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Combinatorial auctions have been suggested as a mean to raise efficiency in multi-item negotiations with
complementarities as they can be found in procurement, in energy markets, in transportation, and for the
sale of spectrum auctions. The Combinatorial Clock (CC) auction (Porter et al. 2003) has become very
popular in these markets for its simplicity and as it ”produces highly usable price discovery, because of
the item prices (linear pricing)” (Ausubel et al. 2006). Unfortunately, the CC auction fails to lead always
to efficient outcomes, and there is no theory on equilibrium bidding strategies in such auctions. Given the
importance of the CC auction in the field, it is desirable to better understand the CC auction. In this paper,
we first show that the worst-case efficiency in the CC auction can actually be as low as 0%, if bidders follow
the straightforward strategy. We identify demand-masking valuations, i.e., the characteristics of valuation
functions, which can cause such low efficiencies. We then introduce the CC+ auction, an extension of the
CC auction with a modified price update rule and a VCG payment rule, and show that powerset bidding
leads to efficient outcomes and an ex-post equilibrium for general valuations, while maintaining linear ask
prices. While a powerset strategy might only be possible in very small scenarios, computational experiments
show that both, the CC and the CC+ auctions achieve high levels of efficiency, even if bidders are restricted
to submit only a small number of bids in each round. This result indicates that the CC+ auction is robust
against some of the strong assumptions in the theory and it also explains high levels of efficiency of the CC
auction that have been observed in the lab.
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1. Introduction
The single-item ascending Clock auction (aka. Japanese auction) has a number of desirable eco-
nomic properties. It is individually rational, efficient, strategy-proof, and the payoff vector is in
the core. When all bidders know their private valuations, truthfully revealing one’s demand is
a dominant strategy. It would be desirable to achieve such properties for combinatorial auction
(CA) designs as well. Unfortunately the Vickrey-Clarke-Groves (VCG) design is the unique mecha-
nism that satisfies individual rationality, efficiency, and strategy-proofness (Ausubel and Milgrom
2006b). However, its results can be outside the core, which leads to a number of problems in
practical settings (Ausubel and Milgrom 2006b, Rothkopf 2007).

1.1. Iterative Combinatorial Auctions
Researchers have been trying to find generalizations of the single-item Clock auction for selling
multiple items. For situations with multiple items, but unit demand (Demange et al. 1986) and for
multiple homogeneous goods with marginal decreasing value (Green and Laffont 1979, Holmstrom
1979), it has been shown that there are generalizations, which can be used to implement efficient,
strategy-proof mechanisms. Finding efficient auctions with strong incentive properties turned out
to be much harder for CAs with general valuations.

The Ascending Proxy Auction (Ausubel and Milgrom 2006a), iBundle(3) (Parkes and Ungar
2000), and the dVSV auction (de Vries et al. 2007) achieve full efficiency with straightforward
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bidders, i.e., bidders only bid on those packages that maximize their payoff in each round. If the
coalitional value function satisfies the buyer submodularity condition, straightforward bidding is
a best-response strategy, which leads to an ex-post equilibrium and the auction results in the
VCG outcome (Ausubel and Milgrom 2002). These auction formats are based on non-linear and
personalized prices and can be modeled as an algorithm (primal-dual or subgradient) to solve the
corresponding linear program. We refer to these auction formats as non-linear personalized price
auctions (NLPPAs) in the following.

If the bidders’ valuations in an NLPPA are not buyer submodular, bidders have an incentive
to shade their bids and not follow the straightforward strategy. However, buyer submodularity
is mostly not given for realistic value models. Even, if bidders knew that their valuations are
buyer submodular and they would not need to speculate about other bidders’ types, it is not
obvious that other bidders are able to follow their best-response strategy in such an environment.
Both computational and lab experiments have also illustrated the large number of auction rounds
necessary for these NLPPAs (Schneider et al. 2010), in which nearly all valuations have to be
elicited to achieve efficiency.

As an alternative, linear-price CAs have been suggested resembling the fictitious Walrasian
tâtonnement. Linear prices are desirable for their simplicity and the reduced communication com-
plexity in real world applications. One line of research is based on a restricted dual of the relaxed
winner determination problem, in which the pseudo-dual variables are used as ask prices in the
auction (Rassenti et al. 1982, Kwasnica et al. 2005, Bichler et al. 2009). Fluctuations of the ask
prices and the complexity of the ask price calculation are problems in some applications. In con-
trast, Porter et al. (2003) suggested a simple mechanism with ascending linear ask prices, called
the Combinatorial Clock (CC) auction. Initially prices for all items are zero. In every round bidders
identify a package of items, or several packages, which they offer to buy at current prices. If two
or more bidders demand an item then its price will be increased by a fixed bid increment in the
next round. This process iterates. The bids which correspond to the current ask prices are called
standing, and a bidder is standing if he has at least one standing bid. In a trivial case when at
some point supply equals demand the auction terminates and the items are allocated according
to the standing bids. If at some point there is excess supply for at least one item and no item is
over-demanded, the auctioneer determines the winners to find an allocation of items that would
maximize his revenue considering all submitted bids. If the solution displaces a standing bidder,
then prices of items in the corresponding standing bids rise by the bid increment and the auction
continues. The auction ends when no prices are increased and bidders finally pay their bid prices
for winning packages. We analyze a version that uses an XOR bidding language.

The mechanism has achieved high levels of efficiency in the lab (Porter et al. 2003) and has a
number of obvious advantages. It maintains strictly ascending, linear ask prices, and limits the
computational burden on the auctioneer as he only has to solve the NP-hard winner determination
problem in the last rounds. Also, the information revelation between rounds makes it quite robust
against collusion and limits the bidder’s possibilities for signaling.

For these reasons, the Netherlands and the UK have recently started to use a CC auction for
price discovery in the sale of spectrum licenses followed by a sealed bid auction (Cramton 2009). It
is also being used in electricity markets, in which anonymous linear prices are often an important
requirement (Cramton et al. 2006). Unfortunately, no equilibrium strategy is known, and it is
unclear for real bidders, which strategy they should follow. Apart from a few lab experiments
(Porter et al. 2003, Kagel et al. 2009, Scheffel et al. 2010) little theoretical research has focused on
the CC auction as of yet.

1.2. Contribution and Composition of this Paper
Achieving efficiency when economic agents strategically pursue their individual self-interest is a
fundamental problem in Economics. General equilibrium models showed that in classical convex
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economies with multiple products, the Walrasian price mechanism verifies the efficiency of a pro-
posed allocation Arrow and Debreu (1954) while communicating as few real variables as possible
(see Mount and Reiter (1974) and Hurwicz (1977)). Furthermore, Jordan (1982) showed that
the Walrasian mechanism is a unique voluntary mechanism with this property. However, these
results assume that all production sets and preferences are convex and do not apply to non-convex
economies with indivisible goods, such as combinatorial auctions. Such neoclassical general equi-
librium models have often been criticized for their strong assumptions (Georgescu-Roegen 1979).

Bikhchandani and Mamer (1997) showed that without convexity assumptions full efficiency can-
not be achieved with linear competitive equilibrium (CE) prices for general valuations (see Nisan
and Segal (2006) for an overview). Later Gul and Stacchetti (1999) proved that for all bidders it is
almost necessary that goods are substitutes to ensure efficiency with linear CE prices. So far, only
iterative combinatorial auction (ICAs) designs with non-linear and personalized prices have been
shown to be fully efficient.

In most practical applications of ICAs, linear and anonymous ask prices are essential. For
example, day-ahead markets for electricity sacrifice efficiency for the sake of having linear prices
(Meeus et al. 2009). Also, the main auction formats, which have been tested for selling spectrum in
the US used linear prices (Brunner et al. 2009). The CC auction is probably the most wide-spread
ICA format, but the negative results by Gul and Stacchetti (1999) seem to indicate that there is
no hope to make the CC auction fully efficient for general valuations.

A notable difference between the CC auction and auctions with pseudo-dual prices, however, is
that bidders might not need to pay the ask prices of the final round. The winner determination
in the final round can select a bid and the corresponding ask price from a previous round, so that
there is a distinction between ask prices and payments. This distinction opens up the possibility to
achieve efficiency with linear ask prices and a strong game-theoretical solution concept for general
valuations. The latter is important, as any restriction on the valuations is typically unknown and
makes even a strong solution concept weak. In this paper, we show conditions, under which the
CC auction with linear ask prices satisfies an ex-post equilibrium and provide sensitivity analysis
to understand, how robust the CC auction is against violations of these conditions.

