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Abstract—Today’s data centers offer IT services mostly hosted on dedicated physical servers. Server virtualization provides a

technical means for server consolidation. Thus, multiple virtual servers can be hosted on a single server. Server consolidation

describes the process of combining the workloads of several different servers on a set of target servers. We focus on server

consolidation with dozens or hundreds of servers, which can be regularly found in enterprise data centers. Cost saving is among the

key drivers for such projects. This paper presents decision models to optimally allocate source servers to physical target servers while

considering real-world constraints. Our central model is proven to be an NP-hard problem. Therefore, besides an exact solution

method, a heuristic is presented to address large-scale server consolidation projects. In addition, a preprocessing method for server

load data is introduced allowing for the consideration of quality-of-service levels. Extensive experiments were conducted based on a

large set of server load data from a data center provider focusing on managerial concerns over what types of problems can be solved.

Results show that, on average, server savings of 31 percent can be achieved only by taking cycles in the server workload into account.

Index Terms—Management of services delivery, modeling of resources, data center management services, optimization of services

systems.
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1 INTRODUCTION

ENTERPRISES nowadays host central servers either in
internal data centers or in those of commercial IT service

providers. These data centers host most of the essential IT
services (e.g., ERP modules, databases, or Web servers) on
dedicated physical servers. The complex resource require-
ments of enterprise services and the desire to provision for
peak demand are important reasons for overprovisioning.
As a consequence, the average server utilization is typically
very low, which incurs high investment and operational
costs. The Gartner Group estimates that the utilization of
servers in data centers is less than 20 percent [1]. However,
efficiency in the production of IT services is key in an
industry where services are becoming more and more
standardized and where revenues are therefore decreasing.
In particular, the bare savings of servers is of primary
importance for most data centers regarding the cost of energy
and cooling, which sometimes account for 40-50 percent of
the total data center operation costs [2] (see also Section 7).

Server consolidation is an approach to the efficient usage of
(physical) servers in order to reduce the total number of
servers that an organization requires. The practice developed
in response to the above-described server sprawl, a situation
in which multiple, underutilized servers take up more space
and consume more energy than can be justified by their
workload. Server virtualization provides technical means to

consolidate multiple servers leading to increased utilization
of physical servers. The term refers to the abstraction of
computing resources across many aspects of computing and
has been used to describe different techniques. Server
virtualization describes a virtual machine, which appears
to a “guest” operating system as hardware, but is simulated
in a contained software environment by the host system. This
way, a single physical server can be partitioned into multiple
virtual servers. Parallels, Xen, and VMware are only a few of
the products on the market enabling server virtualization.
Apart from higher server utilization levels, benefits are:
reduced time for deployment, easier system management,
and thereby overall lower hardware and operating costs.
Virtualization has been a growing trend in the past few years,
and it can now be considered an established tool that is
nowadays used regularly in large-scale server consolidation
projects with IT service providers [3].

Capacity planning, quality-of-service, and performance
modeling have long been central research issues in Computer
Science and Information Systems [4]. Increased outsourcing
of IT services [5], as well as on-demand software provision-
ing for thousands or millions of users, has led to automation
and further industrialization of data center operations.
Production efficiency has become crucial for IT service
management and capacity management is therefore a key
component of related standards such as ITIL [6] or ISO/IEC
20,000 [7]. Target areas of capacity planning and performance
modeling include file and database systems, computer
networks, operating systems, fault-tolerant systems, and
real-time systems (see, for example, [8], [9], and [4]). A
traditional analytical approach to support capacity planning
is queuing theory, allowing for the determination of response
time, service time, server utilization, and many other metrics
essential for capacity planning with dedicated servers [10].
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Server consolidation is orthogonal to this type of capacity
planning. Mostly, the workload and system requirements for
different services are known or can be estimated with a high
degree of confidence from historical workload data. The
challenge is finding an allocation of source servers (services in
the following) to target servers that minimizes costs,
considering quality of service (QoS) requirements. This
poses new and widespread capacity planning problems that
will be the focus of this work. Storage virtualization and
storage-consolidation-related problems are not considered in
this paper. Server consolidation problems can be treated
separately from the storage issue.

In this paper, we consider the problem of IT service
providers hosting the IT services of multiple (also internal)
customers. Based on the users’ demands or historical
workloads, the IT service provider needs to determine the
allocation of these services to target servers using some
predefined objective function (e.g., minimizing the amount
or costs of servers used). We propose a server consolidation
method that combines data analysis to characterize varia-
tions in workload traces and algorithms to optimally assign
source servers to physical target servers. These types of
problems are computationally hard, and can be found in
almost all server consolidation projects. We will focus on
problem sizes of up to 600 servers in this paper. We found
that even in large enterprise-wide consolidation projects
with thousands of servers, the overall problem was divided
in individual consolidation projects with a few dozens or
hundreds of servers for technical or administrative reasons.
There can, however, be larger problems beyond 600 servers
that will require different heuristic solutions than the ones
described in this paper.

Cloud Computing and Infrastructure-as-a-Service (IaaS)
have become very important trends recently. Note also that
IaaS providers face similar resource allocation problems.
The relation to Cloud Computing and IaaS will be discussed
in Section 8.

One contribution of this paper is decision support for IT
service providers following a design science approach [11]:
We provide a mathematical formulation of widespread
server consolidation problems, a complexity analysis show-
ing that the fundamental problem is an NP-hard optimiza-
tion problem, an LP-relaxation-based heuristic to solve this
problem, and a data preprocessing method characterizing
workload traces and deriving parameters for the decision
model. The data preprocessing method allows the exploita-
tion of seasonalities in the decision problem on the one
hand and offers the possibility to adjust the quality of each
service individually on the other hand.

The main contribution of this paper is an extensive
experimental evaluation based on real-world workload
traces that focus on the managerial questions for IT service
providers. Given the specifics of the server consolidation
problem, it is important for managers to understand which
problem sizes can be solved exactly, which can be solved
heuristically, and what the impact of various model
parameters is on the solution quality and time. Both our IP-
based decision models and our LP-based heuristic allow for
the consideration of business constraints, but at the same
time, solve even large-scale server consolidation problems
with hundreds of servers as they can be found in practice in
less than 20 minutes. We provide extensive sensitivity

analyses describing how the time resolution of load data
considered, or the size of the source servers relative to the
target servers, impacts the size of the problems that can be
solved. We also show how the risk parameters and the time
resolution of load data considered impact the quality of the
allocation. A key result is that only leveraging the daily
seasonalities in the optimization accounts for 31 percent
savings on average in the number of target servers needed as
compared to the optimal solution ignoring daily variations in
the workload. We also show that there are significant
differences between the two types of applications with
respect to the size of instances that could be solved.

