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Abstract. Electronic auction markets collect large amounts of auction field data. 
This enables a structural estimation of the bid distributions and the possibility to 
derive optimal reserve prices. In this paper we propose a new approach to setting 
reserve prices. In contrast to traditional auction theory we use the buyer’s risk 
statement for getting a winning bid as a key criterion to set an optimal reserve price. 
The reserve price for a given probability can then be derived from the distribution 
function of the observed drop -out bids. In order to get an accurate model of this 
function, we propose a nonparametric technique based on kernel distribution 
function estimators and the use of order statistics. We improve our estimatior by 
additional information, which can be observed about bidders and qualitative 
differences of goods in past auctions rounds (e.g. different delivery times). This 
makes the technique applicable to RFQs and multi-attribute auctions, with 
qualitatively differentiated offers. 
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1. Introduction 

During the past few years, electronic reverse auctions have become a very popular 
economic institution for automating procurement negotiations. The competitive process of 
these auctions serves to aggregate the scattered information about supplier’s costs and to 
dynamically set a price. The literature on optimal auction design tries to find the auction 
mechanism that provides the greatest revenue/profit for the seller, or the lowest cost for 
the buyer in a procurement auction, respectively. Such a question is of considerable 
practical value. In the well-studied independent private value model with risk neutral 
bidders any auction mechanism such as first-price, second-price, English, and Dutch 
auction, generates the same revenue for the seller. Therefore, the problem of optima l 
auction design reduces to determining an optimal reserve price [1]. The latter is expressed 
as a functional of the distribution of private values and its corresponding density function 
[2, 3].  

With the advent of large-scale electronic auction markets, the access to large amounts 
of transaction data has become considerably easier. This enables a structural estimation of 
the empirical distributions relevant to setting an optimal reserve price, and has led to an 
increased interest in empirical applications of optimal auction theory (see section 5). This 
paper is motivated by our work on a large-scale electronic procurement platform for the 
retail industry. On this platform retail companies conduct repeated purchases of retail 



commodities using classic reverse auctions, mostly in an open-cry or English format. 
These commodities are purchased from an established set of suppliers for the respective 
commodities. Providing good decision support for sett ing appropriate reserve prices is an 
important feature for purchasing managers on this platform.  

The results of optimal auction theory, however, have been criticized because they 
seem to be of theoretical rather than practical significance so far. “The ‘optimal’ auctions 
are usually quite complex, and there is no evidence for their use in practice.” [4] As 
argued by McAfee and Vincent [5], a major difficulty in implementing the optimal reserve 
price is the use of unobservables such as the distribution of supplier’s costs and the bid 
taker’s own valuation for the good (i.e. her opportunity cost). First, there are 
methodological difficulties in estimating the latent supplier costs from the observed bids 
in the transaction data, which essentially assume knowledge of a bidder’s strategy. This is 
also called the identification problem. The accuracy of this estimate, however, has a big 
impact on the reserve price. Second, also assessing the buyer’s own opportunity cost can 
be non-trivial. Often, there is no alternative market value for the good. Additionally, a 
procurement auction is not necessarily a one-time event, and it is common procurement 
practice to repeat unsuccessful auctions with varied reserve prices. Where should the 
optimal reserve price be set, if there is a possibility to repeat the auction with a different 
reserve price?  

In this paper we propose a new approach to setting reserve prices in such a 
procurement environment. Our contribution is two-fold: In contrast to traditional auction 
theory we use the buyer’s risk statement for getting a winning bid as a key criterion to set 
an optimal reserve price. The reserve price for a given probability can then be derived 
from the distribution function of the observed drop-out bids. In order to get an accurate 
model of this function, we propose a nonparametric technique based on kernel distribution 
function estimators and the use of order statistics. We improve our estimatior by 
additional information, which can be observed about bidders and qualitative differences of 
goods in past auctions rounds (e.g. different delivery times). This makes the technique 
applicable to RFQs and multi-attribute auctions, with qualitatively differentiated offers. 

