Automated Capacity Management and Selection of
Infrastructure-as-a-Service Providers

Alexander Stage, Thomas Setzer, and Martin Bichler
Technische Universitdt Miinchen (TUM)
Department of Informatics (I118)
Boltzmannstr. 3, 85748 Garching, Germany
{stage, setzer, bichler}@in.tum.de

Abstract—Infrastructure-as-a-service (IaaS) providers are
gaining popularity in the application hosting market. Virtual
machines of different sizes (capacities for server resources such
as CPU, main memory, etc.) are offered on-demand on an hourly,
daily, weekly or monthly basis. Which offering minimizes the
hosting costs depends on the sizes and respective prices, but
also on the demand patterns of an application and is a non-
trivial selection problem for the customer. The fact that IaaS
providers have different minimum subscription times, makes
the problem particularly hard. In this paper, we describe an
optimization formulation that determines an optimal schedule of
virtual machines, which is needed to satisfy the demand of a
particular application. The algorithm can be used to select the
cost minimal offering of different hosting providers, but also to
control the allocation and de-allocation of virtual machines with
an IaaS provider over time.

I. INTRODUCTION

Efficient capacity management for business applications is
a challenging task since most applications’ resource demand
is characterized by high peak-to-mean-ratios, recurring and
shifting seasonal patterns as well as bursts leading to heavy-
tail demand distributions [1], [2]. Therefore, to ensure efficient
delivery of acceptable application quality over time without
over-provisioning, continuously carried out capacity manage-
ment activities are required [3], [4].

A key property of most business applications is their ability
to scale-out almost arbitrarily by relying on load sharing and
balancing techniques, which requires hosting infrastructures
that allow for on-demand allocation of additional cluster
nodes.

Cloud infrastructure providers like Amazon EC2 !, GoGrid
or SliceHost 3 promise to deliver the required dynamic
resource provisioning facilities for scalable application host-
ing. Several vendors are currently emerging, that allow the
deployment of customer managed virtual machines (VM). The
different offerings feature varying pricing models for fixed
sized VMs (capacities for CPU, main memory, etc.), SLAs and
additional services such as load balancing. Available VM sizes
range from small instances (single virtual CPU ranging from
1.0 to 3.0 Ghz in combination with main memory entitlements

2

Uhttp://aws.amazon.com/ec2/
Zhttp://www.gogrid.com
3http://www.slicehost.com

of 256 MB to 1.7 GB) up to large instances with multiple
virtual CPUs (with aggregated capacities between 12 to 24
Ghz) and main memory entitlements of 8 to 32 GB. Prices
of a provider increase almost linearly with VM sizes for most
offerings. A second commonality between all providers is the
existence of minimum subscription times, typically an hour, a
day, a week, or a month, whereas the cost per hour ratio of
a VM decreases with increasing subscription times. However,
as decribed later in detail, an application owner needs to trade
off these decreased costs per hour with a decrease in agility
regarding the de-allocation of a VM.

In contrast to dedicated hosting models, VMs can be provi-
sioned on-demand and can be sized according to an application
owner’s choice from a set of predefined VM sizes. However,
the alignment of VM capacities to an application’s changing
resource demand in order to provide enough resources without
wasting costly VM capacity is a challenging task. This task
currently needs to be done manually by application owners.

Fig. 1 gives an example of a respective decision problem.
The figure illustrates an application’s CPU workload profile
over time. Here, an application owner needs to decide when
and which VM of offered sizes (A - C, whereas for example
Ay, As represent two VM instances of type A) should be
allocated or de-allocated to a load balanced application in
order to satisfy its varying CPU demand. Allocation decision
have to be derived, considering that additional VMs can be
allocated anytime (scale-out), but will be charged by minumum
subscription times. For example, one has to purchase an
instance of type A for a minimum duration of one hour or
multiples. Hence, de-allocation (scale-in) of a VM is allowed
only at certain points in time (for example, every three hours
for VMs of type A and B, or every 12 hours for instances
of type C). Here, we assume that the demand cycles during
the day are known, which is regularly the case and a valid
assumption for many enterprise applications as shown by
Gmach et al. [5].

On the one hand, poor planning might lead to costly over-
capacity, or SLA violations in case of insufficient capacity.
On the other hand, automated capacity management requires
continuous monitoring, planning and optimization to make
adequate sizing and scaling decisions over time. The problem
demands for an algorithmic and automated solution, since

cPu 15
Demand

Oh 12h 24h
Time

Fig. 1. Resource scheduling problem

manual capacity is likely to be suboptimal.

