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Management summary: Traditional auction mechanisms support price ne-
gotiations on a single item. The Internet allows for the exchange of much more
complex offers in real-time. This is one of the reasons for much research on multi-
dimensional auction mechanisms allowing negotiations on multiple items, multiple
units, or multiple attributes of an item, as they can be regularly found in procure-
ment. Combinatorial auctions, for example, enable suppliers to submit bids on
bundles of items. A number of laboratory experiments has shown high allocative
efficiency in markets with economies of scope. For suppliers it is easier to express
cost savings due to bundling (e.g., decreased transportation or production costs).
This can lead to significant savings in total cost of the procurement manager.
Procurement negotiations exhibit a number of particularities:

e [t is often necessary to consider qualitative attributes or volume discounts in
bundle bids. These complex bid types have not been sufficiently analyzed.

e The winner determination problem requires the consideration of a number of
additional business constraints, such as limits on the spend on a particular
supplier or the number of suppliers.

e Iterative combinatorial auctions have a number of advantages in practical
applications, but they also lead to new problems in the determination of ask
prices.

In this paper, we will discuss fundamental problems in the design of combinatorial
auctions and the particularities of procurement applications.

Key words: combinatorial auction, multidimensional auction, industrial pro-
curement, combinatorial optimization.

Zusammenfassung: Aus betriebswirtschaftlicher Sicht ist die Anwendung
Kombinatorischer Auktionen in der Beschaffung besonders viel versprechend. Die
Vorteile umfassen Kosteneinsparungen, die effektive Durchfiithrung komplexer Ver-
handlungen iiber mehrere Giiter, die Transparenz der Verhandlungen fiir die



Teilnehmer, Fairness, sowie hohe allokative Effizienz. Beim Einsatz Kombina-
torischer Auktionen kommt eine Reihe grundlegender Entwurfsprobleme zum Tra-
gen. Daneben birgt diese Doméne aber auch eine Reihe spezieller Anforderun-
gen, wie zum Beispiel der Einsatz einer Vielzahl betriebswirtschaftlich motivierter
Nebenbedingungen fiir das Allokationsproblem, sowie die Verwendung alternativer
Mehrdimensionaler Gebotstypen.

Abstract: Combinatorial auctions are promising auction formats for industrial
and public procurement. Potential advantages of using combinatorial auctions
include lower overall spend, low transaction costs for multi-item negotiations,
fairness and market transparency for suppliers, as well as high allocative efficiency.
A number of fundamental design considerations are relevant to the application
of combinatorial auctions in procurement. In addition, procurement specialists
need to consider several domain-specific requirements, such as additional side
constraints as well as alternative multidimensional bid types.

Keywords: Combinatorial auction, multidimensional auction, procurement,
combinatorial optimization

1 Introduction

Procurement negotiations on multiple items or services have typically been conducted as
request for quotes (RFQ) or on the phone. Electronic auctions have found increasing adoption
in procurement in the past couple of years. They allow for effective price negotiations on single
items. Companies such as GlaxoSmithKline use electronic auctions for more than a third of
their overall spend [Hann04]. According to a study by the Center for Advanced Purchasing
Studies companies use electronic auctions for 5% of their total spend. This proportion is
expected to grow in the next few years [BeCCO03].

An auction is defined as ”a market institution with an explicit set of rules determining resource
allocation and prices on the basis of bids from the market participants” [McMc87]. The
competitive process serves to aggregate the scattered information about bidders’ valuations
and to dynamically set a price. The auction format determines the rules governing when and
how a deal is closed. Klemperer [Klem99] provides a comprehensive introduction to classic
auction theory.

Auctions exhibit high allocative efficiency compared to alternative types of negotiations in
game-theoretical and experimental analyses [Kage95]. However, auctions have also been crit-
icized in the context of procurement negotiations. Single-item reverse auctions are often
considered insufficient for complex procurement negotiations where qualitative attributes of
an item, multiple items, or also large quantities of an item are negotiated. Items can be goods
or services in this case.

In the past couple of years, several new, "multidimensional” auction mechanisms have been
suggested in order to support also complex negotiations. Multidimensional auctions allow for
complex bid types, a possibility for economic mechanism design that has become possible on
nowadays computer networks. The term is based on dimensions such as quantity and quality
of an item that are typically negotiated in procurement [BiKK02]. These types of auctions
promise high allocative efficiency even in the presence of complex bidder preferences.