The paper is structured as follows. The next section summarizes the relevant results 
of optimal auction theory. We will focus on two important aspects, namely asymmetry of 
bidders costs and correlation. We will then describe a univariate and a multivariate 
estimator for bid prices in section 3. Section 4 will present some first evidence from a 
Monte Carlo study. We then point to related literature in Section 5 and provide a brief 
summary and conclusions in section 6. 

2. Theory of Optimal Auctions  

There is a considerable academic literature on the effects of reserve prices in auctions. The 
basic theory has been developed by Vickrey [6] and extended by Riley and Samuelson 
[2], Levin and Smith [7] and Monderer [8]. Many laboratory experiments have tested 
different predictions of auction theory [9]. Empirical work using field data is summarized 
in Hendricks and Paarsch [10], or more recently in a so called “field experiment” by 
Lucking-Reiley [11]. Lucking-Reiley’s analysis shows that implementing reserve prices 
(1) reduces the number of bidders, (2) increases the frequency with which goods go 



unsold, and (3) increases the revenues received on the goods conditional on their having 
been sold.  

McAfee and McMillan state that the IPV model applies to (government) contract 
bidding when each bidder knows what his own production cost will be if he wins the 
contract [12]. Therefore, in the following section we will introduce the basic IPV model 
and derive the main results with respect to setting reserve prices. We will also discuss 
relevant factors such as the number of bidders, the asymmetry of bidders’ costs, and 
correlation among the bidders’ costs. Although relevant in many instances we will ignore 
other aspects such as collusion among bidders, their risk attitudes, or royalities for the 
sake of brevity.  

2.1. Optimal Auctions in the Independent Private Values Model 

The most thoroughly researched auction model is the symmetric independent private 
values (IPV) model. In this model applied to reverse auctions:  
§ A single indivisible object or task is put up for auction to one of several bidders. 
§ Each bidder i knows her true cost, ci ` ≠ , and can revise her signal when that of rival 

bidders are disclosed. If ci is lower than the bid bi ` ≠, then the bidder makes a profit 
of bi - ci. 

§ All bidders are symmetric/indistinguishable, i.e., the costs are drawn from a common 
distribution G(·) with support [c, c]n, which is known to all bidders. 

§ The unknown costs ci are statistically independent, identically distributed, and 
continuous random variables. 

§ The bidders are risk neutral concerning their chance of winning the auction, and so is 
the seller. 

The vector (c1, …, cn) is a realization of a random vector whose n-dimensional 
cumulative distribution function is G(c). Denoting c(i)  as the ith smallest order statistic for 
a sample of size n from the distribution of c, the bidder of the auction will be the player 
with the lowest cost c(1) . That is, c(1) is the first order statistic, and c(2) is the second order 
statistic [13]. In an English auction the second-last bidder will drop out of the bidding as 
soon as the price is below her own cost of the item. From the point of view of the winning 
bidder, her expected rent is the expected difference between c(1) and c(2), which is the 
difference between the first order statistic and second order statistic, given by  
–G(c)/g(c), where c is the bidder’s production cost, and G and g are the probability 
distribution function and density function of bidders’ costs. Consequently, the expected 
buyer’s payment is the winning supplier’s cost plus the winning supplier’s rent: 
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Riley and Samuleson [2] reduce the optimal auction problem to the optimal choice of the 
reservation price. That is, an optimal auction requires the buyer to set a reserve price, r, 
above which she will not buy the item and make it public (i.e., a maximum bid). This 
price is set to mimic the expected bid of the second lowest bidder and is lower than the 
buyer’s valuation, i.e. cost for not getting the good, c0, namely,  
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This reserve price minimizes the expected cost of the buyer, based on the distribution of 
costs in the market. For the IPV model, any of the English, Dutch, first-price sealed-bid, 
and second-price auctions is optimal, provided the reserve price is set optimally as in (2). 
Remarkably, this optimal reserve price is independent of the number of bidders n. This is 
a powerful result, as no restrictions have been placed on the types of policies the seller can 
use. For instance, the seller can have several rounds of bidding, or charge entry fees, or 
allow only a limited time for the submission of bids. None of these procedures would 
increase the expected price for the seller.  