In section 2 we summarize related literature on linear CE prices. In section 3 we present analyt-
ical results on the worst case efficiency of the CC auction assuming simple bidding strategies. This
is useful, as due to the distinction between final ask prices and payments, the CC auction is not
covered by the negative results outlined by (Gul and Stacchetti 1999). First we assume straightfor-
ward bidding, i.e., truthful revelation of the payoff-maximizing packages in response to ask prices
(Parkes 2006), since this strategy is easy to follow and limits the amount of information that needs
to be revealed in each round. We introduce a demand-masking set of valuations and show that the
efficiency of the CC auction can be as low as 0%. While the example that leads to 0% efficiency can
be considered a degenerate case, we also discuss situations that we found regularly in numerical
experiments with realistic value models, and which can also lead to efficiencies as low as 50% with
straightforward bidding. As an alternative, we evaluate a powerset strategy, in which bidders bid
on all possible packages with positive payoff in each round. We show, however, that even if bidders
reveal as much information in each round, efficiency of the CC auction can also decrease to 0%.
This analysis helps to understand situations, in which the CC auction is inefficient and propose
improvements.

Based on these results in Section 4 we identify properties of the auction mechanism that satisfy
full efficiency with a strong game-theoretical solution concept. We suggest a variation of the CC
auction, the CC+ auction, which leads to 100% efficiency with powerset bidding. First, we modify
the price update rule to allow for efficency. Second, we introduce the VCG payment rule to assure
incentives for truthful bidding. We show that powerset bidding becomes an ex-post equilibrium
strategy for general valuations in the CC+ auction. From the revelation principle, we know that
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for each mechanism, we can construct a truthful direct-revelation mechanism whose performance is
identical (Gibbard 1973). Therefore, while the CC+ auction is an indirect mechanism, the result is
in line with Green and Laffont (1977), who proved that an efficient revelation mechanism in which
honest revelation is a dominant strategy for each agent is necessarily a Groves mechanism.

Mathematical models of auctions and markets have been criticized as unrealistic (Rothkopf and
Harstad 1994, Georgescu-Roegen 1979), as some of the assumptions are too strong and do not
hold in practical applications. For example, auction formats such as the Ascending Proxy Auction
(Ausubel and Milgrom 2006a), iBundle(3) (Parkes and Ungar 2000) or dVSV (de Vries et al.
2007) require the buyer submodularity condition to hold in order to achieve an ex-post equilibrium
strategy in straightforward bidding. Clearly, these are significant contributions to the literature,
not necessarily for their immediate practical applicability with human bidders, but as they show
under which conditions full efficiency with a strong solution concept can be achieved in a CA. Based
on an efficient auction design, researchers can then analyze the robustness of different designs with
respect to deviations from some of the assumptions (Schneider et al. 2010).

Some assumptions of the CC+ auction are also strong and might not be given in practical
applications. For example, the price-update rule in the CC+ auction reveals almost no information
to the bidders. This rule is necessary for a provable ex-post equilibrium in the full information
setting. Typically auctions are not used in a full information setting. In Section 5, we discuss a
weaker price update rule, which makes it very hard for bidders to speculate on other bidders’ types,
but provides higher market transparency.

A powerset bidding equilibrium strategy is another limitation, as it will only be viable for small
instances with a few items. In Section 6, we provide an experimental analysis of the CC and the
CC+ auction and restrict bidders in the number of package bids they can submit in each round. We
show that both the CC and CC+ auction are surprisingly robust against deviations of a powerset
strategy. In lab experiments, bidders typically submit a set of bids with a large expected payoff
(not necessarily only those, which maximize their payoff). This robustness against deviations of
powerset bidding also explains, why the CC auction performed so well in the lab (Porter et al.
2003, Scheffel et al. 2010, Kagel et al. 2009). Section 7 provides a summary and conclusions.

2. Related Definitions and Theory
First we introduce the necessary notation and review the relevant theory on linear-price CAs.
There is a set K of m indivisible items indexed with k or l, which are auctioned among n bidders.
Let i, j ∈ I denote the bidders and vi : S→ R denotes a value function of bidder i, which assigns
a real value to every subset S ⊆K of items. An allocation X ∈ Γ of the m items among bidders is
X = {X1, ...,Xn}, with Xi ∩Xj = 0 for every i 6= j. Xi is the package of items assigned to bidder
i. The social welfare of an allocation X is

∑
i∈I vi(Xi), and the efficient allocation X∗ maximizes

social welfare among all allocations X, such that ∀v∀X,
∑

i∈I vi(X∗i )≥
∑

i∈I vi(Xi).
We focus on linear-price CAs, in which an ask price βk for each of the m items is available, and

the price of a package S is the sum of the prices of the items in this package. We assume that the
demand of each bidder are the packages which maximize his utility.

Definition 1. (Blumrosen and Nisan 2007) For a given bidder valuation vi and given item
prices β1, ..., βm, a package R⊆K is called a demand of bidder i, if for every other package S ⊆K
we have that vi(S)−

∑
k∈S βk ≤ vi(R)−

∑
k∈R βk.

A feasible allocation X and a price vector βk are in competitive equilibrium (CE), when the allo-
cation maximizes the payoff of every bidder and the seller given the prices. A Walrasian equilibrium
can then be described as a vector of linear or item prices.

Definition 2. A Walrasian equilibrium is a set of nonnegative prices β1, ..., βm and an allocation
X, if for every player i, Xi is the demand of bidder i at those prices and for any item k that is not
allocated βk = 0.
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Simple examples illustrate that Walrasian equilibria do not exist for a general valuations in CAs
if goods are indivisible; in other words, for certain types of bidder valuations it is impossible to
find linear CE prices which support the efficient allocation X∗ (Blumrosen and Nisan 2007).

The economic goods are substitutes property is a sufficient condition for the existence of Wal-
rasian equilibrium prices (Kelso and Crawford 1982). Intuitively this property implies that every
bidder will continue to demand the items which do not change in price, even if the prices on
other items increase. Overall, the goods are substitutes condition is very restrictive as most known
practical applications of CAs rather deal with complementary goods.

Actually, Gul and Stacchetti (2000) show that even if bidders’ valuation functions satisfy the
goods are substitutes condition, there exists no ascending CA that uses anonymous linear prices
and arrives at the VCG solution. This means that bidders may have an incentive to demand smaller
packages of items, in order to lower their payments.

Bikhchandani and Ostroy (2002) prove that only with personalized non-linear prices a CA always
achieves a CE. The Ascending Proxy Auction, iBundle(3) and the dVSV auction are designs
using non-linear personalized prices at the expense of an exponential (in m) number of auction
rounds. Also, the final ask prices generated are not VCG prices for general valuations and thus
bidders still might be incentivized to deflect from the assumed straightforward bidding strategy.
Straightforward bidding is only an ex-post equilibrium in these NLPPAs, if bidder valuations are
submodular (de Vries et al. 2007).

Definition 3. Final ask prices are the ask prices βk of the last round of an iterative auction.
Definition 4. A payment is the amount of money a bidder has to pay for his winning items.
In the efficient ICAs (Ascending Proxy Auction, iBundle, dVSV), there is no difference between

final ask prices and payments. They charge bidders the final ask prices to pay for their winning
packages. This means ask prices need to be non-linear and personalized to guarantee efficiency.
In contrast to NLPPAs the CC auction differentiates between final ask prices and payments. This
opens up the possibility of maintaining linear ask prices, but achieve efficient solutions with a
strong solution concept by implementing non-linear and personalized payments.

3. Efficiency of the CC Auction
Game-theoretical analyses of ICAs typically assume the straightforward bidding strategy. In this
section, we analyze the worst-case efficiency of the CC auction with bidders following the straight-
forward strategy. We also evaluate a powerset strategy, which describes the situation, in which
bidders reveal all packages with positive valuation at the current prices. We draw on this strategy
in subsequent sections.

Definition 5. The straightforward bidder bids only for his demand in each round at the current
ask prices β1, ..., βm.