The best known multidimensional auction format is the combinatorial auction, which allows
bids on bundles or packages of items [CrSS05]. Game theoretical and empirical analyses
of combinatorial auctions are still in their infancy [BaLP89, KrRo96, 1sJa00, 7, EwMo03].
Nevertheless, these auctions have been successfully applied in a number of cases. In June
2002 Nigeria has conducted a combinatorial auction for spectrum licenses [KoMMO03| and the



US Federal Communications Commission plans their usage in the near future. There are
also published cases of applications in industrial procurement and transportation. Examples
are the procurement of transportation services at Sears Logistics [LeOPO01], the procurement
of goods and services at Mars, Incorporated [HoRR03], applications at The Home Depot
[E1Ke02] and the procurement of school meals in Chile [EpHCO02].

Combinatorial auctions address fundamental questions regarding efficiency and prices in com-
plex markets and is based on research results in Economics, Artificial Intelligence, Information
Systems, and Operations Research. Information systems play a crucial role as a means to
facilitate these types of auctions effectively [WeHNO3]. In this article we will discuss essential
topics in the design of combinatorial auctions. We will address fundamental design problems
and applications in the context of industrial procurement negotiations, which have a number
of particularities.

In the next Section, we will provide an overview of various multidimensional auctions and
important design goals. Section 3 discusses open and closed combinatorial auction formats.
Section 4 gives an overview of applications in industrial procurement. Finally, Section 5
provides a summary of the main findings.

2 Auction design with complex bid types

In the simplest case, a multi-item auction is designed to sell multiple idendical units of an item.
Bids specify price and quantity, as it is common on financial markets with standardized assets.
Combinatorial auctions have been discussed in the literature, as they allow negotiations on
a set of heterogeneous items. Bidders can specify bundle bids, i.e., a price is defined for a
specific subset of the items for auction [CrSS05]. The price is only valid for the entire set and
the set is indivisible. For example, a bidder might want to sell 10 units of item z and 20 units
of item y for a bundle price of €100, which could be less than the sum of the costs for x and y
if sold individually. This bidding language is useful in markets with economies of scope, where
suppliers have cost complementarities due to reduced production or transportation costs for
a set of items.

Combinatorial auctions have been intensively discussed for the sale of spectrum licenses by
the US Federal Communications Commission (FCC) [Milg00]. The FCC devides licenses
into different regions. Currently, the simultaneous multiple round auction (SMR) is used to
allocate these licenses, i.e., multiple auctions are conducted in parallel. Bidders, usually large
telecom companies, have strong preferences for licenses that are adjacent to each other. This
can have advantages in advertising a service to the end customer, but also in the infrastructure
that needs to be set up. In simultaneous auctions, bidders risk that they only win one item
from a set of items that they are interested in, but that they end up paying too much for
this item. This is also called the exposure problem. These types of preferences can easily
be considered in combinatorial auctions. In the mid-90’s these auctions have, however, been
considered impractical [McMi94] for at least two reasons:

e the computational complexity of the winner determination problem
e the strategic complexity for bidders

The allocation problem in combinatorial procurement auctions is a weighted set packing
problem, a well-known NP-complete problem [VrSV03]. We will discuss this central problem
in more detail in the next subsection. Strategic complexity for bidders has turned out to be
another difficult problem. Bidders need to know their valuations for 2™ —1 possible bundles of
m items in the auction. Even if they know all valuations, they need to determine an optimal
bidding strategy. Researchers have proposed different auction formats which exhibit various
degrees of strategic complexity for bidders (see Section 3).



Gebote
Line | Bids Bl | B2 | B3 | B4
1 1000t Sugar in Munich 1 0 1 1
2 800t Sugar in Bonn 0 1 1 1
3 800t Sugar in Berlin 1 1 1 0
4 | Bid price (in thousands) | €150 | €125 | €300 | €125

Table 1: Example with bundle bids

2.1 The winner determination problem

First, we will concentrate on the winner determination problem in combinatorial procure-
ment auctions. It is an excellent example of the types of optimization problems that one
encounters in various multidimensional auctions. The following example with 4 bids and 3
items illustrates a simple setting. The buying organization needs different quantities of sugar
in different production sites. In this case, the buyer aggregates demand for multiple produc-
tion sites, as suppliers might be able to provide better prices due to reduced production and
transportation costs. Suppliers bid on subsets of the demand and each subset has a bundle
price (see Table 1).