This optimal level of the reserve price is determined by a trade-off. The disadvantage 
of setting a reserve price is that it is possible for the remaining bidder to have a valuation 
that lies between the sellers valuation and the reserve price, c0 > c > r. In this case, the 
buyer doesn’t find a supplier even though the bidder would have been willing to charge a 
lower price than what the buyer was willing to pay. On the other hand, if the reserve price 
is below the second-lowest bidder’s cost, the bidder charges less than she would have in 
absence of the reserve price. In summary, the buyer imposes the reserve price in order to 
capture some of the informational profits that would otherwise have gone to the winner. 
However, this can have a negative impact on the efficiency of the auction. Bulow and 
Roberts [14] point out the relationship of optimal auction theory to the theory of price 
differentiation in monopolies. 

2.2. Number of Bidders and Distribution of Costs 

The number of bidders and the particular type of cost distribution have a considerable 
impact on the outcome of an auction. Increasing the number of bidders increases the 
revenue of the bid taker on average. This is because the second-lowest cost approaches the 
lowest possible cost. In addition to the number of bidders, the variance of the distribution 
of costs has an impact. The larger the variance, the larger on average is the difference 
between the lowest cost and the second lowest cost. This means the average revenue of 
the buyer and the winning supplier are increased. As can be seen in (1) and (2) the 
distribution of bidder’s costs as well as the buyer’s cost for not getting the good, c0, are 
the two parameters impacting the reserve price. In the following we will analyze the 
impact of these state variables for two common types of distributions, the uniform and the 
normal distribution. For a uniform distribution the reserve price, r, is  
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where lo is the lower bound of the uniform distribution. The reserve price calculation for 
the case of a normal distribution is more comp licated. The distribution function of the 
normal distribution can be computed based on the error function, which can be integrated 
numerically, or approximated as in [15]. This leads to a J-function as in equation (5). 
Function J is continuous and monotonically increasing. Therefore, the inverse to function 
J-1 for the optimal reserve price can be found through bisection or other root finding 
methods. 
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Figure 1 shows the shapes of J-1 for different levels of c0 using three different 
distributions. The solid line illustrates the reserve price for a uniform distribution with a 
lower bound of 1. The dashed line shows a normal distribution with a l of 50 and a r of 
only 4, whereas the dotted line shows a normal distribution with a l of 30 and a r of 20. 
The intuition is that with only a low variance of cost, it does not make sense to raise the 
reserve price way beyond the mean of the normal distribution, even with a high 
opportunity cost c0. 
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Figure 1: Shapes of J-1 functions in reverse auctions for different distributions 

The figure illustrates the strong impact the buyer’s opportunity cost c0 on the choice of the 
optimal reserve price. A bias in c0 leads to a considerable bias in r, which makes the 
application of this formula difficult in many real-world cases. 

2.3. Asymmetry of Bidders 

Although, IPV assumptions are similar to the conditions one can find in typical 
procurement negotiations, they need to be carefully evaluated before applying the model 
to auctions in the field. One IPV assumption, which is often violated in practice, is the 
symmetry of bidders. In many procurement situations bidders fall into recognizably 
different classes, i.e., bidders are asymmetric. It would therefore not be appropriate to 
represent all bidders as drawing their valuations from the same probability distribution F. 
An example might be suppliers from different countries, where there are systematic cost 
differences between domestic and foreign firms. Asymmetry of bidders leads to a 
breakdown of the well-known revenue equivalence theorem and therefore impacts the 
choice of the auction format. In absence of a reserve price, an English auction yields an 
efficient outcome, whereas a sealed-bid auction may yield an inefficient outcome.  