While our work follows a design science approach, it
does have managerial implications that go beyond the fact
that IT service managers can now plan server consolidation
projects in an automated way. Server consolidation has
been embraced as a possibility to cut costs in the
provisioning of IT. How much savings one can expect also
depends on the characteristics of the workloads at hand.
Our models allow the calculation of the potential savings in
terms of hardware cost for a specific server consolidation
problem at hand. Clearly, virtualization does provide a
number of other benefits as well, such as easy management
and migration of servers to other hardware. In this paper,
however, we focus on savings due to the optimal allocation
of virtual to physical servers.

The paper is structured as follows: In Section 2, we will
provide a brief overview of virtualization techniques. In
Section 3, typical server consolidation scenarios found in
practice are presented. Then, in Section 4, two fundamental
capacity planning problems are introduced and discussed
regarding their computational complexity. These models
are supplemented by important constraints in Section 4.2.
Section 5 describes the experimental setup, while Section 6
discusses the results of computational experiments based
on real-world data sets. In Section 7, further managerial
implications are presented. Section 8 provides an overview
of related work, and in Section 9, we draw conclusions.

2 VIRTUALIZATION

Virtualization is performed on a given hardware platform by
a control program, which creates a simulated virtual machine
for its “guest” software. The “guest” software, which is often
itself a complete operating system plus applications, runs as if
it was installed on a dedicated server. Typically, many such
virtual machines are simulated on a given physical machine.
Virtualization is an umbrella term for many techniques. For
example, symmetric multiprocessor (SMP) servers can be
subdivided into fractions, each of which is a complete server
and able to run an operating system. This is often described as
physical or logical hardware partitioning. Example products
are HP nPAR, or IBM DLPAR. Software virtualization includes
approaches on or below the operating system level, or on the
application level. So-called hypervisor software creates
virtual servers whose physical resource use can be adjusted
dynamically, enabling multiple isolated and secure virtua-
lized servers on a single physical server. The market for
software virtualization products is growing and a description
of products and techniques is beyond the scope of this paper.

A typical hypervisor allows the creation and execution of
multiple virtual servers simultaneously. Each virtual server
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instance can execute a guest operating system, such as
Windows or Linux. As such, a hypervisor is a software that
allows one physical server to run numerous operating
systems plus applications simultaneously. These products
bridge calls to network adapters, CD-ROM readers, hard
disk drives, and USB devices. Some products even support
migration of virtual servers across multiple host machines
at runtime. Administrators can monitor the runtime data of
logical and physical software landscapes, start, stop, or
relocate servers, and assign hardware resources to applica-
tion services automatically or manually. There are a number
of use cases demonstrating how virtualization can be used
in a data center [12]. These new technical possibilities
require new methods for capacity management.

Virtualization causes overhead in terms of additional
CPU cycles necessary for the hypervisor, every virtual
machine, and also a workload-dependent component. In the
subsequent decision models, we will consider overhead in a
data preprocessing step with simple additive or multi-
plicative factors. Virtualization overhead will be further
reduced with current hardware developments which
support certain virtualization features.

Virtualization has benefits that are beyond savings in
investment and energy costs through consolidation. For
example, managing and migrating software from one server
to another becomes much easier. However, virtualization
software also comes at a cost. Whether the benefits
outweigh the (actual) cost is a topic frequently discussed
in reports by market research companies. It heavily
depends on the cost of introducing virtualization software
and the technical progress in the field.

3 SERVER CONSOLIDATION

Server consolidation is an approach for the efficient usage of
computer server resources in order to reduce operating costs.
These costs mainly originate from space and energy
consumption (for servers and data center cooling), data
center maintenance, server administration, and purchasing
costs for servers. Consolidation is used in situations in which
multiple, underutilized servers take up more space and
consume more resources than can be justified by their
workload. We refer to server consolidation as the process of
combining the workloads of several different (source) servers
or services and assigning them to a set of target servers.

3.1 Decision Problems

In the following, we present three widespread scenarios in
server consolidation tasks which our decision models apply
to: The objective of the decision models is to minimize the
sum of server costs, which might be purchasing, main-
tenance, administration, or the sum of them. Depending on
the scenario, the models provide

. the information on how many and which servers are
required for the given set of services (i.e., virtual
servers), given a set of potential (hardware) servers
(all scenarios),

. an optimal allocation of services to servers with
respect to the objective function (all scenarios), and

. possibly additional support for decisions that aim to
minimize investment and/or operational costs (sce-
narios 1 and 2).

The first decision scenario refers to an investment decision,
i.e., the data center operator wants to switch to a new
technology of hardware, such as a new generation of
multicore processors, and therefore, has to decide on how
many machines to buy. There may be alternative server
types he wants to evaluate against each other. In this first
scenario, coefficient ci represents the purchasing costs of
single server i from a set of potential servers I (with i 2 I).
Alternatively, ci may represent the total cost of ownership
for each single server i, including energy and administrative
costs, etc. (for a list of symbols, see Appendix D, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2010.25). In the
case of alternative server types to choose from, respective
models may be configured, with each model offering servers
of one specific type. The objective values of the optimization
models (i.e., the total cost of the servers) can help to decide
on a configuration. Of course, the different server types can
also be included in a single model. Sometimes, additional
strategic considerations, such as reusability of hardware
with future services, customers, technologies, and planning
periods do play a role. In these situations, the decision model
still serves as a decision support tool complementing the
above considerations.

The second decision scenario refers to the case where
servers have already been purchased and purchasing costs
are considered as “sunk costs.” Nevertheless, the use of
existing servers is required to be as efficient as possible, i.e.,
the operational costs should be kept to a minimum. Note
that the costs of electrical power supply for servers and
cooling accounts for a large part of operational costs in data
centers (see Section 7). Therefore, in this second scenario,
the costs ci represent the operational costs per server, e.g.,
comprising energy, cooling, and administrative costs.

As a special case, a third decision scenario originates from
the a priori assumption of identical servers in terms of both
costs and capacities, as is the case with a rack of identical
blade servers. Here, the costs ci may just represent the
information concerning which subset of servers should be
used if not all servers are required. This may be of
particular importance when optional technical allocation
constraints have to be considered. Here, the decision
models return no cost value but, for instance, the minimum
number of servers required and an allocation that satisfies
additional technical constraints.

3.2 Available Data in Data Centers

Data centers reserve certain amounts of IT resources for
each single service or customer. For this purpose, CPU
capacity may be measured in SAPS or HP Computons,
memory in Gigabyte, and bandwidth in Megabits per
second. SAP Application Performance Standard (SAPS) is a
widespread hardware-independent unit that describes the
performance of a system configuration in the SAP environ-
ment. It is derived from the Sales and Distribution Bench-
mark, where 100 SAPS is defined as 2,000 fully business
processed order-line items per hour [13].

