidder increases his bid by ε and after

a S, the global bidder by mε since his DL increases by this amount. In FCADL the sequence is GSG while

in iBundle G

m︷ ︸︸ ︷
S · · ·SG. RRR and CRR equal to the reductions rates of this cyclical sequence, excluding the

last G. Thus RRR= m+1−2
m+1

= m−1
m+1

and CRR= 2m−(m+1)

2m
= 1

2
− 1

2m

VM2: Every bidder bids on the same package. Let pr denote its highest price over all bidders at round r.

In FCADL pr increases by ε after each round. In iBundle it can be easily seen that in every m consecutive

rounds, there is one round where pr remains unchanged since all losing bidders just level the price of the

previously winning bid, thus on average the price increase is (1− 1
m

)ε. The number of rounds is equal to

the final price pT divided by the average price increase, thus RRR=
(1− 1

m
)ε−ε

(1− 1
m

)ε
= m−1

m+1
. Regarding CRR, in

iBundle each bidder submit pfinal

ε
+ 1 bids. In FCADL, w.l.o.g. we assume that all but two bidders always

lose (tie breaking). These two bidders alternately increase their bids by 2ε and the computational effort for

these two is equal to the effort for one of the always losing bidders. Thus CRR=
m( p

T

ε
+1)−(m−1)( p

T

ε
+1)

m( p
T

ε
+1)

= 1
m

.

Q.E.D.

Appendix B: Computation of DLs for an XOR bid language

We proceed according to the two-phase method and firstly seek for simultaneously blockable bid sets. We

observe that a winning bid of bidder j on a single item l ∈K\S suffices to simultaneously block all his bids

in S. Consequently the number of foreign bidders, whose bids in S are simultaneously blockable, amounts

to |K\S|. If this number is greater or equal than the number of all foreign bidders in S who have a least

one non-i-dominated bid in S, denoted as nS, we are done. All of them can be blocked and DL is equal

to the highest bid of i in S, i.e he must overbid only his own bids. Otherwise we proceed to phase 2 and

determine which bidder set leads, if removed from subauction S, to the minimum CAP value in S.17 If

17 Here it is more convenient to speak about removal of bidder sets instead of bid sets. The removal of a bidder set
from subauction S corresponds to the removal of all the bids in S submitted from bidders in the bidder set.
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Input: package S, bidder i

set of bids BndomS,k,−i
Output: DL(S, i)

1: lowerBound←maxb{v(b) : i(b) = i, S(b)⊆ S}
2: DL(S, i)←∞
3: F ← getForeignBiddersOnPackage(S, i)

4: if |F|≤ |K\S| then
5: DL(S, i)← lowerBound

6: else

7: for all Fi ⊂F : |Fi|= |K\S| do

8: thisPrice←CAP (S,BS,k\{b′|b′ ∈BndomS,k,−i, i(b
′)∈Fi})

9: if thisPrice <DL(S, i)

10: DL(S, i)← thisPrice

11: end if

12: if DL(S, i) = lowerBound then

13: break for

14: end if

15: end for

16: end if

17: return DL(S, i)

Algorithm 1: DL XOR algorithm

|S|= 1 or if all bids in S are overlapping, it is easy to find which bidders should be removed; the ones with

the highest bids. But the general case is obviously combinatorial and requires solving the CAP for each of

the
(

nS
nS−|K\S|

)
=
(
nS
|K\S|

)
bidder sets remaining after removing the blockable ones. The pseudocode is given in

1.

The outlined calculation of XOR DL can serve as a basis to calculate DL for a number of other constrained

cases, surprisingly even for cases with the OR bidding language. We provide an example, as this cannot be

claimed for every conceivable case.

Proposition 6. The DL(S, i) for the OR bidding language in presence of the constraint “max a winners”

can be calculated as XOR DL.