Definition 6. The powerset bidder bids on all packages S with a positive value vi(S) −∑
k∈S βk ≥ 0 at the current set of ask prices β1, ..., βm.
We first show that if all bidders follow the straightforward strategy, the efficiency of the CC

auction can be as low as 0%. For this, we refer to a recent Theorem by Kagel et al. (2009) on the
efficiency of auctions which maximize the seller’s revenue based on bid prices.

A standard package auction is defined such that it selects an allocation X to maximize the
auctioneer’s revenue X ∈ arg maxX

∑
i∈I βi(Xi) and has bidder i pay βi(X i). βi(Xi) denotes the

highest price that i bids for a package Xi during the course of the auction.
A standard package auction can be modeled as a cooperative game with transferable utility, in

which the payoff vector or imputation π is given by the auctioneer’s revenue π0 =
∑

i∈I βi(X i),
and bidder i’s payoff πi = vi(Xi)−βi(Xi). The value of a coalition of the seller and the bidders in
T ⊆I is w(T ) =

∑
i∈T vi(X∗i |T ).
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A feasible allocation X with prices β and a corresponding imputation π is a core allocation
if, for every set of bidders T ⊆ I, the imputation satisfies π0 +

∑
i∈T πi ≥ w(T ). A set of bidders

T is relevant, if there is some imputation such that π0 +
∑

i∈T πi = w(T ). The package Xi is the
respective efficiency-relevant package.

Theorem 1. (Kagel et al. 2009) In a standard package auction, if for some relevant allocation
X ∈ arg maxX

∑
i∈I vi(Xi) and for all bidders i, vi(Xi) − βi(Xi) ≤ πi, then the allocation X is

efficient: π0 +
∑

i∈I πi ≥w(I). If the efficient allocation is unique, then the auction outcome (X is
efficient only if for every bidder i, vi(Xi)−βi(Xi)≤ πi.

To promote these results, the auction mechanism must encourage bidders to bid aggressively all
the way up to their full values (βi(Xi) = vi(Xi)) for efficiency-relevant packages, i.e., packages that
may become winning.

3.1. Worst-case Efficiency of the CC Auction with Straightforward Bidders

β(1) β(2) β(3) ... (1) (2) (3) ... (1,2) (1,3) ...
v1 10*
v2a 4* 10
v2b

10
v3a 4* 10
v3b

10
... ... ...

t= 1 1 1 1 ... 11 22a,2b
23a,3b

...
t= 2 2 2 2 ... 21 42a,2b

43a,3b
...

t= 3 3 3 3 ... 31 62a,2b
63a,3b

...
t= 4 4 4 4 ... 41 82a,2b

83a,3b
...

t= 5 5 5 5 ... 51 102a,2b
103a,3b

...
t= 6 6 6 6 ... 61

t= 7 7 6 6 ... 71

...
t= 10 10 6 6 ... 101

Table 1 Example of a demand masking set of bidder
valuations and auction progress.

R {Sh} {R∪̇Sh}
v1 ξ 0 ξ

{vha} 0 νh µ
{vhb

} 0 0 µ

Table 2 Demand masking set of
bidder valuations.

If a bidder follows the straightforward strategy in the CC auction, he does not bid on all relevant
packages in the course of the auction. The example in Table 1 illustrates a characteristic situation
that we refer to as demand masking set. The upper part of the table describes valuations of 2m−1
bidders for m items, while the lower part shows both ask prices for items and bid prices for
packages in individual rounds t. The indices of the bid prices for different packages indicate, which
straightforward bidder submits the bid on the respective package. There is one bidder called bidder
1 and for each h∈ {2, ...,m}, there are two bidders ha and hb. Bidder 1 values item (1) at a value of
10 and does not value any other item. For h= 2, ...,m, bidders ha and hb value the package (1,h) at
10 and bidders ha the item (h) at 4, and are not interested in any other package. WLOG we assume
a bid increment of 1. Straightforward bidders ha and hb demand the package (1,h) until round 6
at which point they demand nothing. At round 7 there is excess supply and the auctioneer solves
the winner determination problem, which displaces the sole remaining standing bid on item (1) of
bidder 1. Thus the price on item (1) further increases until bidder 1 wins item (1) in round 10,
and the auction terminates with a social surplus of 10. However, the efficient allocation gives item
(1) to bidder 1, and item (h) to bidder ha for a social welfare of 10 + 4(m− 1). 10/(10 + 4(m− 1))
converges to 0 as m approaches infinity.

Now we provide a formal definition of a demand masking set and derive a worst-case bound for
these situations as a function of m.
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Definition 7. A demand masking set of bidder valuations is given, if the following properties
are fulfilled. There is a set of bidders I with |I| ≥ 3, a set of items K= {1, ...,m} with R⊆K and
a partition H of K\R. Let Sh be the elements of H with h∈ {2, ..., |H|+ 1 = g}. For each Sh there
are two bidders ha and hb. Bidder 1 values package R with ξ. For h ∈ {2, ..., g} bidders ha value
the packages Sh with νh and R∪̇Sh with µ and bidders hb value only package R∪̇Sh with µ. All
bidders do not care for other packages, i.e., the marginal value of winning any additional item to
the positive valued packages is zero.

Note that the valuations of zero as shown in the Table 2 need not to be strictly zero but rather
sufficiently small not to influence the economy.

Theorem 2. If bidder valuations are demand masking and all bidders follow the straightforward
strategy in the CC auction, then the efficiency converges to 2

m+1
in the worst case.

Note proofs to theorems, propositions and corollaries are presented in the Appendix A.
In the example in Table 1 νh is smaller than 5 for all h. With m= 3 and νh = ν = 5− ρ for all h

we would get approximately 50% = 10/(10 + ν(m− 1)) efficiency, which is equal 2/(m+ 1) in the
worst case. Obviously if the number of items m and the corresponding number of bidders increases
to fulfill the requirements of a demand masking set, efficiency converges to 0% in the worst case.
While such a situation that leads to 0% efficiency can be considered a degenerated case that will
not happen too often in practice. We found regulary situations in simulations with realistic value
models, in which the case of m= 2 or m= 3 occured, which still leads to efficiencies of 67% or 50%
in the worst case. Note that these are not necessarily the only characterizations of value models in
which such low efficiency can occur.

3.2. Worst-Case Efficiency of the CC Auction with Powerset Bidders
One of the reasons for the popularity of ascending auctions is that they require only partial reve-
lation of the private information (Blumrosen and Nisan 2007). In a CA this might be less of an
advantage, as it is still necessary to elicit all valuations, except those of the winning bids in the
efficient allocation in the worst case. This means that if there are z winning package bids in an effi-
cient allocation, n2m−z valuations need to be elicited by the auctioneer to guarantee full efficiency.
For example, ascending auctions with non-linear personalized prices such as iBundle (Parkes and
Ungar 2000), the Ascending Proxy Auction (Ausubel and Milgrom 2002), or dVSV (de Vries et al.
2007) are protocols that in each round elicit the demand set of each bidder and provably find an
efficient solution at the expense of an exponential number (in m) of auction rounds (Blumrosen
and Nisan 2007). In such a NLPPA with straightforward bidders at least all valuations of all losing
bidders get elicited.

As an alternative to straightforward bidding, the auctioneer can try to encourage bidders to
bid on many packages from the start. In the best case, bidders would reveal all packages with
positive payoff, i.e., they would follow a powerset strategy. Unfortunately, even if bidders follow
the powerset strategy, the CC auction does not necessarily terminate with an efficient solution.

Proposition 1. If all bidders follow the powerset strategy, the efficiency of the CC auction
converges to 0% in the worst case.

The inefficiency without free disposal described in the example in Table 3 of the Appendix A
can only happen, if there are two overlapping packages by the winning bidder, and there is only
competition on the package with the lower valuation. This drives up the prices on the latter one
and this package gets sold, although the bidder had a much higher valuation for the first package.
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3.3. Modifications of the CC Auction
The analysis in Section 3.2 shows that even if bidders reveal all profitable packages in each round,
the CC auction can be inefficient. However, a small change in the price update rule allows to elicit
all losing package valuations and makes the CC auction fully efficient with powerset bidders.

Definition 8. A partial revelation price update rule in the CC auction also increases prices for
each overdemanded item and in addition for each item of a standing bid which is displaced by the
winner determination.

Corollary 1. If all bidders follow the powerset strategy, the CC auction with the partial reve-
lation price update rule terminates with an efficient outcome.