Therefore, we propose an automated decision making and
enactment service to ensure the provisioning of sufficient
VM resources for SLA compliant, but cost-minimal capacity
over time. Capacity management is achieved by allocating or
de-allocating VMs of predefined fixed capacities. Therefore,
the cost minimization determines an optimal schedule for
allocating and de-allocating new VM instances considering
minimal subscription times and forecasted application demand.

In the following sections, we will propose decision mod-
els and a high-level architecture for an automated capacity
management service. We aim at supporting application owners
during the operational phase of an application life-cycle by
automatically balancing out variable hosting costs against
fluctuating resource demands. In addition, the service can
be used to select IaaS providers based on their offerings
(VM capacities and prices offered) and historical application
demand.

In summary, the problem addressed in this paper can be
stated as: Given a number of unlimited, typed sets of VMs
and an application with varying resource demands, we want
to determine the cost-minimal schedule of VMs over time that
satisfies the demand at each point in time, while minimizing
the cost.

II. SCALING DECISION MODEL

In the following subsections we present a mathematical
model to derive a cost-minimal schedule, followed by exten-
sions for conditions and requirements often found in practice,
and an algorithm to solve the problem.

A. Model Formulation

In our model we assume predictable resource demand
throughout our planning period. Due to the on-demand VM al-
location option, we can handle unexpected demand peaks dur-
ing a planning period by allocating additional VMs instantly as
required. Furthermore, in this short paper, we concentrate on a
single resource (e.g., CPU) and assume this to be the primary
bottleneck. While this is a justifiable assumption for many
enterprise applications, the extension to multiple resources is
straight forward.

Reminiscing Fig. 1, a VM allocation forms a rectangular
geometrical shape with the size of a VM as the height,

and the duration of the allocation as length. Consequently,
this problem can be understood as a variant of the rectangle
packing problem as discussed by [6]: How to pack a set of
non-overlapping price-differentiated paraxial rectangles in a
way that covers an area below a demand curve completely over
a planning period with minimum total costs. Costs associated
with a rectangle are the VM prices (per time slot) multiplied
by the length of the rectangle. In general, the price per time
slot decreases with increasing subscription time of a VM
type (comparable to volume discount models often found in
wholesale trade).

We divide time into discrete time slots ¢t (¢ =1, ..., T),
wherein we assume a fixed demand level u; (e.g., the max-
imum demand expected during an hour of a day). Let j (j
=1, ..., J) be a VM type with a maximum size s; of a server
resource (e.g. CPU performance or main memory). Let further
At; denote the indivisable minimal subscription time of an
j-type VM. A VM allocated by a customer is always paid
for this minimal subscription time or multiples (e.g., one or
more hours). Hence, although a VM instance can be allocated
anytime, de-allocating a VM is only possible at certain points
in time. Let further ¢; be the price to pay per time slot, as
long as a j type VM is allocated.

Rectangle packing is an NP-hard optimization problem.
While some NP-hard problems can be solved for practical
problem sizes, rectancle packing cannot be expected to scale
for any realistic number of time slots and VM types [6]. There
are two possible remedies: Either, we simplify the problem,
or we solve the full problem heuristically. In our paper, we
will suggest both. In this subsection, we will propose an
optimization model assuming minimal subscription times of
equal length, while in the next subsection, we will provide
a heuristic for those cases, where the minimal subscription
times vary considerably and it is necessary to solve a modified
rectancle packing problem.

In the following, we will set time slots ¢ to the minimum
subscription times At; of VMs. As resource demand we take
the maximum demand over an hour or a certain percentile of
the resource demand. The demand can readily be estimated
from historical load data [5]. This way, we can find an
optimal set of VM instances for each time slot. The decision
variable x; describes how many instances of a VM type j
are allocated in time slot ¢:

min)_¢; - x;
J
s.t.
Zijj >y Vit
j

z; € {0,1,...W}Vje{l,..,J}

Notice that because the weight of each item is at least 1,
we can never choose an item more than W times. While
the objective function minimizes the total costs over all time
slots, the first constraint guarantees sufficient capacity over the
planning period as the application’s resource demand must

never exceed the total allocated capacity of all VMs. Note
that we assume that demand can be efficiently balanced to
allocated VMs. Risk averse planners can increase u; to make
sure that the available capacity is available in each time slot.
Obviously, also the Basic Model is an integer programming
problem. However, due to the fact that we solve the problem
for each time slot, the problem size is so small that we can
solve it in a matter of seconds or milli-seconds for realistic
problem sizes.