Proof: The most opportune case for bidder i to win S is when he places a huge bid on a item of the

complementary subauction K\S so that he is surely among the a winners18 and additionally some bidders

leading to the highest CAP (S) are not among the a winners because other “low” bidders in S place huge

bids in K\S. Together with bidder i, min(a− 1, |K\S|−1) foreign bidders can win in K\S and all other

18 It is not known whether i truly desires items in K\S. We take it for granted since we want to minimize his price
on S. Knowing additional information such maximal willingness to pay in K\S leads to additional constraints in the
minimization problem of DL and the optimal value increases. In our analysis we do not cope with this issue but
with the standard definition of DLs of Adomavicius and Gupta (2005) which is DL(S) =CAP (S). Thereby winning
subauction S does not implies winning S. This especially will not happen if we incorporate the additional information
that every bidder is interested in packages overlapping with S and there is little interest in K\S so that S and K\S
will never be part of the efficient allocation. Although incorporating such information is beyond the scope of this
work, we believe that our analysis and algorithms provide the necessary tools to guide the computation of DLs even
in such cases. What changes is how the simultaneously blocked bids are computed and this has to be engineered for
every concrete case.
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max(nS −min(a− 1,”|K\S|−1)),0) foreign bidders in S can be simultaneously blocked. Knowing this, we

can proceed to calculate DL(S, i) as in the XOR DL case by solving one CAP for each bidder sets of the

derived cardinality. Q.E.D.

Appendix C: Value Models

The Real Estate value model is based on the Proximity in Space model from CATS (Leyton-Brown et al.

2000). Items sold in the auction are the real estate lots l, which have valuations vl drawn from the same

normal distribution for each bidder. Adjacency relationships between two pieces of land m and n (emn)

are created randomly for all bidders. There is a 90% probability of a vertical or horizontal edge, and an

80% probability of a diagonal edge. Edge weights wmn are then generated randomly for each bidder (mean

0.4, deviation 0.2), and they are used to determine package valuations of adjacent pieces of land: v(S) =

(1 +
∑

emn:m,n∈S wmn)
∑

l∈S vl.

The Transportation value model uses the Paths in Space model from CATS (Leyton-Brown et al. 2000).

It models a nearly planar transportation graph in Cartesian coordinates, where each bidder is interested

in securing a path between two randomly selected vertices (cities). The items traded are edges (routes) of

the graph. Parameters for the Transportation value model are the number of items (edges) m and graph

density ρ, which defines an average number of edges per city, and is used to calculate the number of vertices

as (m ∗ 2)/ρ. The bidder’s valuation for a path is defined by the Euclidean distance between two nodes

multiplied by a random number, drawn from a uniform distribution. Consequently only a limited number of

packages, which represent paths between both selected cities, are valuable for the bidder. This allows us to

consider even larger transportation networks in a reasonable time. In our simulations we set the mean of ρ

to 1.8 and 2.5 for the small and medium size auctions respectively. The standard deviation was set to 0.25.

The Pairwise Synergy value model in An et al. (2005) is defined by a set of valuations of individual

items {vl} and a matrix of pairwise item synergies {synk,l : k, l ∈K, synk,l = synl,k, synk,k = 0}. The valuation

of a package S is then calculated as v(S) =
∑|S|

k=1 vk+ 1
|S|−1

∑|S|
k=1

∑|S|
l=k+1 synk,l(vk+vl). A synergy value of 0

corresponds to completely independent items, and the synergy value of 1 means that the package valuation is

twice as high as the sum of the individual item valuations. The relevant parameters for the Pairwise Synergy

value model are the interval for the randomly generated item valuations, set to [0.0,30.0], and the interval for

the randomly generated synergy values, set to [0.0,2.0]. In Pairwise Synergy+ we specified additionally

two bidder segments. In small size auctions, six bidders were interested in packages of cardinality 1 and three

bidders of cardinality 3. In medium size auctions, eight bidders were interested in packages of cardinality in

the interval [1,3] and four in the interval [7,8].