Data centers typically log the workloads of their servers
over time. These include data about CPU, memory,
and bandwidth utilization based on measurements every
5 minutes or every hour, for example. Usually, resource
demand of this sort has seasonal patterns on a daily, weekly,
or monthly basis. For example, payroll accounting is
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performed at the end of the week, while demand for an
OLAP application has a daily peak in the morning hours,
when managers access their daily reports.

Consolidation can leverage these cycles and attempts to
assign those services on a physical server whose demand is
negatively correlated, i.e., workload peaks at different times
of the day or week (see Fig. 1 for a real-world example of
two services). An analysis of the large set of workload traces
that we have received from our industry partner can be
found in Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSC.2010.25. Although we did find different
daily and also weekly cycles, there was hardly any trend
component in any of the different types of services. One
reason might be that IT managers tend to preselect services
for consolidation that exhibit no or little trend. Never-
theless, workload traces can change in extended time
periods and it is important for IT service managers to
monitor workload developments in the data center reg-
ularly and also reallocate servers if necessary. The models
in the following section provide decision support for the
initial and for subsequent allocation decisions.

4 PROBLEM FORMULATION

First, we introduce two optimization models that formalize
the consolidation problem based on the cost and workload
data as they are typically available in data centers. Then, we
analyze the computational complexity of this problem and
algorithmic approaches to solve the problem for practical
problem sizes.

4.1 Static Server Allocation Problems

A basic server consolidation problem is the Static Server

Allocation Problem (SSAP) (for a list of abbreviations, see
Appendix E, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSC.2010.25). Here, the IT service manager needs
to consolidate servers by assigning services (i.e., virtual
servers) to (physical) target servers so as to minimize the
number of servers used or minimize overall server costs.
We start out with this basic model to introduce the
mathematical structure of the fundamental decision pro-
blem that will be extended later on.

Suppose that we are given n services j 2 J that are to be
served by m servers i 2 I. Different types of IT resources

k 2 K may be considered (e.g., CPU and memory, band-
width). In this model, for service j, the customer orders
ujk units of resource k (e.g., SAPS, HP Computons,
Megabyte, etc.) and each server has a certain capacity sik of
resource k. yi are binary decision variables indicating which
servers are used, ci describes the potential cost of a server,
and xij describes which service is allocated to which server.
Considering multiple types of resources, such as memory
and bandwidth, the problem can be formulated as follows
(see (1)):

min
Xm
i¼1

ciyi

s:t: Xm
i¼1

xij ¼ 1; 8j 2 J;

Xn
j¼1

ujkxij � sikyi; 8i 2 I; 8k 2 K;

yi; xij 2 f0; 1g; 8i 2 I; 8j 2 J:

ð1Þ

The objective function minimizes server costs, while the
first set of constraints makes sure that each service is
allocated exactly once, and the second set of constraints
ensures that the aggregated workload of multiple services
does not exceed the capacity of a single server.

The SSAP represents a single service’s resource demand
as constant over time. In the following we want to consider
variations in the workload, and time is divided into a set of
intervals T indexed by t ¼ f1; . . . ; �g: Cyclic workloads over
time are now represented in the matrix ujkt describing how
much capacity service j requires from resource type k in
time interval t. Based on this matrix, we can reformulate the
second set of side constraints to

Xn
j¼1

ujktxij � sikyi; 8i 2 I; 8j 2 J; 8t 2 T: ð2Þ

We will call this model variation the Static Server
Allocation Problem with variable workload (SSAPv).

The number of servers an IT service provider can save
using virtualization has been one of the main sales arguments
for software vendors in this field. This obviously depends
very much on the level of interference of the respective
workload traces (i.e., time series). SSAPv helps to quantify
how much can actually be saved compared to dedicated
server hosting based on historic demand data. The coeffi-
cients ujkt depend on the load characteristics of the servers to
be consolidated. Section 5.3 will describe how these coeffi-
cients can be derived. In general, we assume ujkt � sik.

The target servers in SSAPv may be the same type of
physical machine as the source servers or different
machines with different resource capacities (e.g., CPU
architectures). If the computer architecture of source and
target servers is different, utilization parameters need to be
converted. Such conversion rates can easily be estimated
from server tests and benchmark studies [14].

4.2 Extensions of the Static Server Allocation
Problems

In the following, we present constraint types, which have
been elicited from practical applications: All the model
extensions have been incorporated in a software tool
(vPlan), which is now in use with our industry partner:
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1. Max No. of Services Constraint: For any target server
i, the maximum number of services ni may be
defined as that which must not be exceeded by the
resulting allocation. The purpose of this constraint
may be to limit administrative time and effort in the
event of a server failure, etc.,X

j2J
xij � ni; 8i 2 I: ð3Þ

2. Separation Constraints: A subset of services S may
have to be allocated on different servers for security
or other technical reasonsX

j2S
xij � 1; 8i 2 I: ð4Þ

3. Combination Constraints: A subset of services S may
have to be allocated on the same server due to
enhanced interapplication communication, or the
same operating system requirements. With e being
an element of S:

� Sj j � 1ð Þ � xie þ
X

j2S� ef g
xij ¼ 0; e 2 S; 8i 2 I: ð5Þ

4. Technical Constraints and Preassignment Con-
straints: A subset R � I of servers may exhibit a
technical feature, e.g., a particular (storage area)
network access. A service j may require this
particular server attribute. Thus, the service must
only be allocated to one of the servers in R providing
this attribute. If jRj ¼ 1, this constraint will be called
preassignment constraintX

i2R
xij ¼ 1; j 2 J: ð6Þ

5. Limits on the number of reallocations. In the event
that SSAP or SSAPv has to be solved repeatedly, for
subsequent planning periods, for example, it may be
required that the current allocation does not change
too much in order to limit administrative costs. The
number of migrations of services already allocated
in the present solution may therefore be restricted.
Let X be the set of xij with xij ¼ 1 in the current
allocation, and let n be the number of already
allocated services (i.e., n ¼ jXj) and let r be the
number of reallocations allowedX

xij2X
xij � n� r: ð7Þ

4.3 Algorithms and Computational Complexity

Complexity analysis can help us to understand whether we
can hope to find exact solutions even for large instances.
Unfortunately, as we can show, the problem is strongly NP-
hard, even for the simplest case with only one resource and
one time interval.

Theorem 1. SSAP is strongly NP-hard.

Corollary 1. SSAP is strongly NP-hard even when only one
resource is considered, and all servers have the same cost and
the same capacity.

We provide a straightforward proof in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TSC.2010.25, by reducing SSAP to the multidimensional
bin packing problem (MDBP). Bin packing was described
by Garey & Graham [15], who have shown that it is
strongly NP-hard. Many variations of bin packing have
attracted a considerable amount of scientific interest over
the last few decades, partly due to their relevance in diverse
scheduling applications.