The optimization problem can be formulated as a binary program. There are j € L bids,

and the set of items M indexed with & = 1, ..., m. Each supplier i € N submits a set L* of

bids. Each bid b;; has a price p;; and the set of items in a bid is described by a binary vector
k

a;;. 1f bid b;; satisfies the entire demand of item k, then afj = 1, otherwise 0. The winner

determination problem (WDP) can be formulated as follows:

min > ey Do jeri PijTij
st Dlien Xjer afja:ij >1 Vke M ' (a)
Tij € {0, 1} Vie N,Vj e ! (b)

The decision variable x;; is 1, if bid b;; is a winner in the auction, otherwise 0. Constraint
(a) ensures that the total supply of items satisfies the demand. In other words, lines 1 to
3 in Table 1 are transformed into side constraints of the binary program. Line 4 will be
transformed to the objective function. Note that the cost minimal solution can provide more
items than the actual demand specified for the different sites.

This allocation problem is NP-complete, i.e., while the allocation problem in simple auctions
is trivial, we do not know polynomial time algorithms for the winner determination prob-
lem in combinatorial auctions. Rothkopf and Pekec [RoPe98| analyze different approaches
to limit the bidding language, in order to solve the allocation problem in polynomial time.
Unfortunately, in every known case, the restriction required is so severe as to make the design
impractical for any real-world auction. Independently, different algorithmic approaches for
exact or heuristic solutions have been analyzed [VrVo03]. Existing methods from combinato-
rial optimization have been used, but also new algorithms have been developed [Sand99]. The
problem sizes in many real-world applications have shown to be tractable. Most instances
of the winner determination problem with several dozens of items and several hundred bids
can be solved in a few seconds. For example, the combinatorial auction for Sears Logistics
comprised 850 items [?]. Some papers have suggested meta heuristics for very large auctions
with many bidders and many items. Optimality of an allocation, however, is important for
the allocative efficiency of an auction.

In addition to the basic formulation of the winner determination problem, procurement ap-
plications often require additional side constraints such as:



e Purchasing managers want to specify a lower bound on the number of winners, in order
not to become dependent on a single supplier. They also specify an upper bound to
limit transaction costs due to too many suppliers.

e They also specify bounds on the quantity or volume purchased from a particular supplier
or a group of suppliers (e.g., quotas for small- and medium-sized enterprises)

Side constraints of this sort can significantly impact the solution time for the winner deter-
mination problem [DaKa00].

2.2 Other types of multidimensional auctions

Apart from bundle bids, other types of complex bids have shown to be useful in procurement.
Volume discount bids allow for bids specifying supply curves, i.e., unit prices for different
quantities of an item sold [DaKa00]. With this typ of bids supplier can express economies of
scale, when bidding on very large quantities (e.g., €500/unit until 1000 units and €450 /unit
for more than 1000 units). Typically, buyers need to consider various business constraints
when selecting such bids. For example, there might be limits on the spend per bidder or group
of bidders, and upper and lower bounds on the number of winners. These side constraints
turn the winner determination problem into a hard computational problem.

Multi-attribute auctions allow bids on price and qualitative attributes such as delivery time
or warranty. In contrast to request for quotes or tenders as they are regularly used in pro-
curement, the purchasing manager specifies a scoring function that is used to evaluate bids
[Bich01]. This enables competitive bidding with heterogeneous, but substitutable offers. In
addition to game theoretical models [Che93, Bran97], several implementations have been
proposed and tested experimentally in the past few years [BiKS99, Bich00, BiKI100, Stre03].
Multi-attribute auctions differ in the types of scoring rules or functions used, and in the type
of feedback that is provided to bidders. These implementation specifics can have a significant
impact on the auction results and are beyond what has been analyzed in game theoretical
models. Depending on the type of bids submitted, and on the type of (linear or non-linear)
scoring function, the auctioneer faces different optimization problems. For example, Bichler
and Kalagnanam [BiKa05] describe allocation problems for configurable offers describing the
price of an item as a function of attribute values. These types of bids allow for a compact
representation of pricing policies (e.g., CPU A has a markup of €100 for a laptop, while CPU
B has a markup of €150; the purchase of operating system X and office package Y implies a
discount of €60; operating system X and office package Z are incompatible, etc.). Thes rules
can be described in offers and automatically considered by the buyer in the bid evaluation or
winner determination resp. The scoring function and the bid type have implications on the
computational complexity of the allocation problem, but also on the strategic complexity for
bidders. As of now, there is little research on these questions.

