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Abstract

Combinatorial auctions have been used in procurement markets with economies of scope. Preference elicitation is
already a problem in single-unit combinatorial auctions, but it becomes prohibitive even for small instances of multi-
unit combinatorial auctions, as suppliers cannot be expected to enumerate a sufficient number of bids that would allow
an auctioneer to find the efficient allocation. Auction design for markets with economies of scale and scope are much
less well understood. They require more compact and yet expressive bidding languages, and the supplier selection
typically is a hard computational problem. In this paper, we propose a compact bidding language to express the
characteristics of a supplier’s cost function in markets with economies of scale and scope. Bidders in these auctions
can specify various discounts and markups on overall spend on all items or selected item sets, and specify complex
conditions for these pricing rules. We propose an optimization formulation to solve the resulting supplier selection
problem and provide an extensive experimental evaluation. We also discuss the impact of different language features
on the computational effort, on total spend, and the knowledge representation of the bids. Interestingly, while in most
settings volume discount bids can lead to significant cost savings, some types of volume discount bids can be worse
than split-award auctions in simple settings.
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1. Introduction

Economies of scale and scope describe key characteristics of a supplier’s production function that influence al-
locations and prices on procurement markets. This paper is motivated by real world procurement negotiations of an
industry partner, where procurement managers need to purchase large volumes of multiple items. This might be the
yearly demand for different types of tires in the car industry or for different types of memory chips or hard disks in the
PC industry. Often in these circumstances, economies of scale are jointly present with economies of scope. On the one
hand suppliers that set up a finishing line for a certain product have high setup costs, but low marginal costs leading
to a unit price degression. On the other hand economies of scale arise in shipping and handling a larger number of
items to a customer, and in the joint procurement of raw materials. Unit prices can not only decrease, however. A
supplier might increase unit prices, if the demand exceeds his capacity and he has to work shifts or purchase items
from third-party suppliers.

Split-award auctions are regularly used for multi-item, multi-unit negotiations, where the best bidder gets the
larger share of the volume for a particular quantity and the second best bidder gets a smaller share (e.g., a 70/30%
split) (Anton and Yao 1992, Perry and Sakovics 2003, Anton et al. 2009). This is done to assure supply if one
supplier is unable to fulfill his contract and a minimal supplier pool in the long run. With significant economies of
scale, suppliers face a strategic problem in simple split-award auctions with only a single unit price. Since there is
uncertainty about which quantity they will get awarded, they might speculate and bid less aggressively based on the
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unit cost for the smaller share. In other words, simple split award auctions do not allow suppliers to adequately express
economies of scale.

In the recent years, driven by the new possibilities of the Internet, a growing literature is devoted to the design of
optimization-based markets (aka. smart markets) (Gallien and Wein 2005), and in particular to combinatorial auctions,
where bidders are allowed to submit bids on packages of discrete items (Cramton et al. 2006). The promise of these
mechanisms is that by allowing market participants to reveal more comprehensive information about cost structures or
utility functions, this can drastically increase allocative efficiency and lead to higher economic welfare. Unfortunately,
the matching of complex preference profiles typically leads to hard optimization problems.

The literature in this field is typically focused on multi-item but single-unit negotiations and respective auction
formats do not easily extend to multi-unit markets with economies of scale. While preference elicitation is already
a fundamental problem for bidders in single-unit combinatorial auctions, it becomes prohibitive in multi-unit combi-
natorial auctions. Markets with significant economies of scale and scope require a fundamentally different bidding
language that allows to specify discount rules rather than a huge number of multi-unit package bids.

1.1. Focus of this Research

In this paper, we will introduce a compact bidding language and the respective allocation problem for procurement
markets with economies of scale and scope. This language combines logical spend conditions defined on volume and
quantity with different types of discounts. Two central types of volume discounts discussed in the literature are
incremental discounts and total quantity discounts. Total quantity discounts have been described as a discount policy,
where the supplier has specified a number of quantity intervals (aka. discount intervals), and the price per unit for
the entire quantity depends on the discount interval in which the total amount ordered lies (Goossens et al. 2007). In
contrast, incremental volume discounts describe a discount policy, where the discounts apply only to the additional
units above the threshold of the quantity interval. In business practice, such discount policies are often also defined
on spend or on spend and quantity for one or more items. In addition, we will also allow for lump sum discounts,
defining a one time reverse payment on overall spend or quantity.

So far, optimization formulations only exist for incremental or for total quantity discount bids, defined on quantity
purchased. We focus on a bidding language, which provides considerably more flexibility in the discount policies
used. Often increased expressiveness of a formal language comes at the cost of increased computational complexity
(Papadimitriou 1993, Dantsin et al. 2001). It is important to understand, if increased expressiveness of this bidding
language also leads to a higher computational burden during the supplier selection.

Procurement managers are not only interested in the cost-minimal solution to this optimization problem. They
typically apply a number of side constraints in an interactive manner to find a good solution that considers a number
of strategic and operational goals. Examples are upper and lower bounds on the number of suppliers or the volume
awarded to one or a group of suppliers. These side constraints are not always known in advance exactly and whether
they should be considered or not also depends on their impact on the total cost. For example, a purchasing manager
wants to have no more than five suppliers, but he would also be willing to accept six or seven, if it reduces total cost
significantly. This interactive exploration of different award scenarios based on allocation constraints and different
types of volume discounts is also referred to as scenario analysis, and a number of decision support tools are provided
by e-sourcing vendors in this area (Gartner 2008). Although, this type of decision support is vital for many companies
and leading to multi-million dollar procurement decisions, there is surprisingly little academic literature in this field.

Scenario analysis poses tight time constraints to allow for an interactive exploration of different award scenarios.
As we will show, the winner determination problem is an NP-complete problem. A main research question in this
paper is, for which problem sizes (number of bidders, bids, items, and discount intervals) a procurement manager
can hope to solve respective instances optimally in acceptable time. Optimality of the solutions is desirable, as the
allocation problem tries to minimize the cost of the buyer, and even a small decrease in procurement cost will directly
impact company gain. In addition, we will analyze the impact of different discount policies on total cost. Some
discount policies make it easier to approximate the underlying cost functions closely.