4. The CC+ Auction
Even if the powerset strategy leads to full efficiency in a modified CC auction with linear ask
prices, it is not obvious, why a bidder should follow the powerset strategy. In the following, we show
that the powerset strategy can be an ex-post equilibrium, but that it requires an even stronger
price-update rule and a VCG payment rule (Ausubel and Milgrom 2006b). We refer to this auction
design as CC+ auction.

Definition 9. A full revelation price update rule in the CC+ auction increases prices on items
as long as at least a single bidder bids on the item.

We aim for a strong game-theoretical solution concept. A desirable property would be a profile
of strategies with an ex-post equilibrium, in which a bidder would not regret his bid even when
he is told what everyone’s type was after the auction. Note that we are not attempting to achieve
a dominant strategy equilibrium, as preference elicitation in an indirect mechanism can invalidate
dominant strategy equilibria existing in a single-step version of a mechanism (Conitzer and Sand-
holm 2002). We discuss the type of speculation that would be possible in a CC+ auction with full
information in Appendix C. This illustrates that ex-post equilibria are not as robust as dominant
strategy equilibria, but they are much more robust than Bayesian Nash equilibria. When itera-
tive preference elicitation is used to implement a mechanism which would be a dominant-strategy
direct-revelation mechanism in a sealed-bid version, then each agent’s best (even in hindsight)
strategy is to act truthfully if the other agents act truthfully (Conen and Sandholm 2001).

Definition 10. Truthful bidding in every round of an auction is an ex-post equilibrium if, for
every bidder i ∈ I, if bidders in I−i follow the truthful bidding strategy, then bidder i maximizes
his payoff in the auction by following the truthful bidding strategy (Mishra and Parkes 2007).

A description as a pseudo code of the CC and the CC+ auction is provided in Appendix B.
Changes to the original CC auction are underlined.

The CC+ auction can suffer from small inefficiencies due to the minimal bid increment. Last-
and-final bids have been suggested as a mean to get rid of these inefficiencies (Parkes 2006). They
allow bidders to submit a final bid on a package, which is above the ask price of the previous
round, but below the current ask price for a package. For the sake of clarity, we omit this rule in
our analysis.

4.1. Properties of the CC+ Auction
We show that the CC+ auction maintains linear ask prices and powerset bidding is an ex-post
equilibrium strategy leading to an efficient solution. Note that we do not need to make any restric-
tive assumptions on the bidders’ valuations. To prove the efficiency already the slightly weaker
partial revelation price update rule is sufficient (cf. proof to Corollary 1).

Corollary 2. A powerset strategy is an ex-post equilibrium in the CC+ auction.
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As all bidders reveal all valuations, a bidder cannot improve his payoff by unilaterally deviating
from the truthful powerset strategy in a respective CC+ auction, or influence whether the other
bidders reveal their valuations truthfully. Therefore, the bidder’s truthful powerset strategy is
independent of the other bidders’ types. This result shows, what types of price update and payment
rules are sufficient for a powerset strategy to satisfy an ex-post equilibrium.

While the partial revelation price update rule is sufficient for efficiency, when all bidders follow a
powerset strategy, a full revelation price update rule is necessary to achieve an ex-post equilibrium.

Proposition 2. Powerset bidding does not satisfy an ex-post equilibrium in the CC+ auction
with only a partial revelation price update rule.

Nisan and Segal (2006) have shown that it will require an exponential amount of queries from the
auctioneer to the bidders, in order to determine the optimal allocation. There are subtle differences,
however, in the amount of information that is elicited by different auction formats. A VCG auction
and a CC+ auction asks bidders to reveal all n2m valuations to the full extent. In a CC+ auction
a bidder sees the price clock increase on various items and learns at which prices nobody demands
a particular item any more. In a VCG auction, bidders only know that a bid on a particular
package was losing. In both cases, the auctioneer learns all valuations of all bidders. Using the
partial revelation price update rule in the CC+ auction with z winning bids, only n2m− z losing
valuations get elicited.

In NLPPAs such as the Ascending Proxy Auction, iBundle(3), or dVSV the auctioneer elicits
n2m − z preferences in the worst case. It might also be, that the winners do not need to reveal
all valuations on losing packages. However, a strong solution concept is only satisfied, if buyer
submodularity is given. Clearly, communication complexity will always remain a stumbling block
for any of the theoretical models in situations with more than a few items only. The assumption
of following a straightforward strategy in exponentially many auction rounds will only hold in
automated settings with proxy agents. The same is true for the powerset strategy, even if the
number of auction rounds is much lower. We address this issue and the robustness of the efficiency
results with respect to deviations from the powerset strategy in the next section.

Similar to work on NLPPAs, the CC+ auction is, however, of theoretical value as it shows
sufficient rules and assumptions to design an ascending CA that uses linear ask prices and achieves
an efficient outcome with a strong solution concept for general valuations.

4.2. Alternative Payment Rules
Of course the CC+ action suffers from some of the problems of the VCG design, in particular that
the outcome might not be in the core (Ausubel and Milgrom 2006b). In other words, there are
some bidders who could make a counteroffer to the seller that both sides would prefer to the VCG
outcome. In such situations, the auctioneer can increase his sales revenue by excluding certain
bidders, which is also referred to as revenue non-monotonicity. The bidders could also increase
their payoff through shill bidding. These vulnerabilities of VCG outcomes are considered as serious
problems for applications in the field. In some settings, it might be sufficient to have a mechanism,
which is in the core, but which is as close to incentive compatibility as possible.

Day and Raghavan (2007) have recently suggested bidder-Pareto-optimal prices in the core as
an alternative to VCG prices. An outcome of an auction is bidder-Pareto-optimal in the core if
no Pareto improvement is possible within the core. This means, if we lower one bidder’s payment,
some other bidder’s payment must increase to remain in the core. Such an outcome minimizes the
total payments within the core.

Definition 11. (Day and Raghavan 2007) An outcome is bidder-Pareto-optimal if there is no
other core outcome weakly preferred by every bidder and strictly preferred by at least one bidder
in the winning coalition.
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This has also been referred to as minimal CE prices.
Definition 12. (Parkes 2006) Minimal CE prices minimize the auctioneer’s total revenue on

the efficient allocation across all CE prices.
Note that if items are complements, core prices may need to strictly exceed VCG prices. The

Ascending Proxy Auction by Ausubel and Milgrom (2002) results in bidder-Pareto-optimal out-
comes. Day and Milgrom (2007) show that a core-selecting auction provides minimal incentives
for bidders to deviate from truthful reporting, if it chooses a bidder-Pareto-optimal outcome.
Day and Raghavan (2007) also describe a constraint generation approach that generates bidder-
Pareto-optimal core prices rapidly for sealed bid auctions. The payment scheme minimizes the
total availability of gains from unilateral strategic manipulation. The final bids of each bidder on
all packages in a CC+ auction can also be used to calculate bidder-Pareto-optimal core prices.

Corollary 3. The CC+ auction with powerset bidders terminates with a core outcome, if it
charges bidder-Pareto-optimal prices as payments.

Note that even with the weaker partial revelation price update rule Corollary 3 holds. In contrast
to the Clock-Proxy auction (Ausubel et al. (2006)) bidders in the CC+ auction do not need to type
in valuations to a proxy agent after the CC auction has finished, and the bidder-Pareto-optimal
prices get calculated right away.

5. Computational Experiments
In the previous section, we have seen that a full powerset strategy leads to efficiency, but is not
viable except for very small CAs. So far, only a few papers provide results on individual bidding
behavior in CAs. Scheffel et al. (2010) report around 10 to 12 bids per round in linear-price auctions
independent of the number of packages with positive valuation. Kagel et al. (2009) report that
bidders bid only on a fraction of the profitable packages in the CC auction. Global bidders bid
between 12-14% of the profitable packages in one treatment with 6 items and 21-28% in the a
treatment with 4 items. Both papers report that the packages attracting most attention were the
most profitable ones.

This section describes results of computational experiments and analyzes efficiency and the
number of auction rounds with artificial bidders in the CC and the CC+ auction with respect
to deviations from a full powerset strategy. Our bidders follow either the straightforward or the
powerset strategy, plus we also implement agents with restrictions on the number of packages sub-
mitted in each round. The experiments should help us understand, how restricted communication
impacts efficiency in the CC+ auction. In contrast to the worst-case analysis that we provide in
the first sections of this paper, this section provides more of an average case analysis for different
bidder types, based on realistic value models.