In an optimal asymmetric auction, the seller sets a different reserve price for each type 
of bidder, computed as in (2). This means, that the optimal auction is discriminatory 
between the types. By setting k different reserve prices, each type has an incentive to bid 
for the contract. However, there is a possibility that one bidder wins despite another 
bidder’s having a higher valuation. This is true because asymmetry implies that the 
probability distributions F are different, so that it is possible that the buyer’s expected 
payment Jk(c

k
 (1)) > Jk+1(ck+1

(1)) even though ck
(1)  < ck+1

(1), with k  being the different types 
of bidders. Because this optimal policy leaves a positive probability of the item being 
awarded to someone other than the bidder with the lowest cost, the policy is not Pareto 
efficient. If the distributions of valuations are identical except for their means, then the 
class of bidders with the higher average cost receives preferential treatment in the optimal 
auction. Because it might happen that the higher type bidder is below her reserve price, 
whereas the lower type bidder is not. 

In general, the IPV assumes that the distributions are observable by all of the bidders, 
which might not be given in many procurement auctions. For example, in many private-
sector sealed-bid auctions bidders do not even know who has been invited to bid. In 
addition, empirical distributions might be complex mixture distributions, which cannot be 
assumed known by the bidders. 

2.4. Correlated Costs 

Yet another assumption, which is sometimes violated in procurement negotiations is the 
independence of bidders’ costs. Often the bidders estimates about the cost of executing a 
contract are somewhat correlated. Two other models have been discussed in the auction 
literature, namely the common-value model and the affiliated-values model [16]. The 
common-value model describes situations where the good has a single objective value to 
all bidders, and the bidders have different guesses about how much the item is objectively 
worth. This model is particularly apt to situations where goods have a resale value, such 
as securities, antiques or the amount of gold in a mine. While most procurement auctions, 
which can be observed in practice do not exhibit the characteristic of a single objective 
value of the good in question, it is likely that the valuation for a contract is “somewhat” 
dependent on the bids of other bidders. For example, if there is a common element of 
technological uncertainty (e.g., in long-term contracts), then the appropriate assumption is 
a degree of affiliation among the bidder’s bids.  

The affiliated-values model accounts for this influence. With n bidders, let x={x1, …, 
xn} represent the private signals about the item’s value observed by bidders, 1 < i < n; Let 
s={s1, …, sm} be a vector of variables that measure the quality of the item for sale. The 
bidder’s valuation may depend not only upon his own signal, but also upon the other 
bidders’ private signals and the true quality of the item, vi(s, x). If variables are affiliated, 
then they are positively correlated. In other words, affiliation means that large values for 
some of the components make the other components more likely to be large than small. 
Although, affiliation plays a role in the auctioning of contracts with uncertain estimates 
about the actual costs incurred for the supplier, we will focus on the simpler IPV model in 
the following, assuming for example the purchase of direct or indirect materials, where 
the costs are known by the bidders and affiliation can be ignored. For a theory of reserve 
prices in an auction with affiliated values, see [7]. 



3. Estimation  

As shown in equation (2), the optimal reserve price for an auction is determined by the 
latent distribution of costs in the auction and the buyer’s cost for not getting the good, c0. 
The price of the good on a secondary market, or the loss incurred through not getting the 
good in the subsequent production step, might serve as an estimate for c0. Nevertheless, 
this variable is often difficult to set, in particular, since in many settings the procurement 
manager can initiate a second or third round of auctions, if the first round was 
unsuccessful. In contrast to traditional auction theory we use the buyer’s risk statement for 
getting a winning bid as a key criterion for setting a reserve price. For example, a buyer 
wants to find the best reserve price given a probability Pr = 30% of getting a winner. The 
key technique to deriving such a reserve price is a good fitting estimation for the 
distribution of the winning bid. In particular, in situations with only a few bidders the 
accuracy of the estimate can have a big impact. 