There is usually a limit L regarding the maximum cluster-
size, i.e., the number of concurrent VM instances of an
application (for example, the cluster size of an Web application
using in-memory session replication is only efficient for a
limited number of cluster nodes). We address such a limitation
by restricting the number of running instances per time slot to
L:

; zj < L (Scale-Out Limit)

If scale-out is not possible at all, resource demand cannot
be balanced over VMs and we set L = 1. In a similar
manner we can address further constraints like high availability
requirements or total budget constraints.

B. Heuristic for the Problem with Heterogeneous Subscription
Times

The basic model assumes equal subscription times for all
VM types of one hour. However, some providers offer VMs
with a longer subscription time (e.g., a day or a week), whereas
the cost-per-hour ratio of a VM decreases with increasing
subscription times. We expect to see even more of this type of
volume discounts in the future. Obviously, decreased costs per
hour need to be traded off against a decease in agility regarding
the de-allocation of a VM. As indicated in the previous
subsection, solving the VM scheduling problem optimally will
then turn into a notorious NP-hard problem, which will not be
tractable for larger problem instances. Consequently, in this
subsection, we propose a heuristic solution for this problem.

For clarity, in the following we use superscripts n, (n =
1,...N) on VM types j to denote an order regarding their
subscription times. For example, j' is a VM type with an
subscription time of an hour, while j3(= j%) is a VM type
with an subscription time of a week (in this case the maximum
considered subscription time). As found in practice, we further
assume sizes of j7>! to be multiples of the smallest j' and
that prices for VMs with the same subscription time increase
linearly with their sizes. Hence it suffices to consider the
smallest VM type per subscription time as later one can still
decide for example to choose a VM of the double size instead
of two VMs of the same type because of cluster-size limits.
Furthermore, we can always substitute the demand covered by
a VM by sets of VMs with shorter subscription times.

We now propose a recursive algorithm to decide whether
to allocate VMs with longer subscription times. We set the
duration of the planning period to the longest subscription
time of offered VMs. The basic idea of our heuristic is
to cover as much demand as possible with VMs with

long subscription times since their unit capacity costs are
the lowest. Once longer subscription times become more
expensive for the remaining demand (because of increasing
over-provisioning due to coarse grained resource allocation),
VMs with smaller subscription time are used until we
reach an hourly subscription basis. We then revert to our
decision model as described in the previous subsection. The
pseudo-code for our algorithm is as follows:

Algorithm: VM Scheduling

In:=N

2 while(n > 2)

3 while(Vt : up > sjn)

4 allocate(j™)

5 demand := demand — s;n

6 while(alternative(5™, j*1...j1, demand)
7 ni=n-1

8 basicModel(demand)

Starting with the VM type with the maximum subscription
time (line 1), we repeat the loop starting in line 2 for VM
types with decreasing subscription time until we reach the
VM type with minimum subscription time (n = 1). In line
3 we start an inner-loop repeated as long as the size of a
VM ;" is fully required throughout its subscription time, i.e.,
resource demand always exceeds s;~». Then, a j™ instance
is allocated (line 4) and we repeat this inner-loop with the
remaining resource demand not covered by the ;™ instance
(line 5).

We exit this inner-loop once the remaining resource demand
partly falls below the size of j". In this case we need to
decide whether it is still beneficial to allocate ;™ as on the
one hand unused capacity of ;™ needs to be paid, on the other
hand its cost per time slot is lower than those of alternatively
allocating a series of VMs with shorter subscription times and
better demand curve alignment. Function alternative() in line 6
(described in the subsequent paragraphs) decides whether costs
are lower when allocating j™ or if it is cheaper to cover the
demand by alternatively allocating a set of VMs with shorter
subscription times. As long as j” is the cheaper alternative
a j™ instance is allocated and function alternative() is re-
executed with the remaining resource demand. Otherwise the
iteration of the outer-loop ends and the next iteration is started
with 577! until we reach n = 1. After the main loop stops, we
solve our basic model introduced in the previous subsection -
parameterized with the remaining resource demand to deter-
mine optimal allocations for the VMs with minimum (hourly)
subscription times.