5.1. Experimental Setup
The experimental setup is based on two treatment variables, the bidding strategies and the types
of valuations.

5.1.1. Bidder Valuations. Since there are hardly any real-world CA data sets available, we
have based our experiments on synthetic valuations generated with the Combinatorial Auctions
Test Suite (CATS) (Leyton-Brown et al. 2000) and some that have been proposed by An et al.
(2005). A detailed description is presented in the Appendix E.

5.1.2. Bidding Agents. In our theoretical analysis, we have already introduced straightfor-
ward and powerset strategies. The Powerset bidder evaluates all possible packages in each round,
and submits bids for all packages which are profitable given current prices. In addition to the
Powerset bidder, we tested limited versions of this bidder who bid only on the best six or best ten
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packages in each round, i.e., those six or ten packages with the highest payoff. This restriction is
motivated by observations in lab experiments described above. In contrast, the Straightforward
bidder only bids on his demand in each round, i.e., on those package(s) that maximize his payoff
given current prices.

Inspired by observations in the lab, we also modeled a Heuristic 5of20 bidder. This agent
randomly selects 5 out of his 20 best packages based on his payoff in a round. This bidder allows
to evaluate the robustness of the auction against imprecise bidding strategies.

Finally, we also analyzed the Preselect 10 bidder. If a bidder is restricted in time during the
auction, he might select his most valuable packages a priori, and stick to this selection throughout
the auction. This might be a strategy by some bidders in auctions with a large number of items.
The Preselect agent selects his 10 most valuable packages before the auction. During the auction,
the bidder follows the straightforward strategy but bids only on the preselected packages.

5.2. Experimental Results
We used a 5 ∗ 6 factorial design, in which 5 value models are analyzed with 6 different bidding
strategies. Each treatment was repeated 50 times with different random seeds for value models and
bidder strategies (if applicable), and the XOR bidding language. The auctions use the minimum
increment of 1. All value models are tailored to have the value of the efficient allocation around 200.
For comparison with the CC design which does not use last-and-final bids, we test two versions of
the CC+ auction, with and without last-and-final bids.

Tables 7 to 11 and Figures 1 in the Appendix F provide an overview of the efficiency and
the number of auction rounds of the CC auction and both versions of the CC+ auction. The
efficiency of the CC+ auction with the Powerset bidder was almost always 100% even without
last-and-final bids. The worst efficiency of 95.29% with Powerset bidders was obtained in one of
the Transportation Large samples. The lack of full efficiency in some cases is due to the minimum
bid increment. With an ε bid increment and m items, the outcome of a CC+ auction without
last-and-final bids can be (m − 1)ε away from full efficiency. With last-and-final bids the CC+
auction is always 100% efficient with Powerset bidders. They also bring a marginal improvement
in efficiency for powerset bidders with limits on a number of bids per round.

Another possibility to address the remaining inefficiencies of the CC+ auction without last-
and-final bids is to reduce the minimum increment, but at the expense of an increase of auction
rounds. For example, with minimum increment of 0.1 Powerset bidders achieve 100% efficiency
in 49 samples of the Transportation Large value model, and 99,38% efficiency in the last sample.
Dynamic bid increments that adapt to the level of competition might provide a middle ground.

The efficiency with Powerset6, Powerset10, and Heuristic bidders was very high in the Pairwise
Synergy value model. In contrast, these strategies led to efficiencies as low as 75% in the Real Estate
value model in the CC+ auction. All variants of the powerset bidder outperform the straightforward
bidders in the CC+ auction in terms of efficiency.

Interestingly, the average efficiency of the CC+ auction with the Poweset10 bidder, restricted to
10 package bids in each round was 99.72% in the Pairwise Synergy and 98.01% in the Real Estate
value model. Even a Powerset6 bidder restricted to 6 bids in each round led to very high levels of
efficiency, which suggests that the CC+ auction is fairly robust against restrictions in the number
of bids submitted in each round. Throughout, also Heuristic (5 of 20 best bids) bidders achieved
very high levels of efficiency in the CC+ auction.

Note that there was only a modest increase in the number of auction rounds in the CC+ auction
compared to the CC auction. Apparently, the increased efficiency in the CC+ auction over the CC
auction comes at almost no cost in terms of an increase in the number of auction rounds.

As already discussed, the exponential communication complexity remains a stumbling block
(Nisan and Segal 2001). While in NLPPAs this leads to a huge number of auction rounds, the



Bichler, Shabalin, Ziegler: Efficiency with Linear Prices?
12

CC+ auctions require bidders to submit a large number of bids in each round. However, while we
show that winners need to reveal more information in the CC+ auction as in NLPPAs, the number
of actual bids submitted by bidders in CC+ is much lower. This is due to the bid increments of
packages. If the prices for 5 items increase by ε, then the price for the package of these 5 items
increases by 5 ∗ ε. For example, in our Real Estate (3x3) value model a bidder had 130 valuations.
In the CC+ auction (with last-and-final bids) 4,128 bids were submitted in 32 rounds by powerset
bidders, and only 419 bids were submitted by Powerset10 bidders. In contrast, in the same setting
iBundle(3) (Parkes and Ungar 2000) elicited 7,741 bids per bidder in 150 rounds, and in the
Credit-Debit auction even 14,895 bids in 266 rounds.

6. Conclusions
Combinatorial auctions have led to a substantial amount of research and found a number of appli-
cations in high-stakes auctions for industrial procurement, logistics, energy trading, and the sale
of spectrum licenses. Anonymous linear ask prices are very desirable and sometimes even essential
for many of these applications (Meeus et al. 2009). Unfortunately, Walrasian equilibria with linear
prices were only found for restricted settings. Already, Kelso and Crawford (1982) showed that the
goods are substitutes property (aka gross substitutes) is a sufficient and an almost necessary con-
dition for the existence of linear competitive equilibrium prices. Later, Gul and Stacchetti (2000)
found that even if bidders’ valuation functions satisfy the restrictive goods are substitutes con-
dition, there exists no ascending VCG auction that uses anonymous linear prices. Bikhchandani
and Ostroy (2002) showed that there always exist personalized non-linear competitive equilibrium
prices. Several auction designs are based on these theoretical assumptions and use non-linear per-
sonalized prices. While these NLPPAs achieve efficiency, they only satisfy an ex-post equilibrium
if the valuations meet buyer submodularity conditions, and they lead to a very large number of
auction rounds requiring bidders to follow the straightforward strategy throughout.

A way out of this dilemma is to differentiate between ask prices in the final rounds and payments.
We propose an extension of the CC auction, the CC+ auction design, which achieves full efficiency
with bidders following a powerset strategy. This design modifies the price update rule of the CC
auction and adds a VCG payment rule. We show that with such a VCG payment rule, a powerset
strategy leads even to an ex-post equilibrium. Note that there are no restrictions on the type of
valuations of bidders. This is important for any application. The discussion also provides a number
of worst-case bounds on the efficiency of the CC auction.

Clearly, a powerset strategy is prohibitive for any but small combinatorial auctions and some
other auction rules of the CC+ auction are impractical for real world applications. Actually, the
CC+ auction is almost equivalent to a VCG auction, except that bidders learn the highest valua-
tions of items throughout the auction, which they do not in a sealed-bid auction. Since the CC+
auction is iterative, however, we give up on dominant strategies and limit ourselves to an ex-post
equilibrium. This is in line with previous results of the uniqueness of the VCG auction. Results
by Green and Laffont (1979) and Holmstrom (1979) imply that any efficient mechanism with the
dominant strategy property are equivalent to the VCG mechanism, always leading to identical equi-
librium outcomes. Later, Williams (1999) found that all Bayesian mechanisms that yield efficient
equilibrium outcomes and in which losers have zero payoffs lead to the same expected equilibrium
payments as the VCG mechanism.