In the following, we will describe a non-parametric estimator for the probability 
distribution function of prices in a new auction. The technique is based on well-known 
kernel density estimators [17] and the theory of order statistics. We will first describe the 
one-dimensional case and then extend it to a mu ltivariate case, which considers the impact 
of qualitative differences in the goods and services put up for auction. Due to their 
popularity in procurement, we will focus on English auctions, where the bidding strategy 
is simple and the drop out bids equal the true costs of the suppliers. We will in general 
make IPV assumptions, with the notable exception of symmetry in cases. A basic 
assumption in this section is that the bid prices in the transaction data do not contain any 
systematic seasonal or long-term trends. 

3.1. Univariate Bid Price Estimators  

In a first step, we will estimate the distribution of bids without considering qualitative 
differences in previous auction rounds. There are two approaches to estimating bid 
distributions. The parametric approach assumes a particular functional form with some 
unknown parameters for the valuation distributions. The non-parametric approach does 
not assume the valuation distributions to be part of a specified parametric family. Since 
little is known about the actual shape of the empirical bid distribution, kernel estimation 
has been chosen as a non-parametric approach to estimating the bid distribution. Besides 
the missing prior knowledge about the shape of the bid distribution, kernel estimation has 
a number of additional advantages over parametric estimations with respect to outliers or 
missing values [17].  

A goal of density estimation is to approximate the probability density function (pdf) 
g(·) of a random variable C, which describes the bidders’ cost or drop-out bid in case of 
an English auction. Assume we have n independent observations c1, …, cn from the 
random variable C. The kernel density estimator )(ˆ cgh

 for the estimation of the density 

value g(c) at point c is defined as 

∑
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which is also called the Rosenblatt-Parzen kernel density estimator [18, 19] of C, 
where )/()( 1 huKhuKh

−= is the kernel with scale factor h. The shape of the kernel 

weights is determined by K, whereas the size of the weights is parametrized by h, which is 
called bandwidth. Commonly used kernel functions are the Epanechnikov kernel (7) 
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which has a parabolic shape, or the Gaussian function (8) with its bell shape.  
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It is easy to see that for estimating the density at point c, the relative frequency of all 
observations ci falling in an interval around c is counted. The factor 1/(nh) in (9) is needed 
to ensure that the resulting density estimate has integral ∫ =1)(ˆ dzzgh

. For more detailed 

information on the choice of kernel functions and appropriate bandwidth, we refer to [17].  

)1())/(1(75.0)/(1)(ˆ
1

2 ≤−= ∑
=

uIhunhcg
n

i
h  (9) 

Instead of a kernel density estimator in (9), we propose a kernel distribution function 

estimator )(ˆ cGh  (KDF) for G(c). For c 2  <, the KDF of G is given by 
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dvvKuK  being the probability distribution 

function. The KDF with an Epanechnikov kernel (9) leads to 
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The probability )(ˆ cGh  in (12) is a continuously and monotonically increasing 

function of the bid price c. Using bisection or the Newton-Rhapson method one can find 
the reserve price to a particular probability of getting a winner. Following IPV 
assumptions, we suppose that the drop-out bids are n independent variates C1, C2, …, Cn, 
each with the cdf G(c), i.e. the bids are independent, identically distributed (iid). 
Therefore, we are particularly interested in the distribution function of the smallest order 
statistic C(1), which happens to be the lowest bid. The KDF can then be rewritten as 
KDF(1). 
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3.2. Multivariate Estimators  

Field data from large-scale procurement auction platforms offer the possibility of getting 
transaction data from repeated auctions on the same good and service with essentially the 
same supplier pool. Nevertheless, these auctions are not completely homo geneous over 
time. For example, they might have differing qualitative attributes such as delivery time or 
bio degradability. In addition, buyers might invite different numbers of bidders to the 
auction. Multivariate estimators are a possibility to take this additional information into 
account.  