1.2. Contributions

In summary, the contributions in this paper are the following: We will introduce a compact bidding language for
markets with economies of scale and scope, referred to as LES S . Our bidding language allows for two different types
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of discounts, which have already been discussed in the literature: incremental and total quantity discount bids. Our
approach allows to handle both types of volume discounts, and we have seen several applications, where different
bidders submit different types of volume discount bids. In addition to previous approaches,L ES S allows for lump sum
discounts on total spend to model economies of scope and various conditions on spend or quantity for the different
discount types. As a result, LES S is considerably more expressive than previous approaches and gives suppliers high
flexibility in specifying their offerings. Apart from expressiveness, we introduce description length as an important
criterion for bid languages, since bidders cannot be expected to submit arbitrarily many parameters or bids. We will
see that there are considerable differences between bundle bids, L ES S bids with total quantity or with incremental
volume discounts.

In this work, we will investigate the buyer’s problem, who needs to select quantities from suppliers providing
bids in LES S such that his costs are minimized and his demand is satisfied. We will refer to this problem as Supplier
Quantity Selection (SQS) problem and propose a respective mixed integer program (MIP). Modeling matters and there
are considerable differences in the solution time depending on different model formulations. We will also discuss
additional allocation constraints as they are typically used for scenario navigation.

Procurement managers need a clear understanding of which problem sizes they can analyze in an interactive man-
ner during the scenario analysis or in dynamic auctions. Therefore, we will show that SQS isNP-complete, and report
on an extensive evaluation of the empirical hardness of the supplier quantity selection problem. Similar analyses have
recently been performed for the winner determination problem in combinatorial auctions (Leyton-Brown et al. 2009).
It is important that problem instances for the experimental evaluation mirror real-world characteristics. We introduce
a cost function for markets with scale and scope economies and generate bids based on this cost function. L ES S

and the software framework used in this paper have already been used to support a number of high-stakes sourcing
decisions with an industry partner. The synthetic bids matched the characteristics of those that we also found in the
field. The experimental results show that realistic problem sizes of the SQS problem can be solved to optimality in a
matter of minutes with IBM’s CPLEX (version 12) and Gurobi 2.0. (All results reported are based on CPLEX.) We
also find that the shape of the underlying cost function and the demand can have a significant impact on the runtime
of the problems and empirical evaluations need to be interpreted with care.

Previous work has only focused on the computational complexity of the winner determination problem. The cost
curves in our experimental evaluation allow us to compare the total cost achieved with L ES S bids and different types
of volume discounts and bids for split-award auctions. While we do not discuss mechanism design questions in our
analysis, we assume a direct revelation mechanism where bidders submit bids that best reflect their cost curves. Even
if bidding behavior in the lab or in the field is different, this result suggests that a richer bidding language can lead to
considerably lower cost and more efficient results in markets with economies of scale and scope withL ES S . However,
we also find that total quantity discounts with only a few intervals can lead to higher spend than simple split-award
auctions.

In section 2, we provide an overview of related literature. Section 3 introduces L ES S , a bid language for markets
with economies of scale and scope, and discusses relevant features of the language. In section 4 we formulate the
winner determination problem as a mixed integer program, and propose various extensions in section 5. Section 6
describes the experimental design, while section 7 summarizes the main results of our experimental analysis. Finally,
section 8 provides conclusions and an outlook on future research.

2. Related Literature

The literature on supplier selection and volume discounts includes studies of various discounting schemes, such
as unit discounts (Silverson and Peterson 1979), inventory models with demand uncertainty and incremental quan-
tity discounts and carload quantity discounts (Jucker and Rosenblatt 1985, Lee and Rosenblatt 1986). Munson and
Rosenblatt (1998) provide a perspective on discounts used in practice, while Chaudhry et al. (1993) discuss a vendor
selection model in the presence of price breaks.

Davenport and Kalagnanam (2000) were among the first authors to focus on auctions with incremental volume
discount bids. An application thereof has been described in Hohner et al. (2003). Their bidding language requires
suppliers to specify continuous supply curves for each item. Eso et al. (2001) further advance the ideas described
in Davenport and Kalagnanam (2000) and allow for discontinuities and decreasing slopes in the bids. They use a
branch-and-price approach to solve the winner determination problem.
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There has also been some work on total quantity discounts, where the unit price starting at a particular quantity
is charged for the entire quantity purchased, not only for the units above the threshold quantity. Katz et al. (1994)
discuss a procurement decision support system and a respective mathematical program with total quantity discounts.
Crama et al. (2004) investigate a problem, where a chemical company needs to purchase a number of ingredients from
one or more suppliers with a total quantity discount. Here, only one discount rate is used for all ingredients. Crama
et al. (2004) also need to decide how to use the purchased ingredients to manufacture the desired quantities of the
endproducts, where there are alternative recipes, which is different to the problem analyzed in this paper.

In contrast, van de Klundert et al. (2005) describe a procurement problem in the telecom industry, where a tele-
com company needs to acquire capacity to accommodate its international calls. Carriers provide capacity and specify
total quantity discounts. The general problem has been discussed in Goossens et al. (2007). They provide an inter-
esting contribution to the supplier selection problem with total quantity discounts and proof that no polynomial-time
approximation scheme with constant worst-case ratio exists for this supplier selection problem and that the decision
version is strongly NP-complete. They also show that the LP relaxation can be solved as a min-cost flow problem,
and suggest a min-cost flow based branch-and-bound algorithm. This algorithm worked best for instances, where the
number of suppliers does not exceed 20. For larger instances an LP-based branch-and-cut approach performed best.
The paper also highlights the ”more for less” phenomenon in total quantity discounts, i.e., that it can be cheaper to
purchase more due to the sawtooth form of the total cost function.

We have worked with a number of procurement managers in the past few years. While the above academic work
covers important requirements, many real-world cases demand for a more comprehensive bidding language for practi-
cal applicability. In many applications, some suppliers provide incremental volume discount bids, others total quantity
discount bids, or overall lump-sum discounts on total spend. As outlined, in this paper, we considerably extend the
expressiveness of the bidding languages discussed in the literature and propose a mixed integer programming formu-
lation to solve practically relevant problem sizes. In contrast to previous work, we suggest a parametric cost function
to generate realistic bids and analyze different discount policies based on cost and description length.