For exact solutions, one can use traditional integer
programming techniques such as branch-and-bound algo-
rithms. Knowing that the problem is NP-hard is important,
but it does not necessarily mean that it is intractable for
practical problem sizes. So, for IT managers, it is important
to understand which problem sizes can be solved exactly,
and how far one can get with heuristic solutions, both in
terms of problem size and solution quality.

For the simplest version of SSAP with only one resource
and no side constraints, one can apply heuristics as they
have been developed for the bin packing problem. Two
well-known heuristics are the best-fit decreasing (BFD) and
the first-fit decreasing (FFD) approach [16]. It was shown
that the solutions they produce require not more than 11/9
OPTþ 1 bins (with OPT being the number of bins required
by an optimal solution) [17], [18]. For SSAP with only a
single resource, this means that in the worst-case, one
would need around 22 percent more target servers than
necessary using the FFD.

MDBP is harder to solve and polynomial-time approx-
imation schemes (PTAS) with worst-case guarantees on the
solution quality have been published only recently. The first
nontrivial result was produced by Chekuri and Khanna [19]
who gave a polynomial-time algorithm that, for any fixed
" > 0, delivers a ð1 þ "dþOðlog"�1ÞÞ-approximate solution
for constant d. The approach is based on solving a linear
programming relaxation for the problem. The basic feasible
solution would make fractional assignments for at most dm
vectors in d dimensions and m bins or servers. In a second
step, the set of fractionally assigned vectors is assigned
greedily. Recently, Bansal et al. [20] showed a polynomial-
time randomized algorithm with approximation guarantee
arbitrarily close to ln dþ 1 for fixed d. For small values of d,
this is a notable improvement.

5 EXPERIMENTAL SETUP

Complexity results provide general worst-case results, but
provide little managerial insight into when the approach is
applicable for server consolidation and what problem sizes
can be solved for specific inputs of this problem in due time.
As we will see, the resource demands of different types of
applications or the number of time intervals heavily impact
the problem sizes that can be solved. Also, it is important to
understand the impact of parameters, such as the required
service level, on the solution quality. In the following, we
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will provide a detailed experimental analysis focusing on
these application-specific questions.

5.1 Experimental Data

From our industry partner, we obtained two extensive sets
of workload data. The first set contains 160 traces for
the resource usage of Web/application/database servers
(W/A/D). The second set contains 259 traces describing the
load of servers exclusively hosting ERP applications. Both
sets contain data of three consecutive months measured in
intervals of 5 minutes.

We provide a statistical analysis of the workload data in
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSC.2010.25. The main characteristics of the data
relevant for the consolidation of enterprise applications are
the resource demands in terms of CPU and memory. We
found strong diurnal seasonalities with nearly all servers
and some weekly seasonalities, but almost no long-term
seasonal patterns or trend components in the workload
traces. One reason is that system administrators typically
select those services for consolidation that do not exhibit a
significant trend and are more predictable in their overall
resource demand over time. Many applications that are
hosted in data centers exhibit a low but, as we could see,
quite regular utilization of server resources [1]. Of course,
one will also find services exhibiting strong trends or long-
term seasonal patterns. With or without such services in a
consolidation project, it is recommended to monitor
developments in the service workloads and, if necessary,
reoptimize and reallocate the servers on a regular basis.

CPU is well known to be the bottleneck resource for
these types of applications under consideration [21], [22],
[23]. This obviously depends on the capacity ratio of CPU
power to memory size of the target servers. This ratio
causes CPU to be the bottleneck resource with our
applications. For the type of applications in our data set,
this was also the only resource that was considered in
consolidation planning of our industry partner. Without
loss of generality, we restrict our attention to CPU workload
in our experiments. The method and toolset have been
applied to multiple resources (CPU and memory), in the
past as well, without any changes.

It is interesting to note that CPU demand of the ERP
services is typically significantly higher than that of the
W/A/D services, which included a number of very
different applications (see Table 2, which can be found
on the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TSC.2010.25). For the broad
class of W/A/D services, it was not straightforward to
define recognizably different classes based on CPU
demand and functionality (e.g., portal server, domain
server, CRM application, etc.). We decided to treat ERP
and W/A/D services as different classes throughout our
analysis. While this does not require different models or
algorithms, the ratio of resource demands to the capacity
of the physical server has an impact on the problem sizes
one can solve (see Section 6.1).

For our experiments, we generated sets of time series
containing different numbers of W/A/D or ERP services by
sampling with replacement from the original W/A/D or ERP
set. The same problem instances were used when models

(SSAP versus SSAPv) and algorithms (see Section 5.2) were
compared with respect to runtime or solution quality.

5.2 Allocation Algorithms

For SSAP with only one resource, we have used branch-and-
bound (B&B), as well as first fit (FF) and first-fit decreasing
(FFD) heuristics. FFD, for example, operates by first sorting
services to be assigned in decreasing order by volume, and
then assigns each to the first server in the list with sufficient
remaining capacity. FF does not include sorting.

SSAPv is more complicated as it involves several time
intervals or dimensions. Therefore, we propose an LP-
relaxation-based heuristic. As compared to the PTAS
described in Chekuri and Khanna [19], we also use the
results of an LP-relaxation in the first phase, but use an
integer program in the second step to find an integral
assignment of those services that were fractionally assigned
in the LP relaxation. This has two reasons: First, in particular,
for W/A/D services, the number of servers used was very
low compared to the number of services, leading to a low
number of integer variables. As we will see, the integer
program in the second phase was responsible for only a small
proportion of the overall computation time. Second, an
advantage of the LP-based approach and the IP in the second
phase (as compared to simple generalizations of FF or FFD) is
the fact that constraints (see Section 4.2) can easily be
integrated. We will call this LP-relaxation-based procedure
the SSAPv Heuristic.

For SSAP B&B, SSAPv B&B, and the SSAPv Heuristic,
the number of servers used does have a significant impact
on the computation time. Each additional server increases
the number of binary decision variables by 1þ n. In order to
keep the number of decision variables as low as possible,
we have used a specific iterative approach for all three
algorithms. In the first iteration, we solved the problem
with m being the lower bound number of servers (LB) first.
LB can be calculated as in (8), with s being the server
capacity assumed to be equal for all servers

LB ¼ 1=s �max
t2T

X
j2J

ujt

 !& ’
: ð8Þ

The lower bound is based on the assumption that services
could be allocated in fractional quantities of the demand
of the target servers. Therefore, no integral solution can be
lower. If this problem turns out to be infeasible, m is
incremented by 1. Infeasibilities are typically detected very
quickly, while feasible solutions with a high number of
servers m can take a very long time. This is repeated until
a feasible solution is found. The first feasible solution
found in the B&B search tree is obviously an optimal
solution, minimizing the number of target servers. The
computation times reported in our experiments will
summarize all iterations.