The kernel density estimator can be generalized to the multivariate case in a 
straightforward way. Suppose we now have observations c1, …, cn where each of the 
observations is a d-dimensional vector ci=(ci1, …, cid)T. The multivariate kernel density 
estimator at a point c is defined as  
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with M denoting a multivariate kernel function, i.e. a function working on d-
dimensional arguments. Note, that (14) assumes that the bandwidth h is a vector of 
bandwidths. A possibility for a multivariate kernel is the radial symmetric Epanechnikov 
kernel  

)1()1()( ≤−∝ uuuuu TT IM  (13) 

Radial symmetric kernels can be obtained from univariate by defining 

)()( uu KM ∝ , where uuu T= denotes the Euclidean norm of the vector u. The ≠ 

indicates that the appropriate constant has to be multiplied. Radial symmetric kernels use 
observations from a ball around c to estimate the density at c. For the bivariate case with 
one qualitative attribute and price, the function (9) with an Epanechnikov kernel can be 
rewritten as  
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Similar to (10) and (11), the integral of the kernel function leads to a multivariate 
kernel distribution function estimator (MKDF). Note that the arguments of the MKDF 

)(ˆ chG ,  (cij-ci) are constrained between –1 and 1. Figure 1 illustrates the shape of a 

bivariate MKDF. For a given quality of a newly auctioned good and probability of getting 
a winner, the reserve price can be derived through slicing the landscape at the appropriate 
quality level. The resulting function needs to be normalized by dividing through its 
asymptotic probability value. The estimator for the first-order statistic MKDF(1) can then 



be derived as in (13). This procedure can also be used for multi-attribute bid data as can 
be found in RFQs and multi-attribute auctions. 
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Figure 2: Shape of MKDF 

4. Some Monte Carlo Evidence  

In this section, we use Monte Carlo methods to compare different estimation techniques. 
We analyze the results of a naïve approach, which fits a Gaussian cdf to the data based on 
empirical sample moments, with the univariate and the multivariate kernel estimator 
described in the previous section. Since data are often scarce, we considered the effect 
upon the estimators of small to medium sized samples of 20 training auctions.  

4.1. Experimental Design and Data Generating Process 

In all of our simulation experiments, we assumed that the latent distribution of costs c 
follows a mixture distribution, similar to an example with asymmetric bidders. Allowing c  
to have a diffuse distribution also mimics some of the empirical evidence, which we have 
encountered in field data. We have conducted 20 training auction rounds with 4 bidders 
each, from which we estimate )(ˆ chG . In a consecutive set of 20 test auction rounds, we 

have set a reserve price with a probability Pr = 30% for getting a winner, using four 
different estimators: 

§ no reserve price at all 
§ the naïve Gauss estimator 
§ the KDF(1) 
§ the MKDF(1). 

After the simulation we analyzed the total cost for the buyer, and the number of successful 
auctions. In the following sections we will describe the results of two treatments: 



1. Treatment A: We assume to have auction data from completely identical auction 
rounds (exactly the same quality, number of bidders and identity of bidders). 

2. Treatment B: We assume differentiated quality in the field auction data (e.g. 
different delivery times) 

4.2. Discussion of Simulation Results 

The first simulation with treatment A had 4 bidders with different costs. The bids in each 
auction round were drawn from normal distributions with a standard deviation of 4 and a 
mean of 20, 23, 38, and 109, respectively. After 20 training runs reserve prices were set 
for the two estimators at a probability of 30% for getting a winner.  