While the academic literature is still in its infancy, a number of companies such as CombineNet, Emptoris, Iasta,
and TradeExtension (Gartner 2008, Giunipero et al. 2009) provide decision support systems allowing for various
types of discounts and complex bid types. These tools enable purchasing managers to explore different award sce-
narios based on various operational or strategic side constraints. Respective software vendors offer a wide variety
of constraints among several dozens or even hundreds of constraint classes (Bichler et al. 2006). Unfortunately, lit-
tle academic literature is published on the type and size of the optimization problems that can be solved with such
packaged software tools, and the algorithmic approaches they use.

3. Bidding Language

In this section, we will introduce a bidding language allowing to describe a supplier’s cost function. We focus
on markets with economies of scale and scope, where bidders typically express discounts in order to reflect these
economic characteristics. A language in computer science and logic assigns a semantic to a syntax. Bidding languages
have been studied in the context of combinatorial auctions (Boutilier and Hoos 2001, Abrache et al. 2004, Nisan 2006).
However, this research typically focuses on multi-item, but single-unit negotiations.

3.1. Description Length of Bidding Languages

Bidding languages should be expressive enough to allow for the description of different shapes that cost functions
can assume including concave and convex shapes. At the same time, the bidding language should allow to describe
bids in a compact way with only a few parameters. In general, expressivity of a bid language should increase efficiency
of economic mechanisms, since bidders are able to better describe their preferences (Sandholm 2008, Benisch et al.
2008). Combinatorial auctions allow bidders to express all types of synergies across items, but the number of possible
bids in large-scale combinatorial auctions is typically beyond what human bidders can express. There is a number of
articles on the communication complexity of such auctions (Nisan and Segal 2001). As we have discussed in Section
1, this phenomenon becomes even worse with multi-unit combinatorial auctions. Compact bidding languages, which
allow bidders to describe their preferences on multiple items and quantities as a function, can alleviate this problem.
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Definition 1. A compact bidding language allows to define the bid price as a function p s : RI → R of quantity for
one or more items i ∈ I.

We will also use the term bid function for p s in this paper. Such a bid function has a particular parametric form.
Clearly, the most compact format would be to reveal the parameters and the specification of the true total cost function
in a direct revelation mechanism to an auctioneer. For example, we will use a cost function with seven parameters
for the experimental evaluation in Section 6.1. The parametric shape of such cost functions might be non-linear and
different among suppliers and industries, which is just one of the reasons, why the true specification of the function
is typically not revealed in practice. It is rather common to specify volume discounts or markups for economies or
diseconomies of scale. Such volume discounts can be formulated as piecewise linear functions. Therefore, such
bids are typically an approximation of the underlying cost function, even if bidders are willing to reveal their costs
truthfully. Let us now introduce description length as a measure for how compact bidders can describe information
about their preferences or their underlying cost function.

Definition 2. The description length of a bid consists of the bits to describe the parameters of the bid function p s for
a given maximum approximation error, εmax, to the underlying utility or cost function.

Bidding languages should allow for a close approximation of wide-spread types of cost functions, but the same
time have a low description length. A bad approximation will make it difficult for the auctioneer to find an efficient
allocation, even if suppliers bid truthfully. Multi-unit bundle bids in combinatorial auctions allow for close approxi-
mations, as they only specify discrete points but at the expense of a huge number of bids required to describe a bidder’s
costs.

3.2. The LES S Bidding Language

Bid languages we observed in practice exhibit substantial structural variation across bidders. Offers from suppli-
ers can come in any combination of incremental or total quantity discounts, depending on multiple conditions. To
accommodate the richness observed in practice one needs a language that allows for different discount types, denoted
Rd.

In case of diseconomies of scale, for example, when the volume awarded is beyond the production capacity of a
supplier, he might want to charge respective markups R m to cover his increased per-unit costs. While markups are
conceptually equivalent to volume discounts, we will use a separate notation R m in the next section, as they need to
be modeled differently in our optimization model.

In addition, we regularly observed lump sum discounts R l, which describe refunds of part of the total price. For
example, if the volume purchased exceeds a threshold, a supplier might be willing to reduce the overall payment by
a fixed amount Rl = $10, 000 on the total price. These lump sum discounts R l can also be defined on spend S l or
quantity Ql and are often used to describe economies of scope.

In LES S , bidders should be able to express such different types of discounts. Every supplier s ∈ S submits a base
price Pi,s for every item i ∈ I and the maximum quantity E i,s he is willing to supply. In addition, he specifies volume
discounts d ∈ D, lump sum discounts l ∈ L, and markups m ∈ M to modify the base price based on certain spend
conditions. The total bid price function p s : RI → R of a set of items I can be written as

ps(x1, ..., xI) =
∑

i∈I
Pi,sxi,s − ∑

d∈D
Rdyd1{Cd } +

∑

m∈M
Rmym1{Cm} −

∑

l∈L
Rl1{Cl}

where Rd describes a volume discount per unit that is awarded on a quantity y d if a spend condition Cd is true, e.g.,
after the quantity exceeds a certain lower bound on quantity, Q d, or spend, S d. Note that Qd and S d can be defined
on a particular item provided by the supplier or also a set of items by this supplier. We will use the term ”discount
interval” and refer to spend conditions, which define a unit price for a particular quantity interval. Volume discounts
of a specific bidder can be valid for the total quantity purchased (total quantity discounts) or for the amount exceeding
a pre-specified threshold (incremental (volume) discounts). This also holds for markups R m. Lump sum discounts Rl

are defined on overall spend or quantity, not per unit.
Spend conditions (C) are an important language feature, which allow for much flexibility. By allowing conditional

discounts and markups with possibly multiple conditions, we are able to formalize all features of bids that have been
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considered in the literature or we have encountered in practice. Spend conditions can be defined on a set of items
and be based on spend (S ) or volume (Q) purchased. For example, if spend on the items A and B is more than
$100,000, a supplier offers an lump sum discount of R l = $4, 000. An elementary spend conditions C is treated
as a literal in propositional logic such as S A,B > 100, 000$ or QA > 2000. Composite spend conditions take the
form of a conjunction of m elementary conditions. So in general, a discount rule takes the form of a Horn clause, with
C1∧C2...∧Ck =⇒ R. We limited discount rules to Horn clauses, in order to keep the corresponding supplier quantity
selection problem of the auctioneer as concise as possible (see section 4). Modeling disjunctions and conjunctions in
the condition of such a discount rule is possible as well, but rarely necessary as we found.