Note that with identical servers (i.e., equal costs and equal
capacities), there are at least m! equivalent solutions for SSAP
and SSAPv, which will cause huge search trees in traditional
B&B algorithms. This problem is sometimes referred to as
“symmetry” in integer programming [24]. A straightforward
approach that reduces the computation time considerably is
to differentiate the cost of servers ci by a small amount ". In
our experiments, ci was set to iði ¼ 1; . . . ;mÞ.
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5.3 Data Preprocessing

An integral part of the server consolidation method is the
data preprocessing. Data preprocessing results in a discrete
characterization of daily patterns in the workload traces and
allows to solve the allocation problem as a discrete
optimization problem (see Section 4). The number of time
intervals � considered impacts the number of constraints in
our models. More time intervals might better exploit
complementary resource demands and thus lead to denser
packing. Assuming that there is seasonality in the workload
traces, one can derive estimators for the resource demands
in different discrete time slots that reflect the variations of
workload over time.

Our experimental data represent the average CPU
utilization of consecutive 5-minute intervals measured over
3 months for 160 W/A/D and 259 ERP services. The original
workload traces are denoted by urawjkt , whereas ujkt will be an
estimator for the demand of resource k of a service j in
interval t that is derived from the original workload traces.

In the following, we will describe a two-step process to
derive the parameters ujkt for our optimization models from
the original workload traces. In the first step, we will derive
an estimator for individual 5-minute time intervals, while in
the second step, we will aggregate these intervals to reduce
the number of parameters for the optimization.

This procedure is based on the analysis of the workload
traces (see Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSC.2010.25) that suggested leveraging daily
seasonalities in the time series. We will describe a day as a
period of observation. Let p denote the number of periods
contained in the load data (in our case, p ¼ 92 days in load
traces of 3 months). A single period is then described by
� 0 intervals, which are individual measurements in the raw
data (in our case, � 0 ¼ 288 five-minute intervals per day). We
can now derive the empirical distribution of a random
variableUjkt for each interval t ¼ 1; . . . ; 288, each of which has
92 observations. For example,Ujkt might contain all measure-
ments for the time interval from 12:00 p.m. to 12:05 p.m.
across 3 months

Ujkt ¼
[p�1

q¼0

�
u raw
jkðq�� 0þtÞ

�
; 8j 2 J; 8k 2 K;

8t 2 1; . . . ; � 0f g:
ð9Þ

In Fig. 2, the CPU requirements of a service (in custom
unit SPU ¼ 50 SAPS) are plotted for all 24 hours of a day.
Hence, each parallel to the y-axis captures a sample of about
92 values according to the 92 days of measurements for
each 5-minute interval of the day.

These empirical distributions of Ujkt for the various
intervals enable us to derive an estimator ujkt. This estimator
takes into account the risk attitude of the IT service manager.
For instance, the 0.95-quantile of Ujkt is an estimator for the
resource requirement of service j where 95 percent of all
requests can be satisfied.

However, even if at one point in time, the workload of a
particular service exceeds the capacity of a server, this
might only mean that the response time increases, not that
the request is canceled. Also, depending on the correlation,
adding multiple such services or random variables might
lead to a reduction of variance. The experimental results

(Section 6) will provide more information on how this
setting impacts the quality of service.

In order to reduce the number of model parameters, it is
useful to consider coarser-grained intervals (e.g., hours). This
can be achieved by aggregating the estimators of 5-minute
intervals in a second step. For example, 12 adjacent five-
minute intervals may be aggregated to a 1-hour interval by
choosing the maximum of these 12 five-minute interval
values. This ensures that the service level is maintained in all
5-minute time intervals. For SSAP, where we can only
consider a single utilization parameter ujk, the maximum of
all 5-minute intervals was considered.

5.4 Experimental Design

The experiments were designed to answer managerial
questions as to which problem sizes can be solved with
which quality, and how these variables depend on the
models, algorithms, and parameter settings above. It should
provide IT managers with guidance in what methods and
model parameters are appropriate for a consolidation task. In
our experiments, we use the following treatment variables:

. model (SSAP or SSAPv),

. algorithm,

. service type (W/A/D or ERP services),

. number of services,

. server capacity (CPU capacity in SAPS),

. risk attitude (as quantiles of the workload
distributions),

. number of time intervals considered in SSAPv (e.g.,
1-hour versus 6-hour intervals), and

. sensitivity with respect to additional allocation
constraints (see Section 4.2).

Depending on the model, we analyzed different solution
algorithms. SSAP (with only one resource) was solved using
Branch & Bound, First Fit, and First Fit Decreasing, while
SSAPv was solved using a Branch & Bound and the SSAPv
Heuristic described in Section 5.2.

5.5 Dependent Variables

For the analysis of the solution quality, the lower bound
number of servers LB and the actual number of servers
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required were measured. In addition, we measure compu-
tation times of the algorithms employed.

The open source solver lp_solve 5.5.0.9 was used for the
revised simplex and the B&B algorithm. To double-check the
results, we also used the COIN-OR CBC branch-and-cut IP
solver with the CLP LP solver. All other software, including
the implementation of the FF and FFD heuristics, was
implemented in Java 1.5.0. Experiments were executed on
workstations running Windows XP Professional (Service
Pack 2) on an AMD Athlon XP 2;100þ Model 8 with 2.1 GHz.
The timeout for all single lp_solve runs (both Simplex and
B&B) and for the single FF and FFD runs was set to 20 minutes.
First, this has already allowed us to solve very large
consolidation problems of up to 700 servers, i.e., we could
solve those sizes that were considered practically relevant by
our industry partner. Second, respective tools are used in an

iterative manner and field consultants want to explore
different settings in a matter of minutes rather than waiting
for hours. It also allowed us to conduct the large number of
experiments that are summarized in the following. Never-
theless, it is interesting to understand what happens to larger
problem sizes that have not been time-constrained. There-
fore, a number of instances were analyzed without setting a
timeout, or one of 24 hours only.

6 RESULTS

In the following, we will describe selected experimental
results. Unless otherwise stated, we will report the results of
W/A/D instances with 24 time intervals based on the
95th percentile. We will first discuss computation time and
then solution quality with respect to different treatments.

6.1 Computation Time Depending on Problem Size

Fig. 3 shows the computation time of the different
algorithms. For each of the different numbers of services
(x-axis), 20 instances have been sampled (with replacement)
from the set of W/A/D services. These 20 instances were then
solved using the different algorithms. Here, we examine a
target server capacity of 5,000 SAPS which was identical to
the environment of our industry partner. Furthermore, we
examine 24 time intervals and determine service demand
based on the 95th percentile of 5-minute intervals.

Fig. 3 illustrates the computation time of different
instances, while Fig. 4 shows the proportion of all 20 in-
stances that could be solved in time. Beyond 500 services, the
SSAPv Heuristic is capable of solving more instances within
20 minutes than the SSAPv B&B. In total, the SSAPv
Heuristic could solve 70 percent and SSAPv B&B could
solve 65 percent of all 280 instances within 20 minutes.