2.3 Desirable economic properties

Efficiency, revenue properties, and optimal bidding strategies of different auction formats are
at the core of traditional auction theory [Wolf96]. So far, there has been a limited amount
of game theoretical work on combinatorial and other types of multidimensional auctions. On
the one hand, combinatorial auctions are a relatively young field. On the other hand, they
are much harder to analyze game theoretically than single-item auctions.

Before we will discuss specific combinatorial auctions, we will introduce a number of desirable
economic properties. Auction design describes the rules of an auction. These rules incent
bidders to reveal their private valuations or costs resp. so that the auctioneer is able to
determine the efficient allocation based on the bidders’ true valuations.



Two types of goals are regularly discussed in the literature [Jack00]:

e Allocative Efficiency is achieved, if the auction leads to an allocation that maximizes
the sum of all payoffs of the bidders and the auctioneer.

e Revenue mazimization is achieved, if the auctioneer maximizes his revenue (or minimizes
his cost in a procurement auction). This is often called ”optimal” auction design.

Incentive compatibility and strategy proofness are properties that should incent bidders to
reveal their private valuations. An auction is incentive compatible, if truthful revelation is a
Bayes Nash equilibrium, i.e. truth revelation is optimal, if also all other bidders reveal their
true valuations. An auction is strategy proof, if truth revelation is even a dominant strategy
for bidders, i.e. it is the bidder’s best strategy independent of other bidders’ strategies. In
these cases, the strategic complexity of an auction is reduced to a minimum and speculation
is not necessary.

Apart from properties such as allocative efficiency or revenue maximization, individual ra-
tionality and budget balance are additional desirable properties. An auction mechanism is
individually rational, if all participants have a positive expected utility. Budget balance
requires that the auctioneer must not make a loss. There are proofs showing that it its im-
possible to have bilateral trading mechanisms that are efficient, budget-balanced, incentive
compatible, and individual rational subject to certain assumptions [MySa83].

Game theoretical and experimental analyses of combinatorial and general multidimensional
auctions are in their infancy. Due to the difficulties of analytical models in this field, many
researchers have started with lab experiments on new auction designs and then derive useful
theory from these observations, rather than start with theory development and then test it
in the lab. These types of experiments are sometimes called ”wind-tunnel experiments”.

3 Combinatorial auctions

Apart from the type of bids allowed, a format describes the rules of the message exchange
protocol. This protocol and the pricing rules determine the strategic complexity of auctions.

3.1 Sealed-bid auctions

One can distinguish between sealed-bid and open auctions. In sealed-bid auctions, bidders
submit their bids to the auctioneer without additional information feedback until the auction
closes. In open auctions, bidders can see information about what other bidders have bid.
The first and the second-price sealed-bid auction (a.k.a. Vickrey auction) are well-known
sealed-bid formats.

3.1.1 The first-price sealed-bid auction

Some applications of combinatorial auctions are based on sealed-bid formats [ElKe02,
EpHCO02, RaSB82]. All bids need to be submitted until a particular end date, when the
cost-minimizing combination of bids is selected. A number of properties of single-item sealed-
bid auctions can also be observed in combinatorial auctions. First-price sealed-bid auctions
are robust against collusion [Robi85]. However, the strategic complexity is quite high as
compared to the Vickrey auction or generalizations of the English auction. For example, the
bidder with the lowest cost for an item could speculate that others have higher cost and bid
above his true cost. While he would increase revenue, it might also happen that he does not
win. The strategic complexity arises in determining an optimal bid, given stochastic infor-
mation about the cost distribution of competitors. In comparison, English auctions have a



simple dominant strategy of bidding down to the true cost, and then win or drop out of the
auction.

3.1.2 The Vickrey-Clarke-Groves mechanism

Vickrey-Clarke-Groves (VCG) mechanisms describe a class of strategy-proof economic mecha-
nisms [Vick61, Grov73], where sealed bids are submitted to the auctioneer. The principle can
be applied to combinatorial auctions and is also called Generalized Vickrey auction (GVA).
GVAs have a number of favourable properties, but also a few problems that should be dis-
cussed in the following.