Now, however, as we understand under which assumptions the CC auction can be fully efficient,
we can run sensitivity analyses to understand how robust the CC auction is against deviations of
these assumptions. Arguably, powerset bidding is the strongest assumption. Interestingly, even if
the number of bids submitted in each round is severely restricted or bidders heuristically select
some of their ”best” bids in each round, both the CC and the CC+ auction achieve very high
efficiency levels. The results might also explain some of the high efficiency and robustness results
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of the CC auctions in the lab. The volume of ask prices that need to be communicated by the
auctioneer, as well as the number of bids required by bidders is significantly lower than in NLPPAs.
The model of the CC+ auction is of theoretical interest, as it shows under which conditions full
efficiency with a strong solution concept for general valuations is possible. The discussion, however,
also provides insights for the design of linear-price combinatorial auction formats, which achieve
high levels of efficiency in the lab and in the field.
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Appendix A: Proofs
Theorem 2: If bidder valuations are demand masking and all bidders follow the straightforward strategy in
the CC auction, then the efficiency converges to 2

m+1
in the worst case.

Proof: The following proof is provided for two or more items for sale and 2m− 1 bidders. With less
than 2m− 1 bidders and XOR bidding efficiency can only increase. Without loss of generality, we assume
item-level bid increments of ε= 1 in each round t∈ T ⊂N. We consider the value µ as given and determine
ξ and νh such that efficiency decreases to the worst case of 0%.

case a) µ≥ ξ+
∑

h
νh:

The efficient solution is to sell R∪Sh to one of the bidders ha or hb. The CC auction terminates with the
efficient outcome in this case.

case b) µ< ξ+
∑

h
νh ∧ ξ = µ:

The proof is by showing that a straightforward bidder ha cannot bid on Sh throughout the auction in
a demand masking set of valuations. For this, the payoff πha(R∪̇Sk) must be higher than πha(Sh) for each
bidder ha in each round of the auction t∈ T :

vha(R∪̇Sh)−βha,t(R∪̇Sh)> vha(Sh)−βha,t(Sh) ∀h∈ {2, ..., g},∀t∈ T (1)

Since we know that vha(R∪̇Sh) = vhb
(R∪̇Sh) = µ, and all bidders bid straightforward, we know that the

price for all the items in K rise in each round by ε. Therefore, inequality (1) can be rewritten as

µ− |R∪̇Sh|tε > νh− |Sh|tε
ε=1=⇒ t <

µ− νh
|R|

∀h∈ {2, ..., g},∀t∈ T (2)

Inequality (2) shows that as long as t is smaller than the right-hand side, a straightforward bidder always
bids on the package R∪̇Sh. We can now determine a round tmin = min{t|t≥ µ−νh

|R| ,∀ha}, in which the payoff
πha

(R∪̇Sh) is for the first time smaller or equal to the payoff πha
(Sh). We call tmin the decisive round. If

either the right side or both sides of inequality (1) become negative in round tmin, bidder ha cannot bid on Sh
or the auction ends for bidder ha as also the ask price for R∪̇Sh is higher than vha

(R∪̇Sh). If straightforward
bidder ha does not reveal his preferences for Sh throughout the auction, then the auctioneer in a class A
auction selects any of the other bids with a revenue of µ, resulting in an efficiency of µ/(ξ+

∑
h
νh).

We determine maximal νh such that in round tmin the payoff of bidder ha on package Sh is negative, which
minimizes efficiency. We know that as long as bidder ha’s payoff is negative in the decisive round tmin, i.e.,
νh−|Sh|tmin < 0, then bidder ha does not bid on Sh. We also know that tmin = d(µ−νh)/|R|e is the decisive
round. We can now maximize νh such that νh − |Sh|d(µ− νh)/|R|e < 0, resulting in νhmax

= max{νh|νh <
|Sh|µ/(|R|+ |Sh|)}. In order to maximize

∑
h
νh and so minimize the efficiency µ/(ξ+

∑
h
νh) we set |R|= 1

and |Sh|= 1 for all h∈ {2, ..., g}. This results in an efficiency of E(X) = µ/(ξ+
∑

h
(µ

2
− ρ)) with ρ> 0. With

ρ→ 0 and ξ = µ efficiency decreases to 2/(g+ 1) which is 2/(m+ 1) in the worst case. Note that it does not
matter if ξ is smaller or larger than

∑
h
νh.

case c) µ< ξ+
∑

h
νh ∧µ 6= ξ:

We show that efficiency can only increase compared to case b) considering the worst case. Either the
enumerator of E(X) = max{ξ,µ}

max{ξ+
∑

h νh,µ+
∑

h νh}
increases or the denominator decreases.

• ξ > µ: ⇒E(X) = ξ

ξ+
∑

h νh
= µ+δ

µ+δ+
∑

h νh
with δ > 0 is always greater than the efficiency E(X) in case b).

• ξ < µ: ⇒
— either E(X) = µ

ξ+
∑

h νh
which is certainly greater than E(X) = µ

µ+
∑

h νh
the efficiency of case b).

— or E(X) = µ

µ+
∑g−1

h=2 νh
which is also greater than E(X) = µ

µ+
∑g

h=2 νh
the efficiency of case b).

�
Proposition 1: If all bidders follow the powerset strategy, the efficiency of the CC auction converges to 0%

in the worst case.
Proof: Since efficiency cannot be negative it is sufficient to present an example, in which the efficiency

is almost 0%. In the following example, we have two bidders and three items for sale. The two bidders have
valuations for packages as shown in Table 3. They value all other packages with zero. The final ask prices
would be β(1) = 2, β(2) = 2 and β(3) = 1, and the final allocation would be to sell package (1,2) to bidder 1,
which is inefficient if µ> 4. Efficiency decreases to 0% if µ→∞.

�
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(1,2) (2,3)
v1 4 µ
v2 2 0

Table 3 Example of a CC auction with a powerset strategy.

We assume no free disposal in this example. Otherwise, bidder 1 would have a valuation of µ also for
package (1,2,3), and this would get sold to bidder 1 for a price of 5. The payoff for bidder 1 in this allocation
would be µ− 5, which would be efficient, as the sum of the bidders’ payoffs and the auctioneer revenue gets
maximized. Free disposal can lead to situations, in which powerset bidding drives up prices to very high levels
and reduces bidders’ utility. It can also lead to high inefficiency (see Appendix D). Consequently, powerset
bidding is an unlikely strategy in a CC auction with free disposal.

Corollary 1: If all bidders follow the powerset strategy, the CC auction with the partial revelation price
update rule terminates with an efficient outcome.

Proof: Based on the statement of Theorem 1, we only need to show that the valuations of relevant packages
get revealed with powerset bidders in the modified CC auction. By construction of the partial revelation
price update rule powerset bidders, who are not part of the efficient allocation, reveal all their valuations.
But the rule also ensures that all the bidders in the efficient allocation reveal their valuations on all packages
except the ones that are in the winning allocation. As long as a bidder bids on more than one package the
auction continues as each bidder can only win one package. As long as a bidder bids on a package that is not
winning, prices increase and he can keep bidding. Thus the CC auction with the partial price update rule
elicits all valuations except the ones of winning packages and terminates with an efficient allocation. �

Corollary 2: A powerset strategy is an ex-post equilibrium in the CC+ auction.
Proof: The proof for the ex-post equilibrium strategy is from the VCG mechanism. Let tj denote the

type of bidder j. We look at the bidder j and assume all other bidders follow the truth revealing powerset
strategy. Bidder j receives a payment of

∑
i 6=j ui(t

′
i,X)−

∑
i6=j ui(t

′
i,X−j) from the center. The final payoff

to bidder j reporting type t′ and an allocation X and a VCG payment rule is uj(tj ,X) +
∑

i6=j ui(t
′
i,X)−∑

i 6=j ui(t
′
i,X−j). A bidder in this payment rule cannot affect the choice of X−j . Hence, j can focus on

maximizing uj(tj ,X)+
∑

i6=j ui(t
′
i,X), i.e., his utility and the sum of the other’s utilities. As the auction will

maximize
∑

i
ui(t′i,X), j’s utility will be maximized, if t′j = tj . �

Proposition 2: Powerset bidding does not satisfy an ex-post equilibrium in the CC+ auction with only a
partial revelation price update rule.

Proof: In the example in Table 4 the CC+ auction with a partial revelation price update rule ends up with
final ask prices of β(1) = 3 and β(2) = 4, before the VCG prices are calculated. If the auctioneer calculates
VCG prices based on the submitted bids, then bidder 2 pays 3− (7− 5) = 1 for the item (1). If bidder 2
knew v3(2), he could have bid up to 6 on item (2). This would increase the final ask price for (2) to 7, and
lead to a new VCG price of 3− (10− 7) = 0 for (1) for bidder 2. In a VCG mechanism, bidder 2 could not
influence the bid submission of bidder 3 in a similar way, which is why the VCG mechanism has a dominant
strategy. Therefore, in the CC+ auction with a partial revelation price update rule, the strategy of bidder 2
is not independent of other bidders’ types. Even if the other bidders bid truthfully, a bidder could improve
his payoff by deviating from a truth revealing powerset strategy, if he knew the other bidders’ types and the
other bidders truthfully follow the powerset strategy.