It is interesting to note that most of the time with the
SSAPv Heuristic was spent on the initial LP relaxation, while
the subsequent B&B could be solved in a few seconds due to
a low number of fractional assignments, which is restricted
by the number of servers multiplied by the number of time
intervals considered. The runtimes of the SSAP B&B exhibit a
larger variance beyond 300 services than the SSAPv
solutions. This is due to the fact that SSAP needs more
target servers, and consequently, has more decision vari-
ables but fewer constraints than SSAPv. Accordingly, Fig. 4
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Fig. 3. Computation times for SSAP B&B, SSAPv B&B, SSAPv
Heuristic; server cap. ¼ 5;000, W/A/D Services.

Fig. 4. Percentage of solvable W/A/D instances within 20 minutes
regarding different algorithms.



shows that SSAP B&B often solves fewer instances than the
SSAPv algorithms when used with W/A/D services (in
total, 56 percent of 280 instances).

We have also analyzed runtimes of large instances without
a timeout. A few instances with 700 or even 800 services could
be solved in 100 minutes, while most took much longer.
Instances with 900 services or above could not even be solved
within 24 hours.

For ERP services, we have also used the same server
capacities of 5,000 SAPS. A notable difference is that the
CPU demands of ERP services are significantly higher than
those of W/A/D services. As we will see, this does have a
strong effect on the empirical hardness of the problem.
Fig. 5 shows that in this case, SSAP B&B solves more
instances within 20 minutes than the SSAPv algorithms
(71 percent of all instances). SSAPv B&B solved 45 percent,
and the SSAPv Heuristic 43 percent of all instances. The
SSAPv Heuristic, however, was faster in 72 percent of those
cases where at least the SSAPv B&B or the SSAPv Heuristic
produced a solution within 20 minutes. Compared to the
W/A/D services, we could only solve much smaller
instances before the solver hit the 20-minute timeout.

One explanation is the number of servers, and conse-
quently, decision variables needed. Due to the resource
demands of ERP services, on average, only 8.47 services could
be assigned to a target server, as compared to 24.06 W/A/D
services that would fit on such a server on average.
Consequently, the number of decision variables increased
more than the number of constraints, compared to a similar
instance with W/A/D workload traces. For example, for an
instance with 150 ERP workload traces, we had 2,567 decision
variables and 558 constraints; 150 W/A/D traces resulted in
only 985 decision variables and 306 constraints. Conse-
quently, we could only solve problems with much smaller
numbers of services. For ERP services, we have tested larger
instances. Several instances with up to 250 services could be
solved within 5 hours, instances with 275 and more services
could not be solved within 24 hours.

For both W/A/D and ERP services, the SSAP First Fit and
SSAP First Fit Decreasing show very low computation times
of less than 1 minute for instances of up to 1,200 services.
Also here, ERP instances take longer to solve than W/A/D
instances, since more target servers are required. Note that

SSAP First Fit and First-Fit Decreasing can both only consider
a single resource and a single time dimension.

6.2 Solution Quality Depending on Problem Size

For the experiments, we assume servers with equal
capacity. In (8), we have already introduced the lower
bound number of servers required (LB). The lower bound is
calculated as if services could be fractionally assigned to
servers. Note that LB depends on the number of time slots
considered. Considering more time slots tends to result in a
smaller lower bound of servers. In our experimental setting,
the LB for W/A/D led to an upper bound pack ratio (n=LB)
of 24.06 services per server on average. Fig. 6 shows the
factor Q by which the computed number of required servers
exceeds the lower bound number of servers, i.e.,
Q ¼ 1=LB �

Pm
i¼1 yi. We will refer to this excess ratio as

solution quality—that is, the closer Q is to 1, the better the
solution is, i.e., the closer it is to the lower bound.

SSAPv B&B always achieved an allocation with the
lower bound number of servers (i.e., �QSSAPvB&B ¼ 1:0).
The solution quality of SSAP B&B and SSAP solved with
the first-fit-decreasing (FFD) heuristic is on average
1.45 times the lower bound ( �QSSAPB&B ¼ �QSSAPFF ¼
1:45). FF and FFD achieved the same solution quality
most of the time ( �QSSAPFF ¼ 1:46). In other words, SSAPv
with 24 time intervals per day required, on average,
31 percent fewer servers than SSAP (with only one time
interval per day). For example, a consolidation problem
with 250 W/A/D services resulted in an allocation of
10 servers with SSAPv, but it required 15 target servers
with SSAP. The average quality of SSAPv Heuristic was
equal to the optimal solution ( �QSSAPvHeuristic ¼ 1:0).

These results are in line with our analysis of ERP services.
As mentioned earlier, problem instances with ERP load
traces are harder to solve than with W/A/D workload
traces. However, we found a similar solution quality for
SSAPv and SSAP for ERP services compared with W/A/D
services: The SSAP B&B solution was, on average, 1.48 times
worse than LB ( �QSSAPB&B ¼ 1:48), SSAP FFD was, on
average, 1.49 times worse than LB ( �QSSAPFFD ¼ 1:49,
�QSSAPFF ¼ 1:50Þ, and the average quality of SSAPv B&B

solutions �QSSAPvB&B was equal to 1.0, and �QSSAPv Heuristic ¼
1:01 (with n=LB ¼ 8:47 on average).
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Fig. 5. Proportion of solvable ERP instances within 20 minutes

(5,000 SAPS).
Fig. 6. Solution quality of Algorithms for W/A/D services and varying
number of services (5,000 SAPS).



6.3 Impact of Risk Attitude on Solution Quality

So far, we have always assumed the decision maker to
select the 95th percentile in data preprocessing. We call this
parameter the decision maker’s risk attitude or the
aggregation quantile. In other words, if each service was
considered in isolation, 95 percent of the historical service
demand would have been satisfied without delay at this
capacity. It is not clear whether such a parameter setting
leads to actual overbooking of server resources or if it is a
more conservative estimate due to a reduction in variance
when multiple services are assigned to the same server. The
level of overbooking depends on the aggregate demand of
services on a server and their correlation.

One way to analyze the effect of different parameter
settings is the analysis of capacity violations based on the
historic workload traces that are assigned to a single server.

We applied different quantiles ð0:4; 0:45; . . . ; 1Þ of the
sets Ujkt (see Section 5.3), solved 10 different consolidation
problems of 250 W/A/D services each using SSAPv B&B,
and measured the capacity violations on all servers. The
number of capacity violations is depicted as average,
minimum, and maximum percentage of the 10 instances
of the overall number of intervals (see Fig. 7).