Definition 3 (Discount rule). A discount rule F is a Horn clause of the form C 1 ∧ C2... ∧ Ck =⇒ R, where

• Ck is a literal defined on spend levels or quantity levels for a set of items, with k = {1, ..,K} being the set of
respective spend conditions.

• R is a discount, i.e., a lump sum discount, an incremental volume discount, a total quantity discount, or a
respective markup.

The supplier is also able to specify disjunctive discount rules, i.e., two or more rules cannot be active at the same
time. For example, in case the supplier purchases more than $10,000 from item A and B, there is a discount of $1.77.
Alternatively, if the supplier buys more than 5,000 units from item A, the discount is $1.02. Only one of these two
discounts is eligible, and the auctioneer will choose the discount that minimizes his total cost.

Definition 4. An LES S bid is a tuple (P, E,H , K), where

• P is a set of base unit prices for each item i ∈ I,

• E is a set of maximum quantities Ei,s that a supplier s can provide for each item i ∈ I,

• H is a set of discount rules F ∈ H , and

• K is a set of disjunctions specified on the set of rules inH .

LES S provides expressiveness at low description length by allowing to express step functions to describe the
average unit costs of a supplier, or the respective piecewise linear functions describing the total cost function c s(x).

4. The Supplier Quantity Selection Problem

In the following, we will investigate a buyer’s problem, who needs to select quantities from each supplier providing
bids in LESS such that his costs are minimized and his demand is satisfied. We will refer to this problem as Supplier
Quantity Selection (SQS) problem and introduce a respective mixed integer program (MIP) in the following.

We will first introduce some necessary notation. We will use uppercase letters for parameters, lowercase letters
for decision variables, and calligraphic fonts for sets. Sets indexed by a member of another set represent the subset
of all elements that are relevant to the index. For example, I d describes all items that are included in a discount rule
d ∈ D, and xi,sd describes the quantity purchased from supplier s on item i, which is part of the discount pricing rule
d ∈ D. Such discount rules can be defined on different items or sets of items per supplier.
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min
∑

i∈I
∑

s∈S
Pi,sxi,s − ∑

d∈D
Rdyd +

∑

m∈M
Rmym − ∑

l∈L
Rlcl

s.t.
∑

s∈S
xi,s ≥ Wi ∀i ∈ I (1)

xi,s ≤ Ei,s ∀i ∈ I,∀s ∈ S (2)
∑

i∈Id

xi,sd − Ddcd ≥ yd ∀d ∈ D (3d)
∑

i∈Im

xi,sm + Bcm ≤ ym + Dm + B ∀m ∈ M (3m)

Bcd ≥ yd ∀d ∈ D (4d)
∑

n∈Nd

jn − ∑
d̄∈D̄d

cd̄ ≥ |Nd | cd ∀d ∈ D (5d)
∑

n∈Nl

jn − ∑
l̄∈L̄l

cl̄ ≥ |Nl| cl ∀l ∈ L (5l)

|Nm |−1 (
∑

n∈Nm

jn + 1) − ∑
m̄∈M̄m

cm̄ ≤ cm + 1 ∀m ∈ M (5m)
∑

i∈In

Pi,sn xi,sn −
∑

d∈Dn

Rdyd +
∑

m∈Mn

Rmym ≥ S n jn ∀n ∈ N (6l, d)
∑

i∈I
xi,sn ≥ Qn jn ∀n ∈ N (7l, d)

∑

i∈I
xi,sn − Qn < B jn ∀n ∈ N (8m)

xi,s, yd, ym ≥ 0 ∀i ∈ I,∀s ∈ S,
∀d ∈ D,∀m ∈ M

cd, cm, cl, jn ∈ {0, 1} ∀d ∈ D,∀l ∈ L,
∀n ∈ N ,∀m ∈ M

The objective function minimizes the product of all base prices P i,s and quantities xi,s of item i purchased of
supplier s, subtracts the sum of all discounts Rd and lump sum discounts Rl, and adds the markups Rm.

The first constraints (1) ensure that the demand Wi is fulfilled, and the second set of constraints (2) that the amount
purchased from a product i does not exceed the maximum quantity E i,s provided by each supplier of each item. The
constraint sets (3d) and (3m) determine the relevant volume y d or ym, for which the discount or markup resp. is
defined, and B is a sufficiently large number. For example, if D d = 0, then (3d) defines a total quantity discount,
where yd = xi,s, otherwise, Dd is set to the threshold, after which the volume discount is valid, as such describing an
incremental volume yd = xi,s − Dd. Typically, the discount intervals and markups hold for a single item, but they can
also be defined on multiple items i ∈ Id.

For each discount rule, we introduce a binary variable c d, cl, and cm. Such decision variables are determined
based on spend conditions, which we define in constraint sets (6-8). Constraint (4d) makes sure that a discount is
only provided (yi,s > 0) if the respective binary variable for this discount, c d, is true. Constraint sets (5d), (5l), and
(5m) make sure that if a particular set of spend conditions is given ( j n = 1), which are a precondition for a discount,
markup, or lump sum discount, then also the respective binary variable c d, cl, or cm is true. |Nd |, |Nm|, and |Nl| describe
the number of conditions that need to be true for the respective binary variable to become true. These constraints also
allow to specify sets of discount rules D̄ ⊂ D, M̄ ⊂ M, and L̄ ⊂ L, which cannot be active at the same time as the
respective rule.

The final sets of constraints (6 - 8) model individual conditions on spend or quantity that need to be fulfilled for a
particular discount rule in constraint sets (5). For example, constraint set (6 l,d) specifies a minimum spend condition
for volume discounts and lump sum discounts. In words, if the total cost including markups and discounts (not
considering other lump sum discounts) exceeds S n, then an additional lump sum discount will be granted. Constraint
set (7 l,d) determines a minimum quantity condition used in volume and lump sum discounts. Constraint set (8 m)
defines a minimum quantity condition for a markup rule.