(1) (2)
v1 0 3
v2 3* 0
v3 2 7*

Table 4 Counter-example.

�
Corollary 3: The CC+ auction with powerset bidders terminates with a core outcome, if it charges bidder-

Pareto-optimal prices as payments.
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Proof: Since the CC+ auction elicit all valuations from all bidders and the algorithm from Day and
Raghavan (2007) calculates core prices upon the submitted bids the statement is shown. �
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Appendix B: The CC and CC+ auction

Data: package bids βi(S)
Result: allocation X and prices βi(X i)
initialization

for k=1 to m do βk← 0
for i=1 to n do Xi←∅

repeat
overdemand← FALSE; undersupply← FALSE
for i=1 to n do

bidders submit bids βi(S)
for k=1 to m do

if ≥ 2 bidders i 6= j demand item k then
βk← βk + ε
overdemand ← TRUE

end
if item k is not part of a bid βi(S) then

undersupply ← TRUE
end

if overdemand = TRUE then exit iteration
else if undersupply = FALSE then exit loop
else

for k=1 to m do
Assign βi(S) with k ∈ S to the set of standing bids B
Calculate X based on all bids submitted in the auction

if a bidder holding a bid in B is displaced and not in X then
foreach item k, which was displaced: do
βk← βk + ε
end

else X is the final allocation
end

until stop
Algorithm 1: CC auction
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Data: package bids βi(S)
Result: allocation X∗ and prices βi(X∗i )
initialization

for k=1 to m do βk← 0
for i=1 to n do Xi←∅

repeat
overdemand← FALSE; undersupply← FALSE
for i=1 to n do

submit a bid βi(S) on each package S, which applies to vi(S)−
∑

k∈S(βk)≥ 0
for k=1 to m do

if ≥ 1 bidders demand item k then
βk← βk + ε
overdemand ← TRUE

end
if item k is not part of a bid βi(S) then

undersupply ← TRUE
end

if overdemand = TRUE then exit iteration
else if undersupply = FALSE then exit loop
else
Calculate the final efficient allocation X∗ based on all submitted bids
exit loop

until true
Calculate VCG prices β∗V CG based on all submitted bids

Algorithm 2: CC+ auction with powerset bidding

Appendix C: Ex-Post Equilibrium of the CC+ Auction
Does the CC+ auction satisfy a dominant strategy or an ex-post equilibrium? In the single-unit case, there
has been an interesting recent discussion on the types of ascending auctions that actually satisfy a dominant
strategy equilibrium. Isaac et al. (2007) have shown that while the clock version of an ascending single-item
auction has a dominant strategy, the wide-spread English auction, which allows for jump bids, has not.

The CC+ auction can be seen as a multi-item generalization of the ascending clock auction. Also, the
VCG auction can be thought of a single-round version of the CC+ auction, in which the bidder’s dominant
strategy is to bid truthfully on all possible packages, similar to a powerset strategy. Both auctions satisfy a
dominant strategy equilibrium. Does also the CC+ auction satisfy a dominant strategy, or is it restricted to
an ex-post equilibrium? In the following, we provide an example, in which signals revealed throughout the
CC+ auction can make it beneficial for a bidder to deviate from his truth telling powerset strategy, when
also others deviate from this strategy.

(1) (2) (1,2)
v1 2* 0 0
v2 0 3* 0
v3 0 0 4

Table 5 Example.

The valuations for three bidders and two items are given in Table 5. The VCG price of bidder 1 is
2− (5− 4) = 1 for item (1), and his payoff is 1. Now, lets assume that bidder 1 knows that bidder 2 will
increase his bid on (2) to 4, if the ask price for (1) was 3. At round 2 the price clock ticks to 2 for each
item and all three bidders signal demand at these prices. At round 3 prices are 3 for both items and again
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bidders 1 and 2 will signal demand. This will encourage bidder 2 to signal demand even in round 4 for item
(2), when bidder 1 drops out. Now, bidder 1 gets a VCG price of 3 + (7− 4) = 0 and consequently increased
his true payoff from 1 to 2. Bidder 2 learns through the course of the CC+ auction that there is a demand
for (1) at a price of 3, which would not be possible in a direct revelation VCG auction.

This cannot happen in a clock auction with only a single item, as the bidders can only drop out or continue
to signal demand on a single item. This illustrates that the dominant strategy equilibrium does not extend
from the single-item clock auction to its multi-item generalization. The powerset strategy in a multi-item
CC+ auction is therefore an ex-post equilibrium and no dominant strategy equilibrium.

Appendix D: Powerset Strategies in a CC Auction with Free Disposal
In the following, we describe an economy with powerset bidders and free disposal. We show that the CC auc-
tion leads to very high prices, thus reducing the bidders’ utility, even in cases, where there is no competition.
The example shows that the inefficiency in these situations can be almost as low as 50%.

(1) (2) ... (m)
v1 µ 0 ... 0
v2 0 (µ/m)− ε ... 0
... ... ... ... ...
vm 0 0 ... (µ/m)− ε

Table 6 Valuations in an economy with powerset bidders and free disposal.

Given the valuations in Table 6 and an economy without free disposal, the bidders would all bid on a single
item only, and the CC auction would stop after the first round at a price of the minimum bid increment ε.
In an example, let’s assume m= n= 100, ε= 1, and µ≥ 200. The allocation assigning bidder i item (i) is
efficient and would maximize overall welfare. Bidder 1 would get a payoff of π − 1, while all other bidders
achieve a payoff of (µ/100)− 1. With an auctioneer revenue of 100, the social welfare is 199π/100. If we
assume m is the number of items, then the social welfare would be maximized at (2m− 1)µ/m.

Now, with free disposal bidder 1 would bid on all 2(m−1) packages that enfold the item (1) in each round
until a price of µ/m is reached and he wins all items. His payoff would be 0 and the auctioneer would make
a revenue of µ, which is inefficient. With m→∞ efficiency converges to 50%.

Appendix E: Bidder Valuations
The Transportation value model uses the Paths in Space model from the CATS. It models a nearly planar
transportation graph in Cartesian coordinates, in which each bidder is interested in securing a path between
two randomly selected vertices (cities). The items traded are edges (routes) of the graph. Parameters for
the Transportation value model are the number of items (edges) m and graph density η, which defines an
average number of edges per city, and is used to calculate the number of vertices as (2m)/η. The bidder’s
valuation for a path is defined by the Euclidean distance between two nodes multiplied by a random number,
drawn from a uniform distribution. Consequently only a limited number of packages, which represent paths
between both selected cities, are valuable for the bidder. This allows to consider even larger transportation
networks in a reasonable time. In this work we use the Transportation Small value model with 25 items
and 15 bidders and the Transportation Large value model with 50 items and 30 bidders. Every bidder
has interest in 16 different packages on average.

The Real Estate 3x3 value model is based on the Proximity in Space model from the CATS. Items sold
in the auction are the real estate lots k, which have valuations v(k) drawn from the same normal distribution
for each bidder. Adjacency relationships between two pieces of land p and q (epq) are created randomly for
all bidders. Edge weights rpq ∈ [0,1] are then generated for each bidder, and they are used to determine
package valuations of adjacent pieces of land v(S) = (1 +

∑
epq:p,q∈S rpq)

∑
k∈S v(k). In this work we use the

Real Estate 3x3 value model with 9 lots for sale. Individual item valuations have a normal distribution with
a mean of 10 and a variance of 2. There is a 90% probability of a vertical or horizontal edge, and an 80%
probability of a diagonal edge. Edge weights have a mean of 0.5 and a variance of 0.3. All experiments with
the Real Estate value model are conducted with 5 bidders.
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The Airports value model is an implementation of the matching scenario from CATS. It models the four
largest USA airports, each having a predefined number of departure and arrival time slots. For simplicity
there is only one slot for each time unit and airport available. Each bidder is interested in obtaining one
departure and one arrival slot (i.e., item) in two randomly selected airports. His valuation is proportional to
the distance between the airports and reaches maximum when the arrival time matches a certain randomly
selected value. The valuation is reduced if the arrival time deviates from this ideal value, or if the time
between departure and arrival slots is longer than necessary.