Function alternative() uses the following heuristic to make a
VM ;™ type allocation decison. This decision clearly depends
on how much overall demand it covers. By measuring resource
demand in units per time slot (subscription time of j') we
determine the sum of the overall resource demand covered by
7™ over its subscription time. By dividing its price by this sum
we obtain j™’s effective price per demand unit covered and we
allocate j™ if and only if its effective price does not exceed the

average price per demand unit if the resource demand would be
covered by alternatively allocating combinations of multiple
VMs of shorter subscription times (771, ..., j1).

The alternative price is determined in a recursive manner:
the demand over the subscription time of j" is partitioned into
a sequence of durations matching the length of the subscription
time of j7~! (for example, if subscription time of ;™ is one
week, and the subscription time of j”~! is one day, we get
seven one-day-partitions). For each partition, VM-Allocation is
called, initialized with n = n — 1 (in line 1) and the resource
demand that would be covered by j™ (in this partition). The
alternative price is then computed as the sum of the costs of
VM allocations over all partitions.

III. SOLUTION ARCHITECTURE

To implement and execute the model decisions we propose
a control architecture as depicted in Fig. 2

! Resource
1 F Virtual
) Provisioning
I

Machines

System

Auto Scaler

akaks Indalobetaielekelefefake [N —
I
I
I
I

v
I
2
4

Fig. 2. Control architecture

Sensors are used to acquire resource usage metrics of the
various VMs. Therefore, standard server monitoring-tools are
suitable. The monitoring data is send to a data analyzer for
trace-based prediction of workload throughout a planning pe-
riod. The auto scaler derives scale-in/out and/or scale-up/down
decisions based on the predicted workload for different server
resources, the available VM sizes and their prices, subscription
times and maybe resource provisioning delays (time required
to set-up a VM). The auto scaler is comparable to an auto-
nomic manager that tunes, load balances and derives scaling
decisions based on a predictive system model following the
control system approach [7]. The resource provisioning system
allows to abstract from technical specifica of cloud infrastruc-
ture providers. It is in charge of executing these commands in
a timely manner independent of the technologies and protocols
used by specific providers.

Typically business applications consist of multiple com-
ponents like load balancers, web, application and database
servers. However, the proposed model can be applied by
considering each tier as single application as we need to
make sure that capacity suffices on each tier to guarantee SLA
compliant application delivery.

IV. SUMMARY AND OUTLOOK

Infrastructure-as-a-service providers offer different types
of virtual machines, this means different capacities, prices,
and minimum subscription times. Customers typically have
applications with volatile demand throughout the day or week.

They want to purchase as much capacity as necessary, in order
to minimize cost, while satisfying resource demands of an
application. It turns out, that determining an optimal schedule
of VM subscriptions is a hard computational problem. In
this paper, we propose different problem formulations and
algorithmic solutions.

Solving this problem allows to select the lowest-cost IaaS
provider. The solution can also be used to automate the ca-
pacity management and control the schedule of VM instances
that need to be allocated over time. Such automated capacity
management can considerably lower the operational costs
when relying on external IaaS providers. We are currently
implementing a software solution and are working on a solid
experimental evaluation of the approach.

REFERENCES

[1] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak, “A capacity man-
agement service for resource pools,” in 5th Intl. Workshop on Software
and Performance (WOSP’05), 2005.

[2] M. Arlitt, D. Krishnamurthy, and J. Rolia, “Characterizing the scalability
of a large web-based shopping system,” ACM Transactions on Internet
Technology, vol. 1, 2001.

[3] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic provi-
sioning of multi-tier internet applications,” in In Proceedings of the 2nd
International Conference on Autonomic Computing, 2005, pp. 217-228.

[4] A. Chanda and P. Shenoy, “Effectiveness of dynamic resource allocation
for handling internet flash crowds,” University of Massechusetts, Amherst,
Tech. Rep., 2003.

[5] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper,
“Adaptive quality of service management for enterprise services,” ACM
Transactions on the Web (TWEB), vol. 2, 2008.

[6] J. E. Beasley, “Bounds for two-dimensional cutting,” Journal of the
Operational Research Society, vol. 36, no. 1, pp. 71 — 74, 1985.

[7] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control
of Computing Systems. John Wiley & Sons, 2004.