Goossens et al. (2007) describe the problem of selecting a set of suppliers that offer a variety of items using total
quantity discounts. The problem is referred to as TQD. They have provided a polynomial reduction of 3-dimensional
matching, a well-known strongly NP-complete problem, to TQD. Showing that SQS is NP-complete is straightfor-
ward, as it contains TQD as a special case.
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Theorem 1. The decision version of the SQS problem is stronglyNP-complete.

Here, we refer to TQD’ as the decision version of the more-for-less variant of TQD, and SQS’ as the decision version
of SQS. Any input for TQD’ can be solved with SQS’, and a solution to SQS’ would solve TQD’. SQS’ is obviously
inNP since given a solution it suffices to check the constraints and the value of the solution.

While this shows that SQS is at least as hard as TQD to solve, it is interesting to understand how the increased
expressiveness of LESS impacts the empirical hardness of the problem. As is often the case, the formulation of the
problem matters, and there are significant differences in runtime depending on the model formulation (Hooker 2009).

5. Scenario Analysis

We will focus on scenario analysis as a typical use case. During scenario analysis, procurement managers typically
use additional side constraints to explore different award scenarios. For example, a purchasing manager might be
interested in an optimal allocation with a maximum of 5 winners, or the optimal allocation, where the spend on an
individual supplier is limited to 1 million dollars due to certain risk considerations. An ex-post analysis based on
already submitted bids also allows to analyze the cost of a particular constraint by comparing the objective value of
respective scenarios.

We will now discuss a number of side constraints that are important for procurement managers and used during
the scenario analysis. Purchasing managers want to set a lower and an upper bound for the quantity a supplier can win
overall (Vl

s, Vu
s ) in (9), or on a particular item (V l

i,s, Vu
i,s) in (10). Also, they want to limit the overall spend per winner

(T l
s, T u

s ) in (11). In constraint sets (12 & 13) the maximum number of winners L is restricted.

Vl
s ≤
∑

l∈I
xi,s ≤ Vu

s ∀s ∈ S (9)

Vl
i,s ≤ xi,s ≤ Vu

i,s ∀i ∈ I,∀s ∈ S (10)
T l

s ≤
∑

i∈Is

Pi,sxi,s − ∑
d∈Ds

Rdyi,d +
∑

m∈Ms

Rmyi,m − ∑
l∈Ls

Rlcl ≤ T u
s ∀s ∈ S (11)

∑
i∈I xi,s ≤ Bas ∀s ∈ S (12)
∑

s∈S
as ≤ L (13)

as ∈ {0, 1} ∀s ∈ S
The number of scenarios can be huge, and it would be interesting for procurement managers to know, which

side constraints have the biggest impact on total cost. For linear programs such information is provided by the dual
variables of respective side constraints. Such dual information is not readily available for mixed integer programs
and IP duality is a notoriously difficult topic (Williams 1996, Guzelsoy and Ralphs 2007). One can, however, fix the
binary variables to their optimal values and resolve the MIP as a linear program. The resulting duals can then provide
useful shadow prices for constraints such as (1), (9), (10), and (11). It can also be helpful to include the right-hand
sides of certain constraints as variables, and ask whether there is an award scenario that improves the total cost by a
certain percentage. This can be achieved by constraining the objective function value accordingly. Overall, sensitivity
analysis can provide valuable feedback for procurement managers during scenario analysis.

6. Experimental Setup

Initial experimental analyses on the winner determination problem in combinatorial auctions have used simple
value distributions, which have been criticized mainly for lacking economic justification (Andersson et al. 2000,
de Vries and Vohra 2003). Leyton-Brown et al. (2009) put emphasis on the selection of realistic instance distributions
for the analysis of a computational problem. Note, that the cost function imposes some structure on the bids generated,
which has an impact on the computation time, as we will show. The underlying cost function allows for reasonable
bids that resemble those found in real world settings.

8



6.1. Cost Functions

In the following, we will introduce a cost function, which will also be used to generate bids in our experiments.
Similar cost functions have been used to estimate cost parameters of companies (Baumol 1987, Evans and Heckman
1984, Stewart 2009). There are many possible treatments for an experimental analysis of an expressive bidding
language. The main difference in the bid data which we have collected from the field is the level of scale economies.
Therefore, we will mainly focus on the analysis of volume discounts modeling economies of scale, which is reflected
in the parametric form of the cost function, which we have chosen. The function allows us to generate different
types of instances beyond those that we collected in the field and it allows for a systematic experimental evaluation of
different returns to scale.

We will study an economy, where a set S of suppliers compete for a fixed quantity W i of one or more items i ∈ I.
Suppliers share the same production technology formally represented by a function.

cs(x1, ..., xI) = As
∑
i∈I

xi/Wi,s� + ∑
i∈I

Bi,s
xi/zi� + ∑
i∈I
βi,s(xi/γi,s)ρ

The function allows to model very different shapes with convex and concave sections. A s describes the fixed
overhead cost of a supplier s and Wi,s the quantity of item i a supplier s is awarded, while Bi,s describes the item
specific stepwise fixed cost for item i. z models the capacity bound, after which a new machine or plant needs to be
used, adding an additional Bi,s fixed costs. Note, that with stepwise fixed costs, the cost functions are not continuous
any more. βi,s describes the slope of a variable cost function for product i, and the exponent ρ is the nonlinear element
in the cost function, representing diseconomies of scale. γ is a parameter, which has an effect on the diseconomies of
scale: it delays the effect. These parameters can now be systematically varied as will be described in our experimental
design in the next section.

6.2. Experimental Design

We analyzed two main types of cost functions subsequently referred to as decreasing and u-shaped cost (u-cost).
The difference between those types of functions lies in the parameter settings described in Table 1 of our experiments.
We have drawn the parameters from a normal distribution, N(μ, σ 2) to generate different cost curves. Among those
two types of cost functions, we analyze settings with stepwise fixed costs and without. Figure 1 illustrates random
instances of decreasing and u-shaped cost curves with and without stepwise fixed costs. The main dependent variables
are run time and total spend.

Figure 1: Generation of randomized cost curves for u-cost and a zi of 30 % and decreasing cost with a zi of 100 %

First, we have drawn the respective parameter for each item, and then added additional variation for each supplier
taking the realization of the initial item-level random variable as the mean of a new supplier-specific random variable.
For the capacity zi, we assumed that either the capacity of a machine is around 30% with a standard deviation of 5%
per item and an additional variation per supplier, or we assume there is only a single fixed cost block (100%), but no
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stepwise fixed costs. The demand of all items is drawn from a uniform distribution between 600 and 1000 items for
the decreasing costs curves and 60 and 100 for u-shaped costs.