§ Naïve Gauss-based estimator:  28.1 
§ KDF:    21.6 

We have evaluated the results for 20 additional auction rounds and achieved the following 
results: 
 
No Reserve Price  

 Total cost for 20 auction rounds without reserve price 430.20 
Naïve Gauss-based estimate for Pr = 30%  0 
 Auctions with savings 0 
 Successful auctions 0 
 Total cost using the estimator 0 

 Total cost without using the estimator 0 
KDF(1) for Pr = 30%  16.34 
 Auctions with savings 4 
 Successful auctions 5 (25%) 
 Total cost using the estimator 80.40 

 Total cost without using the estimator 99.41 

Table 1: Results of Simulation with Treatment A and 4 Bidders 

The Naïve Gauss estimator was too low and as a consequence all auctions were 
unsuccessful. For the KDF(1), only 5 or 25% of all the test auctions had a winner, and 4 of 
them had savings. Figure 3 shows both estimators as a function of the bid prices. KDF(1) 
40 shows the KDF(1) after the 20 training auction rounds plus the 20 test auction rounds. 
The results illustrate that goodness-of-fit of the estimator is important for setting a reserve 
price at a certain level. With an increasing number of bidders, the difference between the 
first-order and the second-order statistic decreases and also the savings will are less 
significant.  
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Figure 3: Estimators as a function of bid price 

A second simulation used treatment B with differentiated qualities of the goods to be 
purchased. Throughout the 20 test auction rounds without reserve price, we introduced 3 
different qualities L(ow), M(edium), and H(igh). Depending on the quality level 
demanded by the buyer, we introduced increased costs for quality M (+10) and H (+20) 
for all bidders. In the 20 subsequent auction rounds, the buyer purchased goods of quality 
L.  
No Reserve Price  

 Total cost for 20 auction rounds without reserve price 483.10 
Naïve Gauss-based estimate for Pr = 30%  8.40 
 Auctions with savings 0 
 Successful auctions 0 
 Total cost using the estimator 0 

 Total cost without using the estimator 0 
KDF(1) for Pr=30%  23.80 
 Auctions with savings 10 
 Successful auctions 19 (95%) 
 Total cost using the estimator 430.30 

 Total cost without using the estimator 456.90 
MKDF(1) for Pr=30% and quality L 20.60 
 Auctions with savings 14 
 Successful auctions 17 (85%) 
 Total cost using the estimator 348.32 

 Total cost without using the estimator 404.30 

Table 2: Results of Simulation with Treatment B and 4 Bidders 

This time, we used three different estimators, the naïve Gauss estimator, the univariate, 
and the multivariate estimator for a probability of 30% for getting a winner. MKDF takes 
the different quality levels into account and provides an estimate for a particular quality in 
question (L), whereas the other estimators ignore these qualitative differences. The 
simulation illustrates that ignoring qualitative differences is penalized. The Gauss-based 
estimator is again too optimistic. With KDF(1) 95% of all auctions have a winner, and 10 
achieve savings, whereas with the MKDF(1) for quality L 85% of the auctions have a 



winner and 14 achieve savings. Figure 4 shows all estimators as a function of the bid 
prices, including the three MKDF for different quality levels.  
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Figure 4: Estimators as a function of bid price 

5. Related Literature  

Recently, there have been a number of approaches in the econometrics literature focusing 
on the empirical analysis of auctions. Hendricks and Paarsch (1995) classify empirical 
work in auctions into two categories, structural and non-structural/reduced-form 
approaches. The non-structural approach tests necessary conditions of auction theory 
using reduced form econometric models. The reduced form provides a data admissible 
statistical representation of the economic system, whereas the structural form can be seen 
as a reformulation of the reduced form in order to impose a particular view suggested by 
economic theory [20]. An example for non-structural analysis is the detection of bid 
rigging in Porter and Zona [21]. A key question in the structural analysis of auctions is 
the estimation of the latent distributions that generate bidder valuations in the auction 
from observed bids. The strategy is to estimate the distribution of bids and then to retrieve 
the distribution of costs. An issue that all structural estimations have to address is the issue 
of identification , that is, the question of the extent to which the unobservable cost 
distributions can be recovered from the observed bid distributions. This approach relies 
upon the hypothesis that observed bids are the equilibrium bids of the auction model 
under consideration. In the first price sealed bid auction the focus lays on Bayesian-Nash 
bidding strategies.  