Even using a 0.4 quantile, only in around 0.12 percent of
the 5-minute intervals in 3 months did the resource
demands exceed the server capacity. It depends heavily
on the type of application whether such capacity violations
matter. The 0.8 quantile resulted in 0.025 percent capacity
violations, which translates on average to 6.2 five-minute
intervals per server, where the CPU demand exceeded the
capacity in 3 months. In addition to a reduction of variance
through consolidating multiple services on a server, the low
number of capacity violations that result from these
parameter settings is mainly to be explained by data
preprocessing. When aggregating from 5-minute intervals
to a 60-minute interval, the maximum of 12 five-minute
interval quantiles is used in order to ensure that enough
capacity is available in all 5-minute intervals.

Fig. 7 also shows the number of servers needed for a
particular aggregation quantile. Interestingly, the average
number of servers does not change significantly between
the 0.4 and 0.8 quantile, whereas the number of capacity
violations decreases. In contrast, the number of required

servers increases for quantiles between 0.8 and 1, which is
based on the fact that CPU utilization has a long tail with
observations where the service needed a lot of CPU. To
account even for these bursts requires an extra number
of servers.

6.4 Influence of the Interval Size Considered

The second model parameter is the granularity of time
intervals, which impacts the number of constraints in SSAPv,
and the solution quality. Fig. 8 shows the average, minimum,
and maximum number of required servers for 10 different
sets of 250 W/A/D services. Note that an interval size of
24 hours (i.e., a single interval) reduces SSAPv to SSAP. On
average, there is almost no improvement in the number of
servers needed, whether one considers 15-minute or 2-hour
intervals. However, while we only required 10 servers on
average for the 2-hour interval, the single 24-hour interval
(SSAP) required between 14 and 16 servers.

6.5 Influence of Additional Allocation Constraints

In Section 4.2, we introduced a number of additional side
constraints that can become relevant in server consolida-
tion projects. It is easy to incorporate these constraints in
LP-based heuristics and the IP formulation, as compared to
SSAP FF. These side constraints, however, will impact the
solution time and solution quality (see Appendix C, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TSC.2010.25,
for details).

If managers set an upper bound on the number of
services per server (1), the number of servers typically
increases. As an increasing number of servers leads to more
decision variables, it also has a negative impact on
computation time. The combination and separation con-
straints (2/3) had little effect on the solution quality for W/
A/D services, even for large numbers of such constraints.
They had a negative impact on computation time. Similarly,
the technical constraints (4) had little effect on the number
of servers needed, and the computation time decreased, as
long as the number of required servers did not increase.

6.6 Summary

The following provides a summary of the main results and
of the experimental analysis relevant to IT managers:
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Fig. 7. Min, Avg, Max percentage of capacity violations per server for
10 problem instances with 250 W/A/D services depending on aggrega-
tion quantile. Server capacity ¼ 5;000 SAPS.

Fig. 8. 250 W/A/D services, with 10 sampled instances per interval size,
cap ¼ 5;000, SSAPv B&B.



1. The server consolidation problem (SSAP and
SSAPv) is an NP-hard optimization problem.

The problem can be reduced to the vector bin
packing problem, which is strongly NP-hard.

2. The solution time depends on the resource demand
of services relative to server capacity.

There was a significant difference between
W/A/D and ERP services in our experiments with
respect to their resource demands. As we have
shown, the relation between the resource demands
of services and server capacity heavily impacts the
size of the problems that can be solved. While, on
average, only 8.5 ERP services could be allocated to
a server in our experiments, it was possible to install
22-25 W/A/D services on such a server.

Out of 20 SSAPv problem instances, most could
be solved within 20 minutes with both the
Heuristic and the B&B for up to 350 W/A/D
services. In contrast, for ERP services, we could
reliably solve these instances in time in only up to
around 50 services. For W/A/D services, some
larger instances of 600-800 services could be solved
within 100 minutes, but 900 instances were beyond
what could be solved in a day.

For W/A/D services, the SSAPv Heuristic solved
a higher number of instances than SSAPv B&B. This
is due to the fact that there are a smaller number of
fractional assignments compared to the number of
variables in W/A/D problems. SSAP not only
resulted in a lower solution quality, but the
computation time was also higher since more servers
were needed, and consequently, more decision
variables. Although it would appear simpler, there
is no reason to use SSAP for W/A/D services.

When applied to ERP services, the performance
of SSAPv decreases as compared to SSAP. ERP
services required more resources, so a larger
number of servers were required, leading to around
three times as many variables. This had more impact
on the SSAPv Heuristic, since the number of
fractionally assigned variables in the initial LP
relaxation increased. For ERP services, the percen-
tage of instances solved was not significantly higher
for the SSAPv Heuristic than for the B&B. The
instances that could be solved, however, were
solved faster with the SSAPv Heuristic. As a
consequence, the SSAPv Heuristic turns out to be
excellent for W/A/D services, but it loses some of
its advantages when consolidating ERP services.

In the future, new multicore CPU architectures
will expand the capacity of servers significantly. Since
we expect hardware capacity to grow faster than
resource demands of software, we can expect to solve
even larger ERP consolidation problems in the future.

3. Considering daily variations in the workload in
SSAPv reduces the number of servers used by
31 percent, on average, compared to SSAP.

Regarding W/A/D services, the average number
of servers needed by SSAPv with 24 time slots was
69 percent of the number of servers required by
SSAP. Almost equally, the corresponding savings
with ERP services is 32 percent on average. Interest-
ingly, the SSAPv Heuristic almost always resulted in

the same number of servers needed, but was faster.
The SSAPv Heuristic and the B&B found the lower
bound number of servers in almost all cases for both
W/A/D and ERP services. For SSAP with only a
single time interval and a single resource, the FF and
FFD heuristics found the optimal solution most of the
time. However, it is difficult to consider side
constraints in these heuristics. In summary, while
SSAPv seems more complex at first, the solution
quality, i.e., the utilization increases significantly,
and the problems can even be solved faster.

4. A larger number of time intervals has a positive
impact on solution quality.

Applying the SSAPv, 2-hour intervals yield
already 29.6 percent server savings compared to
SSAP, while smaller intervals added little value.

5. High aggregation quantiles have a negative impact
on solution quality.

The risk attitude can have a significant influence
on the number of servers needed. Its impact depends
on the number of time slots. We have seen, however,
that there is little difference between a 0.8 quantile
and a 0.6 quantile in the number of servers needed.
A 0.95 quantile avoids almost all capacity violations.

6. Additional side constraints are easy to incorporate,
but sometimes at the expense of solution time.

An important advantage of LP-based heuristics is
the fact that it is easy to consider technical side
constraints. The impact of side constraints on solution
time varies. Some can make the problem harder to
solve, while others even decrease the solution time. If
the number of target servers increases through
additional constraints, then computation time will
increase (as is naturally the case with upper bounds
on the number of services per server). If the number of
servers is not increased by the constraints, then the
preassignment constraints and technical allocation
constraints will shorten the computation time, while
the combination and separation constraints will in-
crease the computation time.