Variable description μ σitem σsupplier

Decreasing cost function
As supplier fixed overhead costs 0.0 - 0.0
Bi,s per item (stepwise) fixed costs 10,000.0 5,000.0 2,500.0
zi capacity of production line 30% (100%) 5% 1%
ρ power of the variable cost function 1.3 0.0 0.01
βi,s slope of the variable cost function 10.0 1.25 2.0
γi,s slope delay of the variable cost function 1.0 0.0 0.0
U-shaped cost function
As supplier fixed overhead costs 0.0 - 0.0
Bi,s per item (stepwise) fixed costs 50.0 10.0 30.0
zi capacity of production line 30% (100%) 5% 1%
ρ power of the variable cost function 15 0.0 0.01
βi,s slope of the variable cost function 20.0 2.0 0.5
γi,s slope delay of the variable cost function 60.0 0.0 3.0

Table 1: Parameters of the cost curve cs

For the decreasing cost functions the item fixed costs Bi,s are the dominating factor relative to the variable item
cost, mainly determined by ρ, effecting the average cost to be stricly decreasing in most instances with a z i of 100 %.
We ran a large number of experiments and had to restrict ourselfes to the most interesting findings. For this reason,
we only report experiments with supplier fixed overhead costs A s = 0. Omission of the overhead costs allows for
easier sensitivity analysis of the other parameters. For u-shaped cost funtions there are regions where average cost is
decreasing and others where it is increasing. We tuned the slope β i,s and the slope delay γi,s in the cost function to
ensure a larger interval where the average cost is flat.

Based on the underlying total cost function, we generated bids for each supplier. Bid generation is the process of
approximating the underlying total cost function with piecewise linear functions as defined for incremental volume
discount bids and total quantity discount bids. Note that the piecewise linear functions for a total quantity discount bid
need to go through the origin, as the prices are valid for the entire quantity. We assume a direct revelation mechanism,
where bidders try to reveal bids reflecting the underlying total cost function truthfully. Note, that if the approximation
error gets large and the bid language does not allow to describe the underlying cost function arbitrarily close, this
might have an impact on the bidding strategy and bidders might have an incentive to speculate. With only a few
predetermined quantity intervals, such approximation errors can become an issue (see supplementary material for
details of the bid generation process).

We analyze two treatments: either the number of discounts per item and the corresponding quantity intervals are
fixed, or the suppliers can supply an arbitrary number of intervals that is necessary to meet a predefined approximation
error εmax

s .
In the instances with decreasing cost functions the winner determination becomes trivial by purchasing the entire

quantity from a single supplier, if there are no limits on supply. Typically, in such multi-sourcing events the purchasing
manager does not allow to purchase the total demand of a single item from a single supplier, or suppliers are unable
to do so. Therefore, in all experiments with a decrasing cost function, we included an additional side constraint that
70% of the demand per item could go to a single supplier at a maximum for these instances.

All experimental results are based on IBM’s CPLEX 12.1 branch-and-cut solver and were conducted on an Intel
Core Duo (3 GHz) with 4 GB of RAM running on 64-bit Suse Linux 11.2. CPLEX provides advanced presolving
heuristics. We did, however, not find a significant positive or negative impact of presolving on the run time in general.
All results are therefore reported with standard presolving applied.
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7. Experimental Results

We will now summarize the results of our experiments with respect to computation time to solve the SQS problem
and total spend.

7.1. Analysis of Computation Time for Interactive Scenario Analysis
Computation time is central if SQS is to be solved in scenario analysis, which is the main focus of this paper. For

an interactive analysis of different award scenarios during the scenario analysis, the bid evaluation should not take
more than a minute. This allows exploring different side constraints in an interactive manner.

In this section, we have therefore set a time limit of 60 seconds, if not stated explicitely, and analyzed the remaining
MIP gap for different problem sizes. The integrality or MIP gap described is calculated based on the difference of
the best integer solution and the best feasible LP relaxation of all open subproblems. Note that this MIP gap is a
worst-case bound as it might turn out that the best feasible LP relaxation is much better than the best integer solution.

Figure 2: Optimality after 60 seconds for instances with 40 items and 15 suppliers

As a representative graph, Figure 2 illustrates the results for 40 items and 15 suppliers. Smaller instances showed
a similar overall pattern. ”100% Capacity - U” refers to cost curves without stepwise fixed costs and a u-shaped form.
In contrast, ”30% Capacity - Decreasing” describes instances where the underlying cost curve has a ρ = 1.3, and
stepwise fixed costs at around 30% and 60% of the demand.

The average results of 30 experiments for all treatment combinations can be found in Tables ?? to ?? in the
supplementary material. The columns 4T, 6T, and 8T summarize the results using total quantity discount bids with
4, 6, and 8 intervals. 4I, 6I, and 8I summarize the results of respective incremental volume discount bids. The string
”e0.1%I” refers to incremental volume discount bids with an approximation error ε max

s of 0.1% price for the total
volume.

Overall, the results of experiments with a 60s time limit reveal that surprisingly large instances could be solved
within a minute. We found many real-world problem sizes in high stakes procurement negotiations to have less than 40
items and 15 suppliers and interactive scenario analysis is actually possible with standard MIP solvers. Interestingly,
the shape of the cost curve does have a significant impact on the computation time. In this set of experiments, bids
based on u-shaped cost functions had a larger MIP gap.
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We have then analyzed the runtime of larger problem instances based on u-shaped costs with 10 or 30 suppliers
and 10, 30 or 50 items. Instances had either total quantity discounts or incremental discounts and 5 fixed intervals.
The MIP gap after 5, 10, 20, 60, 120, and 500 seconds can be found in Table 2. All reported numbers are again
average numbers for 30 instances solved. We have analyzed instances with a fixed set of 5 intervals, and instances,
where the approximation error ε was limited to 1. A value of −1.000 means that there is no MIP gap reported by the
solver.