Similar to single-item Vickrey auctions, bidders submit their private costs to the auctioneer.
In a GVA, this means, a bidder needs to submit bids on all possible bundles. Each winning
bidder receives a Vickrey payment, which is the amount that he has contributed to lowering
the total cost of the buyer. Let’s assume, two items  and y should be purchased. Supplier
1 bids €20 for {z} (i.e., Bi(x) = €20), Bi(y) = €11 and B;(x,y) = €30. Supplier 2 bids
By(z) = €14, Ba(y) = €14 and Ba(x,y) = €26. The total cost will be minimized at €25,
while purchasing {z} from supplier 2 and {y} from supplier 1. Supplier 1 demands €11 for
{y}, but he receives a Vickrey payment of €26 - €25 = €1, since without his participantion
the total cost would be €26. In other words, the net payment of the buyer to supplier 1 is
€12. Supplier 2 bids €14 for {z}, but receives a Vickrey payment of €30 - €25 = €5, because
without his participation, the total cost of this auction would be €30. The advantage of VCG
mechanims is that they provide simple, dominant strategies for bidders. Unfortunately, they
also exhibit a number of problems:

e The GVA requires bidders to submit bids on all 2" — 1 possible bundles. Even if these
bids will not enter the allocation, they can impact the Vickrey payments of bidders.
Clearly, even with fairly small m, this can easily become impossible.

e The auctioneer needs to solve the allocation problem, which is NP-hard, but also deter-
mine Vickrey payments for each winner, which is again an NP-hard problem. All these
problems need to be solved based on all possible bids of all bidders.

e In general, Vickrey auctions require a trusted auctioneer. An auctioneer could introduce
synthetic bids to minimize Vickrey payments. Also, in a repeated setting, if the auc-
tioneer is the buyer, he could use true information about the suppliers’ costs in future
auctions. Therefore, bidders will be reluctant in giving away their true cost. Cryp-
tographic solutions to this problem have only been discussed for single-item Vickrey
auctions [Bran03].

In addition, all arguments are based on the assumption of having independent private costs.
In case of affiliated valuations, iterative auctions, such as the English auction, have been
advocated by theorists [MiWe82].

3.2 Open-cry auctions

An open-cry auction enables bidders to learn about other bidders’ cost [McMc87]. These
mechanisms are typically run in multiple rounds, which is why we will refer to them as
iterative auctions. The US FCC has almost exclusively considered iterative auctions for the
design of spectrum licenses. They also seem to be attractive for industrial procurement
applications [HoRR03].



3.2.1 General problems

Cramton [Cram98] summarizes a number of general arguments for iterative auction de-
signs, which hold also for the case of combinatorial auctions. In combinatorial auc-
tions, bidders have the possibility, to submit bids on bundles in later rounds, which
they did not consider in the first round as they learn about the competition. In the
past few years, a number of iterative combinatorial auction formats have been developed
[BrP196, Park99, DeKL02, WuWe00, AuMi02]. Researchers try to develop mechanisms with
minimal complexity for bidders and the auctioneer, without jeopardizing economic proper-
ties, such as allocative efficiency, strategy proofness, budget balance, or individual rationality.
Some general problems of iterative combinatorial auctions should be discussed below.

3.2.1.1 The treshold problem describes the difficulty of small bidders to outbid a big bid-
der, who is interested to sell many items. Let’s assume, a buyer wants to purchase three items
x, y, and z. Bidders 1, 2, and 3 would each be willing to sell one of the items for €3. Bidder
4 wants €10 for all three items (private valuation). In round 1, bidders 1, 2, and 3 have bid
€4, while bidder 4 has already bid €10 for the bundle. None of the bidders 1, 2, and 3 can
win, by lowering his bid to his private cost, and bidders need to coordinate. This difficulty is
one of the reasons, why iterative auctions might end up with inefficient allocations.

3.2.1.2 The exposure problem is typically discussed for simultaneous auctions, such as
SMR. When two items should be purchased, a bidder wants both and not only one of the
items, he risks winning only a single item in these parallel events. Bidders often shade their
bids, which is one of the reasons for inefficiencies in these simultaneous auctions. Bundle bids
mitigate this problem.