Some of these structural estimation procedures are parametric and assume a particular 
functional form with some unknown parameters for the valuation distributions. Leading 
examples that analyze the first price sealed bid auction with private values include Donald 
and Paarsch [22], and Laffont, Ossard, and Vuong [23]. Donald and Paarsch [24] present 
methods, which consist of finding estimators maximizing the likelihood function for the 
symmetric IPV, where the valuation distributions are identical across bidders. Much of the 



literature is concerned with the identification problem under various conditions such as 
asymmetry [25], or affiliations among the valuations [26]. Some newer approaches also 
use non-parametric estimators, which do not make assumptions on the shape of the 
distribution function (see [27], [28] and [29]). Note, that also in non-parametric 
estimations, some assumptions are made, such as that the distributions are identical across 
bidders and continuous. In addition, structural estimations make assumptions about the 
type of equilibrium in an auction. In contrast to existing analysis, our approach relies on 
the bid taker’s risk statement. Therefore, we do not necessarily need to know the latent 
valuations/costs of suppliers. More relevant is the goodness of fit of our estimator. For this 
reason we choose a non-parametric technique and take additional information into 
account, such as qualitative differences in the auctioned goods, the number, and identity 
of the bidders.  

Another relevant stream of literature deals with multi-attribute auctions and RFQs 
[30]. Multi-attribute reverse auctions allow negotiation over price and qualitative 
attributes such as color, weight, or delivery time. A thorough analysis of the design of 
multi-attribute auctions has been provided by Che [31]. He derived a two-dimensional 
version of the revenue equivalence theorem. Che also designs an optimal scoring rule 
based on the assumption that the buyer knows the probability distribution of the supplier’s 
cost parameter, and proves that using this scoring function is in fact an optimal 
mechanism. More recently, Beil and Wein [32] suggested an inverse-optimization based 
approach that allows the buyer via several changes in the announced scoring rule, to 
determine an optimal scoring rule. While elegant, these approaches assume a number of 
prerequisites (e.g., knowledge of the parametric shape of the supplier’s cost functions), 
which are hardly given in practice. An alternative approach to increase the buyer’s 
revenue/utility is to set reserve prices, based on the attribute values a supplier has 
specified. This is applicable to both, multi-attribute auctions and RFQs, which do not even 
use public scoring functions. 

6. Summary and Conclusions  

Game-theoretic auction theory is based on the assumption that the distribution of 
valuations, or costs respectively, is known among the participants in an auction. In many 
procurement auctions, this  assumption is not given. Knowledge about empirical 
distribution enables a bid taker to fine-tune reserve prices. We have proposed a 
multivariate estimator, which is useful in estimating empirical bid distributions in 
auctions. The estimator allows us to set reserve prices, based on the risk statement 
provided by a buyer. We plan to incorporate the estimator into a tool, which takes new 
auction rounds into account and suggests reserve prices based on past auction rounds. 
Essentially, the user determines a description of the good in question, the invited suppliers 
and the probability for getting a winner, and the software suggests a reserve price. 

There are multiple ways how we intend to improve the estimator and make it more 
applicable to different environments. In many settings, we will have past auction rounds 
with reserve prices. It is important in these settings to take into account the fact that 
certain bidders did not submit bids. Another issue is the consideration of underlying trends 
in the bid data, in particular, if the data is collected over a longer time period, where 
trends and seasonal deviations play a role. A general problem in multivariate prediction is 



also called the “curse of dimensionality”. The basic element of nonparametric smoothing 
– averaging over neighborhoods – will often be applied to a relatively meager set of points 
since even large samples are surprisingly sparsely distributed in the higher dimensional 
Euclidean space. We plan to investigate additive models such as the projection pursuit 
regression [33], or stochastic gradient boosting [34] for these cases. Setting reserve prices 
is of course not the only application of such an estimator. It can as well be used for bid 
pricing, in order to help a bidder in estimating the likelihood of winning, or to compare 
the attractiveness of different auction markets for buying or selling goods. 
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