As one can see the incremental volume discount instances with 5 intervals only were not solved to optimality, while
the instances with total quantity discounts could be solved to optimality even for larger instances with 30 suppliers and
10 items in 2 minutes. So the MIP gap of the incremental volume discount bids was always higher, when the number
of intervals was limited to five. With a limit on the approximation error ε to 1%, the number of intervals grows up
to more than 80 intervals in case of total quantity discount bids, but only up to around 30 intervals in case of volume
discount bids. Interestingly, the instances with only incremental volume discount bids are still harder to solve and the
MIP gap is typically larger. So, the structure of the problems with total quantity discounts allows for larger problems
to be solved.

Optimality with time limit
Suppliers Items Prices 5s 10s 20s 60s 120s 500s
Total quantity, 5 intervals
10 10 5 1.000 1.000 1.000 1.000 1.000 1.000
10 30 5 1.000 1.000 1.000 1.000 1.000 1.000
10 50 5 0.997 0.998 0.999 0.999 1.000 1.000
30 10 5 1.000 1.000 1.000 1.000 1.000 1.000
30 30 5 0.993 0.996 0.997 0.998 0.998 0.998
30 50 5 0.989 0.991 0.993 0.996 0.996 0.997
Incremental, 5 intervals
10 10 5 0.937 0.944 0.947 0.963 0.958 0.965
10 30 5 0.890 0.909 0.919 0.927 0.923 0.926
10 50 5 0.844 0.867 0.904 0.918 0.916 0.920
30 10 5 0.887 0.909 0.916 0.925 0.921 0.927
30 30 5 0.438 0.765 0.802 0.877 0.881 0.889
30 50 5 0.319 0.512 0.765 0.804 0.840 0.866
Total quantity ε < 1.0
10 10 80.41 0.636 0.680 0.725 0.775 0.812 0.868
10 30 77.36 -1.000 0.509 0.558 0.638 0.681 0.758
10 50 76.65 -1.000 -1.000 0.496 0.582 0.615 0.699
30 10 80.41 -1.000 0.515 0.584 0.646 0.693 0.760
30 30 77.36 -1.000 -1.000 -1.000 0.493 0.529 0.621
30 50 76.92 -1.000 -1.000 -1.000 0.000 0.441 0.549
Incremental ε < 1.0
10 10 28.20 0.595 0.811 0.880 0.937 0.911 0.946
10 30 25.28 -1.000 0.219 0.375 0.412 0.538 0.597
10 50 24.58 -1.000 -1.000 0.328 0.438 0.499 0.576
30 10 28.20 -1.000 -1.000 -1.000 -1.000 0.096 0.168
30 30 25.22 -1.000 -1.000 -1.000 -1.000 -1.000 0.108
30 50 24.52 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

Table 2: Optimality of the solutions for instances based on a u-shaped cost function (u-cost)

7.2. Analysis of Larger Instances without Time Constraints

Goossens et al. (2007) provided a tailor-made formulation for total quantity discount bids, as well as computational
results on randomly generated test instances. In contrast, LES S provides bidders with more flexibility and allows for
other types of volume discounts and various spend conditions. Typically, more flexibility and expressiveness comes
at the cost of computational complexity. It is interesting to see, if the expressiveness of L ES S comes at a large
computational cost.

Therefore, in another set of experiments, we used the synthetic bids, which were kindly provided by Goossens et al.
(2007) for a comparison. These experiments are limited to bids with total quantity discounts only. In their instances

12



with 40 items, Goossens et al. (2007) generated an upperbound-increase from one interval to the next, which was
a random number between 10,000 and 50,000, while for instances with 100 items, the upperbound increase was a
random number between 10,000 and 100,000. The results of the formulation in Goossens et al. (2007) with a branch-
and-cut approach and with the SQS formulation can be found in Tables ?? and ??. We focus on the branch-and-cut
results, since those provided the best results for larger instances. Note that we have used CPLEX version 12.1, while
Goossens et al. (2007) used version 8.1.

Interestingly, much larger instances could be solved to optimality with this set of bids in seconds, and the differ-
ences in runtime between the results reported by Goossens et al. (2007) and the results of SQS were small. The results
for the base case in were a slightly slower, while the results for the more-for-less scenario in Table were actually faster
(see Table ?? and ?? in the supplementary material). The more-for-less scenario aimed for optimal solutions with free
disposal of additional quantity, while the base case did not.

Obviously, the structure of the bids has a significant impact on the runtime. The bids generated based on our
multi-product cost function were considerably harder to solve. In particular, those instances without stepwise fixed
costs and a slope of ρ = 1.3. We assume that smooth cost functions generate a lot of solutions with similar objective
function value, a type of symmetry problem. The structured instances in Goossens et al. (2007) include economies
of scale, where intervals with more quantity have lower prices than intervals with less quantity, whereas the cost
functions in our paper also include diseconomies of scale. Also the demand can make a difference. If the demand is
increased, runtimes can increase, because there are more possible quantities to purchase and intervals.

In summary, the predictive quality of such runtime experiments depends on the structure of the bids and the
respective scale economies in a market. However, our results show that instances of practically relevant size can be
solved to optimality with very different types of bids.

7.3. Impact of Additional Side Constraints
Additional side constraints discussed in section 5 can have an impact on the runtime of the winner determination,

and they are particularly important to scenario analysis. As an example, we will report on variations of the allocation
constraint (10), in which a purchasing manager can specify bounds on the quantity per supplier and item.

We have used a problem with 20 items, 10 suppliers, a ρ of 1.3, no stepwise fixed costs, and varied the upper
bounds Vu

i,s. In Figure 3 we report the time it took to solve the instances. An exhaustive sensitivity analysis of all
possible side constraints and different right-hand sides is out of scope of this paper, but this example illustrates that if
additional side constraints become binding, this can have a significant impact on computation time.

Figure 3: Sensitivity to side constraints on quantity per item Vu
i,s

7.4. Description Length
We have discussed in section 3.1 that apart from the expressiveness of a bid language, the description length

matters. Figure 4 shows how the number of intervals in the SQS formulation increases with a decreasing maximal
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approximation error εmax
s . The required number of discount intervals is much higher for total quantity bids. The large

number of intervals needed to describe a cost function with low approximation error can make bidding impractical.
Note that in an incentive compatible mechanism such as the Vickrey-Clarke-Groves mechanism, bidding truthfully
might not be a dominant strategy, unless the bidding language allows describing the underlying cost function arbitrar-
ily close.