A similar problem can, however, also occur in combinatorial auctions. Let’s assume, two
items z and y shoud be bought. If a bidder bids on x and y and wants only one of the
items, he might end up with the bundle zy based on the winner determination formulation
presented above. In particular, in interative auctions, where bids are valid throughout the
process, bidders want to make sure that they do not win multiple bids, although they only
want one of them. An extension of this so called OR bidding language is the XOR bidding
language, where only one of the bids of a bidder can become a winning bid. In this case, the
auctioneer adds side constraint (c) to the WDP:

As a consequence, bidders need to specify a larger number of bids for all combinations of
items they are interested in. Logic bidding languages of this sort should allow bidders to
describe their preferences easily. OR and XOR bidding languages are two examples. Also
combinations and extensions have been discussed [Nisa00, FuL.S99].

3.2.1.3 Tie breaking: In traditional auctions auctioneers typically choose the first of two
equal bids. In combinatorial auctions, an allocation comprises multiple bids and an auction
round might contain multiple allocations with the same total cost. The auctioneer needs to
decide, whether he wants to choose the allocation that was possible first, or the allocation
with the lowest average time stamp, or other rules and it obviously takes more effort to break
ties [HoRRO3].



3.2.1.4 Ask prices: In iterative auction formats, ask prices help bidders to determine, how
much less to bid, in order to become a winner in the next round. In single-item auctions, a
bidder needs to bid less than the current standing bidder. In combinatorial auctions, this is
not obvious. If the current allocation of three items A, B, and C is that the bundle of item A
and B go to supplier 1 and item C goes to supplier 2, the loosing bidder 3, who is interested
in the bundle of item B and C does not know, how much less to bid in the next round. This
depends on the set of loosing bids in the auction.

Bikhchandani and Ostroy [BiOs01] show in their fundamental contribution that in the pres-
ence of bundle bids, the only types of ask prices that are always possible are non-linear
and personalized. In other words, there might be a price for every bundle and this bundle
price might be different from bidder to bidder. The authors draw on linear programming
duality theory in their work. This insight is fundamental. The second theorem of welfare
economics states that any efficient allocation can be sustainable by a Walrasian equilibrium,
i.e., item-level or linear prices [MaWG95]. In combinatorial auctions, some of the assumptions
in welfare economics are violated and one cannot always find linear ask prices. Obviously, the
sheer volume of non-linear and personalized ask prices is a disadvantage. Nevertheless, some
researchers have proposed practical auction designs based on this type of prices. Others have
decided to approximate linear ask prices. The type of ask prices is the main difference among
practical combinatorial auction designs.

3.2.2 Selected combinatorial auction designs

A number of designs for iterative combinatorial auctions have been proposed recently. The
discussion on the design of the US FCC spectrum auctions was certainly one of the drivers for
this increased interest. The Adaptive User Selection Mechanism (AUSM) was one of the first
proposals [BaLLP89]. Here, the allocation problem is delegated to bidders and a public white
board should help them to coordinate their bundle bids and suggest new composite bids that
have a lower total cost for the buyer. Most newer auction designs have the auctioneer calculate
the optimal allocation [WeGS99, DeKL02, PoRR03, Park99, WuWe00, AuMi02, VrSV03]. In
the following, we will provide a brief overview of the main proponents:

The Resource Allocation Design (RAD) approximates linear ask prices and combines them
with a number of activity rules from SMR. RAD requires monotonicity in the number of
items a bidder demands. This means, in each round a bidder can only bid on as many items
in his bids as he bid on in the previous rounds. The ask price for a bundle is simply the sum
of the item prices in this bundle. Bidders need to bid below the ask prices minus the bid
decrement (in reverse auctions). The LP-based heuristic to calculate ask prices is specific to
RAD [DeKLO02].

An alternative and simple approach has been proposed by Porter et al. [PoRR03]. The
combinatorial clock auction (CC) proceeds like a Japanese auction on multiple items. For
each item, there is an item clock showing the current ask price per item. In each round the
bidder determines which bundles he wants to bid on at the currend prices. Ask prices for
bundles are again linear. The clock starts at a very high price and is decreased round by
round as long as there is competition on this item, i.e., as long as there is more than one
bidder interested in selling the item. After a certain number of auction rounds, there should
be linear ask prices determining the allocation. There might be cases, in which the ask prices
are too low to have any bidder any more. In these cases, the auctioneer solves the WDP
based on all bids submitted in the auction. In experimental analyses the CC auction led to
higher efficiency compared to SMR in cases with cost complementarities. As in RAD, the
linear ask prices used in the CC auction can lead to inefficiencies.