7 DISCUSSION OF ADDITIONAL BUSINESS

CONCERNS

Cost reduction and energy considerations in data center
operations are some of the main motivations for this
paper. The hardware cost component of most data centers
is less than 15 percent (for servers, storage, etc.) and is
falling—although the volume of new equipment being
installed is increasing [25]. The volume of installed servers
has been growing at an approximately 11 to 15 percent
compound annual growth rate for the x86 market during
the past 4 years. More importantly, energy consumption of
hardware components and for cooling is increasing [26].
Over the past decade, the cost of power and cooling has
increased 400 percent and these costs are expected to rise.
In some cases, energy costs account for 40-50 percent of
the total data center operations costs [2].

Another motivation for energy conservation in data
centers is the current debate on climate change. The IT
industry is estimated to contribute 2 percent of the global
CO2 emissions; 23 percent of these emissions are produced
by running servers, including cooling [27]; this means
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about 0.5 percent of global CO2 emissions are caused by
running servers.

By means of a more efficient resource usage, both energy
and hardware costs can be decreased. There are different
approaches to slowing down the increasing energy demand
in data centers. While energy consumption for cooling can be
decreased by more efficient data center design in terms of
infrastructure topology, floor space, placement of server
racks etc., the power consumption of hardware—and thereby
for cooling, too—can be decreased by server consolidation,
increasing hardware utilization rates [28]. According to
Gartner’s “Server Consolidation Poll” [29], the top three
reasons for the interest in server consolidation are “Control
server sprawl” (33 percent), “Reduce power and cooling
needs” (25 percent), and “Provide TCO savings” (20 percent).

In summary, beyond the minimization of investment costs
as achieved through scenario 1 or 2 (see Section 3.1), the
consolidation of servers is of significant importance for data
centers regarding the reduction of energy and cooling costs.

Although energy costs as well as server capacities are
constantly changing, we will provide a small example,
illustrating expected savings through optimal server con-
solidation. We assume a server consolidation project with
250 source servers. A state-of-the-art midrange server with
average investment costs of C¼ 2;500 results in energy costs
of approximately C¼ 735:80 per year. This estimate is based
on 700 W energy consumption and C¼ 0:12=kWh. Note that
these costs do not include costs for cooling in a data center.
Experts believe that for cooling, one could assume the same
amount of energy cost per year as for operating the server.

In the optimal assignment with SSAPv, we require 10 new
midrange servers. The optimal assignment in SSAP (ignoring
daily variations) led to a demand for 15 new midrange
servers. The energy costs for the operations of these five
additional servers in 4 years (typical writeoff time frame)
amount to C¼ 14;716, with cooling around C¼ 28;000. Invest-
ment costs for the five servers are 5 � C¼ 2;500 ¼ C¼ 12;500,
totaling C¼ 40;500 as a lower bound on the cost savings. Note
that we did not consider costs for space and administration of
additional hardware. Moreover, a manual assignment will
likely be suboptimal and not be able to consider multiple
resources, multiple time intervals, and side constraints. If IT
managers do not do a thorough analysis of the workload
traces, it could easily happen that they consolidate servers
with positively correlated workloads, leading to further
losses in production efficiency. Apart from basic savings,
decision support for server consolidation reduces the error-
prone and time-consuming process of manual planning.

Obviously, virtualization has benefits that are beyond
savings in investment and energy costs. For example,
managing and migrating servers from one hardware server
to another becomes much easier. However, virtualization
software also comes at a cost. Whether these benefits
outweigh the (actual) cost is a topic frequently discussed in
reports by market research analysts. It heavily depends on
the cost of introducing virtualization software. For these
reasons, a total cost analysis of server consolidation projects
is outside the scope of this paper.

8 RELATED WORK

Our paper follows a design science approach as outlined in
[30]. While there has been a lot of work on capacity planning

and resource allocation in general, little work has focused on
server consolidation and respective planning problems.

Closest in spirit to SSAP is a workshop paper by Rolia et al.
[31], who suggest an integer program for allocation problems
in a data center. Another heuristic for a similar allocation
problem was presented in a talk by HP Labs [32]. Further
details have not yet been published. In contrast to this work,
we discuss a set of models focused on server consolidation,
where we explicitly consider variations in workload over
time and the server costs, suggest specific algorithms for data
aggregation and optimization, and provide an extensive
empirical evaluation focusing on managerial questions.

Seltzsam et al. [33] describe a system called AutoGlobe for
service-oriented database applications. In contrast to
SSAP(v), the static allocation heuristic in [33] determines an
initial schedule trying to balance the workload across servers,
while a fuzzy controller is used to handle overload situations
based on fuzzy rules provided by system administrators.

There is a growing literature on Cloud computing and
Infrastructure-as-a-Service (IaaS) [34]. IaaS providers run-
ning virtualized data centers need to solve a similar resource
allocation problem. A difference is that with IaaS providers
new customers come and go. Also, nowadays they offer
predefined server sizes in terms of CPU and memory
capacity. Typically they use rules to assign the virtual server
of a new customer to one of many physical servers. The
problem that such IaaS providers face can be interpreted as
the online version of SSAP. If only a single resource such as
CPU is considered per day, the online version of SSAP can
be solved using online bin packing algorithms [35]. In
contrast, static server consolidation problems of the sort
described in this paper occur regularly in enterprise data
centers, where old hardware technology gets replaced, or
where virtualization technology is introduced.

9 CONCLUSION

Efficiency in the production of IT services is crucial in
today’s competitive markets. Virtualization and server
consolidation can lead to increased utilization of hardware,
and therefore, to increased production efficiency. Server
consolidation poses a number of new and fundamental
decision and planning problems in IT service management.

In this paper, we have proposed a capacity planning
method for virtualized IT infrastructures that combines a
specific data preprocessing and an optimization model. We
characterized the computational complexity of these mod-
els, proposed algorithms, and provided extensive experi-
mental evaluations based on workload traces from an
industry partner. The consideration of variations in the
workload in SSAPv yielded hardware savings of around
31 percent as compared to optimal allocations in SSAP. This
result holds for two widespread classes of applications,
namely Web/application/database servers on the one
hand, and ERP services on the other. The SSAPv Heuristic
allowed us to solve large-scale server consolidation pro-
blems within minutes, while easily integrating additional
technical side constraints for the allocation. The different
resource demands of the two types of services, however,
had a significant impact on the problem sizes that could be
solved. The approach is now in use in the field.

Workloads can change over time. It is important to
analyze the workload traces regularly and reoptimize the
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allocation if necessary. If workloads are less predictable or

exhibit significant trend, an automated controller can per-

form these tasks and move applications automatically from

one physical server to another, allowing for adaptive, self-

organizing data center management. The models discussed

in this paper can serve as the basis for respective controllers.
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