Figure 4: Description length of payment modifiers

7.5. Total Spend Comparison

Finally, we will discuss the impact of different volume discount types on the total cost of the purchasing organiza-
tion. Again, we assume a direct revelation mechanism, and bidders submit their bid in a way that approximates their
true costs as close as possible, either restricted by the number of intervals or a predefined approximation error. We
had suppliers submit a single price quote for each item in a split-award auction. The same suppliers also submit bids
in an auction with only total quantity discount bids, and in an auction with only incremental volume discount bids.
For the latter two auction types, we also distinguished settings with a fixed set of 5 intervals, or an approximation
error ε of 1.0%. All bids were determined based on the same underlying cost function. The results are summarized in
Table 3. Each row summarizes the result of the split award auction in absolute numbers on the right, and the result of
a particular volume discount auction relative to the cost of the split-award auction in percentage values after 5, 10, 20,
60, 120, and 500 seconds similar to the results presented on optimality in Table 2.

We will first look at the spend with a fixed number of 5 intervals. If the MIP gap is high, then also the spend with
total quantity discount bids and incremental volume discount bids can be much worse than with simple split award
auctions. Therefore, we will mainly look at the column with 500s, where the MIP gap was low. Interestingly, in
the setting with total quantity bids and 5 intervals, the spend achieved was higher than that of split award auctions,
although the smaller instances could be solved to optimality. The reason for this is the bad approximation. In contrast,
incremental volume discount bids achieved a lower total cost compared to split award auctions for all problem sizes
already after 120 seconds. This was the case, even though the problems could not be solved to optimality within 500
seconds.

In situations, where the approximation error ε was limited to 1%, total quantity discount bids led to cost savings
compared to split-award auctions in small instances. Larger instances with 30 suppliers and 30 items led to a large
MIP gap even after 500 seconds and the results were worse than those of a split award auction. Also in this setting,
the incremental volume discounts led to lower total cost compared to split-award auctions for all problem sizes after
500 seconds. Also, after 500 seconds the total cost was always lower than with total quantity discount bids.

8. Summary and Conclusions

We have suggested a bidding language for markets with economies of scale and scope and a respective mixed in-
teger program to solve the resulting supplier quantity selection (SQS) problem. The bidding language is considerably
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Spend in % of split awards with time limit Split award
Suppliers Items 5s 10s 20s 60s 120s 500s (100%)
Total quantity 5 intervals
10 10 101.13 100.94 100.94 100.02 100.94 100.94 5441
10 30 101.22 101.22 101.22 101.58 101.22 101.22 15965
10 50 102.28 102.20 102.19 102.45 102.19 102.19 26243
30 10 101.44 101.44 101.44 101.44 101.44 101.44 5110
30 30 102.75 102.59 102.57 103.80 102.56 102.56 14860
30 50 102.79 102.69 102.48 102.74 102.27 102.27 24688
Incremental 5 intervals
10 10 93.65 93.47 93.49 93.27 93.45 93.46 5441
10 30 97.31 95.50 94.67 94.84 94.48 94.40 15965
10 50 103.54 100.72 96.70 95.87 95.62 95.46 26243
30 10 96.76 94.86 94.37 92.63 94.28 94.21 5110
30 30 109.45 109.09 105.02 97.81 95.97 95.62 14860
30 50 115.53 113.37 107.40 103.07 97.98 95.85 24688
Total quantity ε = 1.0
10 10 93.59 93.60 93.60 93.52 93.25 87.89 5441
10 30 29311.83 95.37 95.37 95.77 95.36 95.17 15965
10 50 31571.88 29585.34 96.65 97.44 96.64 96.64 26243
30 10 117653.66 97.36 97.34 96.49 97.36 96.96 5110
30 30 92869.85 92869.85 92869.85 102.60 102.30 102.29 14860
30 50 82807.65 83589.52 83589.52 92582.93 103.08 103.08 24688
Incremental ε = 1.0
10 10 87.72 87.73 86.35 86.09 86.27 86.15 5441
10 30 374.71 132.40 94.47 90.68 88.08 87.69 15965
10 50 450.39 335.86 123.02 95.08 89.94 89.19 26243
30 10 930.91 184.22 96.96 89.46 87.88 87.29 5110
30 30 1449.13 1277.17 1350.74 162.00 103.73 90.97 14860
30 50 1675.84 1433.83 1333.95 696.10 150.84 94.08 24688

Table 3: Comparison of spend using a u-shaped cost function

more expressive than what has been discussed in the literature so far and includes incremental volume discounts, total
quantity discounts, lump sum discounts, and a variety of conditions defined on spend and quantity of selected items.
While both, incremental volume discount bids and total quantity discount bids, have been described in the literature
and are used in procurement practice, there has not been a thorough comparison among those discount policies as of
yet. This is the first paper, to use different types of cost functions to generate bids, which allowed us to analyze not
only computation times, but also total spend of different discount policies.

Our results show that that realistic problem sizes can be solved in a matter of minutes, but that problems with only
incremental volume discount bids are harder to solve than those with only total quantity discount bids. If a supplier
wants to approximate his true cost function with total quantity discount bids closely, this leads to a much larger and
number of discount intervals. There were several situations, where the results of simple split-award auctions with
simple price quotes lead to lower total cost than those of more advanced bidding languages. The reasons are either
bad approximations of the cost curve or the inability to find the cost-minimal solution within acceptable response
times. For example, if suppliers only used a few total quantity discount intervals, this led to much higher total cost
for the buyer. However, we have also shown that significant savings can be achieved with compact bidding languages
compared to split award auctions, if bidders are able to approximate their cost functions well.

In summary, a procurement manager needs to take care that the bidding language provides enough flexibility so
that bidders can describe their cost structures arbitrarily close. At the same time bids should have low description
length, such that suppliers are only forced to specify a few parameters and not hundreds of numbers. Also, a pro-
curement manager should make sure that the number of bids in an application is such that he can expect to solve
the problem instances to optimality. The results of our analysis should provide an better understanding under which
circumstances compact bidding languages can be used in procurement practice. Mechanism design questions have
been outside the scope of this paper, and remain fruitful questions for future research in this area.
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