A number of scientists have tried to address the inefficiencies due to linear prices by using non-
linear ask prices [Park99, WuWe00, AuMi02, VrSV03]. These auctions are sometimes referred



to as primal-dual auctions, as the way how the efficient solution is found can be modelled
similar to primal-dual or subgradient algorithms in linear programming [NeWo88]. Here, the
dual variables are interpreted as ask prices in an auction. iBundle is one of these auction
designs [PaUn00]. Prices for each loosing bundle and bidder are decreased by a minimum bid
increment from round to round. Assuming straightforward bidding, this means that every
bidder submits bids on those bundles that maximize his payoff, this auction format leads to
efficient allocations. Ausubel and Milgrom have suggested the use of proxy agents, in order
to deal with the many auction rounds that this format causes [AuCMO03].

4 Applications in industrial procurement

Companies such as  CombineNet  (http://www.combinenet.com),  NetExchange
(http://www.netex.com) and Trade Extensions (http://www.tradeextensions.com) provide
software for combinatorial auctions. Although there are a number of press announcements
about the use of combinatorial auctions for transportation and industrial procurement, there
are only a few published cases. We have analyzed the literature and conduced a number of
phone interviews with representatives of these three companies. Based on this initial survey,
combinatorial auctions have been used for the procurement of very different types of items
(office supply, chemicals, transportation services, package material, etc.). In most cases there
are larger quantities of items with a high degree of cost complementarities for suppliers.
Vendors reported auctions with 10 items, but also cases with many thousands items.
Similarly, the number of bidders varied. There were cases with serveral hundred bidders; 10
to 20 bidders were seen as average numbers for industrial procurement applications, however.
Even though the number of empirical observations is limited, the results of these interviews
illustrate the versatility of combinatorial auctions as a means for online negotiations in
industrial procurement.

Procurement applications have been conducted both, as sealed-bid and as iterative auctions.
Iterative auctions were typically run without ask prices, providing bidders only information
about the winning allocation. We did not learn about any use of VCG mechanisms in this
domain. What has been described as essential to procurement applications by all respondents
was the consideration of additional side constraints such as upper and lower bounds on the
number of winners or spend on a supplier. Also, some vendors used extensions of pure bundle
bids including qualitative attributes and quantity of an item.

Cost savings were seen as the main motivation for the use of combinatorial auctions in pro-
curement organizations. According to the vendors, combinatorial auctions delivered on their
promise and they quoted cost savings of up to 13 % on average. This can mostly be attributed
to higher allocative efficiency of these auctions. In particular in cases with significant cost
complementarities for suppliers, combinatorial auctions led to high allocative efficiency com-
pared to other types of auctions [PoRR03]. A few of reasons were mentioned in additon to
reductions in total cost:

Decreased transaction costs for complex procurement negotiations: Combinatorial auc-
tions allow for effective negotiations on multiple items. The alternative to combinatorial
bidding are either sequential or simultaneous auctions or bilateral negotiations on the
phone, which is time-consuming and expensive (see also [HoRR03]).

Transparency and fairness: Open and iterative auctions increase the market transparency,
which was seen as a positive feature by suppliers. Also, all suppliers are treated equally,
which led to a high perceived fairness by the suppliers.

10



5 Summary

The US FCC spectrum auctions have spawned intensive discussion on the design of combina-
torial auctions. Overall, however, industrial procurement might be one of the most interesting
application domains. Cost savings for the purchasing manager, decreased transaction costs,
transparency, and fairness are among the main advantages. However, the application of
combinatorial auctions leads to a number of fundamental design problems such as the com-
putational complexity of the winner determination problem or the strategic complexity for
bidders. In addition, procurement applications have specific requirements such as the con-
sideration of additional side constraints and the need for other, multidimensional bid types.
A number of promising auction designs has been proposed, but to date, a solid theoretical
and empirical evaluation of these designs is missing. In the long run, this research area might
lead to robust and efficient auction designs and standard software solutions for multi-item
negotiations in procurement.
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