The Pairwise Synergy value model from An et al. (2005) is defined by a set of valuations of individual
items v(k) with k ∈K and a matrix of pairwise item synergies {synk,l : k, l ∈K, synk,l = synl,k, synk,k = 0}.
The valuation of a package S is then calculated as v(S) =

∑|S|
k=1 v(k)+ 1

|S|−1

∑|S|
k=1

∑|S|
l=k+1 synk,l(v(k)+v(l)).

A synergy value of 0 corresponds to completely independent items, and the synergy value of 1 means that the
package valuation is twice as high as the sum of the individual item valuations. The model is very generic, as
it allows different types of synergistic valuations, but it was also used to model valuations in transportation
auctions (An et al. 2005). We use the Pairwise Synergy value model with 7 items, item valuations are drawn
for each auction independently from a uniform distribution between 4 and 12. The synergy values are drawn
from a uniform distribution between 1.5 and 2.0. The auctions with the Pairwise Synergy value model have
5 bidders.

In the Real Estate and Pairwise Synergy value models bidders were interested in a maximum package size
of 3, because in these value models large packages are always valued over small ones. This is also motivated
by real-world observations An et al. (2005), in which bidders typically have an upper limit on the number
of items they are interested in. Without this limitation, the auction easily degenerates into a scenario with
a single winner for the package containing all items.

Appendix F: Results of Computational Experiments

hhhhhhhhhhhhhhFormat

Bidder Type

Best-Response Preselect10 5of20 Powerset6 Powerset10 Powerset

CC Mean Efficiency in % 99.48 99.43 97.02 97.39 96.96 96.83
Min. Efficiency in % 94.81 94.81 84.65 86.71 83.22 83.15
Mean Rounds 29.10 29.42 25.36 25.28 25.10 24.96

CC+ Mean Efficiency in % 99.48 99.43 99.87 99.87 99.86 99.93
no L&F Bids Min. Efficiency in % 94.81 94.81 96.69 96.69 96.69 98.60

Mean Rounds 29.94 30.02 31.78 31.94 31.66 31.50

CC+ Mean Efficiency in % 99.78 99.64 100.00 99.90 99.93 100.00
with L&F Bids Min. Efficiency in % 94.81 94.81 100.00 96.69 96.69 100.00

Mean Rounds 30.50 30.16 32.02 32.02 31.52 31.32

Table 7 Transportation Small with 25 items and 15 bidders

hhhhhhhhhhhhhhFormat

Bidder Type

Best-Response Preselect10 5of20 Powerset6 Powerset10 Powerset

CC Mean Efficiency in % 98.48 97.60 97.94 97.85 97.86 98.07
Min. Efficiency in % 90.74 90.09 85.00 85.00 85.00 85.00
Mean Rounds 17.80 17.08 14.14 14.08 13.82 13.62

CC+ Mean Efficiency in % 98.44 97.60 99.12 99.17 99.25 99.34
no L&F Bids Min. Efficiency in % 90.74 90.09 95.29 95.29 95.35 95.29

Mean Rounds 18.18 17.44 15.82 15.78 15.46 15.22

CC+ Mean Efficiency in % 98.95 98.17 99.87 99.87 99.91 100.00
with L&F Bids Min. Efficiency in % 93.21 90.09 97.78 97.78 98.38 100.00

Mean Rounds 15.94 16.32 15.70 15.72 15.64 15.38

Table 8 Transportation Large with 50 items and 30 bidders
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hhhhhhhhhhhhhhFormat

Bidder Type

Best-Response Preselect10 5of20 Powerset6 Powerset10 Powerset

CC Mean Efficiency in % 98.60 98.60 97.02 97.26 97.20 97.28
Min. Efficiency in % 95.39 95.74 93.16 93.17 93.97 93.86
Mean Rounds 10.88 10.86 8.50 8.32 8.22 8.20

CC+ Mean Efficiency in % 98.57 98.58 98.84 98.84 98.81 98.78
no L&F Bids Min. Efficiency in % 95.39 95.74 96.57 96.45 97.01 97.03

Mean Rounds 13.72 13.70 11.98 11.62 11.46 11.48

CC+ Mean Efficiency in % 99.22 99.20 99.88 99.76 99.97 100.00
with L&F Bids Min. Efficiency in % 96.49 96.49 98.94 98.58 99.47 100.00

Mean Rounds 15.46 15.56 12.48 12.04 11.90 11.82

Table 9 Airports with 84 items and 40 bidders

hhhhhhhhhhhhhhFormat

Bidder Type

Best-Response Preselect10 5of20 Powerset6 Powerset10 Powerset

CC Mean Efficiency in % 95.63 92.47 97.18 95.95 97.19 98.74
Min. Efficiency in % 74.74 69.73 82.05 75.84 82.05 91.11
Mean Rounds 29.54 29.02 26.10 26.08 25.84 25.70

CC+ Mean Efficiency in % 95.52 92.47 97.79 96.74 98.00 99.85
no L&F Bids Min. Efficiency in % 74.74 69.73 82.05 75.84 82.05 98.45

Mean Rounds 30.62 29.62 29.32 29.20 29.10 28.54

CC+ Mean Efficiency in % 94.82 92.48 98.10 96.99 98.01 100.00
with L&F Bids Min. Efficiency in % 70.81 72.51 82.05 75.84 82.05 100.00

Mean Rounds 30.82 29.82 29.90 29.80 29.70 29.02

Table 10 Real Estate 3x3 with 9 items and 5 bidders

hhhhhhhhhhhhhhFormat

Bidder Type

Best-Response Preselect10 5of20 Powerset6 Powerset10 Powerset

CC Mean Efficiency in % 99.62 82.53 99.00 99.10 99.20 99.26
Min. Efficiency in % 91.48 43.98 94.32 91.48 91.48 94.51
Mean Rounds 31.08 30.00 30.92 31.18 30.96 30.72

CC+ Mean Efficiency in % 99.21 82.53 99.51 99.37 99.56 99.84
no L&F Bids Min. Efficiency in % 91.48 43.98 94.32 91.48 91.48 98.45

Mean Rounds 35.14 30.40 34.08 34.36 33.96 33.70

CC+ Mean Efficiency in % 98.84 83.64 99.81 99.38 99.72 100.00
with L&F Bids Min. Efficiency in % 89.58 44.90 96.70 91.48 91.48 100.00

Mean Rounds 35.94 30.88 34.34 34.86 34.30 34.10

Table 11 Pairwise Synergy with 7 items and 5 bidders
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(a)CC auction (b)CC+ auction without L&F bids

(c)CC+ auction with L&F bids

Figure 1 Efficiency in the Real Estate value model (9 items, 5 bidders).
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Appendix G: List of Symbols
K set of items
R,S ⊆K subset of items
k, l item index k, l ∈ {1, . . . ,m}
I set of bidders
T ⊆I subset of bidders
i, j bidder index i, j ∈ {1, . . . , n}
T set of auction rounds
t round index t∈ {1, . . . , r}
Γ set of allocations
X allocation X = (X1, . . . ,Xn) with package Xi assigned to bidder i
X∗ efficient allocation X∗ = (X∗1 , . . . ,X

∗
n)

X allocation that maximizes the auctioneers revenue/payoff
E(X)∈ [0,1] efficiency of the allocation X
vi(S) private valuation of bidder i for package S
w(T ) coalitional value of coalition T
βk ask price for item k (optional βk,t: in round t)
βi(S) (highest) bid price of bidder i for package S
B set of standing bids (optional Bt: in round t)
πi(S) bidder i’s payoff/revenue if he were to win package S
π0 auctioneers’ payoff/revenue
z number of winning package bids
ε minimum increment
ρ marginal value
ti type of bidder i
η graph density in the Transportation value model
ep,q adjacency relationship of item p to item q
rp,q edge weight of item p to item q
synk,l synergy value of item k to item l

Appendix H: List of Abbreviations
(I)CA (Iterative) Combinatorial Auction
CC Combinatorial Clock
VCG Vickrey-Clarke-Groves
NLPPA Non-Linear-Personalized-Prize Auctions
CE Competitive Equilibrium


