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ABSTRACT 

The theory of procurement auctions traditionally assumes that the offered quantity and quality is fixed 
prior to source selection. Multi-attribute reverse auctions allow negotiation over price and qualitative 
attributes such as color, weight, or delivery time. They promise higher market efficiency through a more 
effective information exchange of buyer’s preferences and supplier’s offerings. This paper focuses on a 
number of winner determination problems in multi-attribute auctions. Previous work assumes that multi-
attribute bids are described as attribute value pairs and that the entire demand is purchased from a single 
supplier. Our contribution is twofold: First, we will analyze the winner determination problem in case of 
multiple sourcing. Second, we will extend the concept of multi-attribute auctions to allow for configurable 
offers. Configurable offers enable suppliers to specify multiple values and price markups for each 
attribute. In addition, suppliers can define configuration and discount rules in form of propositional logic 
statements. These extensions provide suppliers with more flexibility in the specification of their bids and 
allow for an efficient information exchange among market participants. We will present MIP formulations 
for the resulting allocation problems and an implementation.  
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1 INTRODUCTION 

Procurement auctions usually require the bid to specify several characteristics of the contract to be 
fulfilled. Previous models of procurement auctions have generally assumed that the qualitative attributes 
are fixed prior to competitive source selection - hence bidding competition is restricted to the price 
dimension (see [1] or [2]). While such an approach may be appropriate for auctions of homogeneous 
goods, most procurement includes heterogeneous offerings of suppliers. Traditionally, these types of 
negotiations are resolved through bilateral bargaining or sealed-bid tenders, where a buyer asks for bids in 
unstructured or semi-structured format and then the buyer selects one or more of these bids manually. A 
tendering procedure allows the sale to be determined by a variety of attributes involving not only price but 
quality, lead time, contract terms, and supplier reputation. 

Recently, multi-attribute reverse auctions have become a popular means of automating this process 
further. The negotiable attributes are defined in advance, and suppliers can compete either in an open-cry 
or sealed-bid fashion on multiple attributes. This process allows more degrees of freedom for suppliers in 
formulating their bids, while at the same time it leverages the competitive forces of an auction to drive the 
negotiation to an equilibrium. Expected gains of multi-attribute auctions are increased speed of the 
negotiation, higher market transparency, as well as higher degrees of allocative efficiency.  

Although the literature in this field is fairly young, a number of procurement departments and software 
vendors have embraced the idea1. Companies such as eBreviate or PurchasePro have implemented what is 
also called the “total cost approach”. Here buyers specify monetary values (discounts and/or mark-ups) for 
attribute values, in order to be able to compare different offerings. Another approach uses decision 
analysis techniques [3] to assign weights and individual value functions to the relevant attributes, and 
calculate a value score. Bidders can then compete on this value score by improving one or more of the 
attributes. This approach is used by software vendors such as Clarus, IBM/DigitalUnion, Moai, Menerva, 
and Perfect. TIScover, an Austrian destination management system, is using this type of multi-attribute 
auction to match tourists and hoteliers on an accommodation market [4]. Most of these software packages 
have been developed during the past three years.  

The existing game-theoretic literature [5-7] typically assumes quasi-linearity of buyers’ scoring functions 
as well as suppliers’ cost functions to analyze the strategic issues as well as efficiency of multi-attribute 
auctions. This generic format covers a broad variety of functional forms including linear additive 
functions, which have found its way into most commercial packages as a technique for modeling multi-
attribute scoring functions. Two fundamental assumptions underlie the treatment of multi-attribute bids in 
the literature and in commercial software packages: 

1. The bids are point bids and are specified as attribute value pairs for each of the attributes, and 

2. The multi-attribute auctions usually assume that the contracts are awarded to a single bid – we call 
this the sole souring assumption. 

The restriction to such simple multi-attribute bids in previous approaches is due to technical difficulties of 
specifying more complex offerings. The focus on sole sourcing is based on the argument that multi-
attribute auctions are mainly used for contracts with high asset-specificity, such as Department of Defense 
(DoD) contracts, which were also the focus of initial economic analysis of multi-attribute auctions [5]. 
With the wide-spread use of multi-attribute auctions in part because of readily available software to 
support such formats, companies are using multi-attribute auctions also for the procurement of large 

                                                 

1 Often also called mutivariate RFQ or multidimensional auction. 
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amounts of less specific goods (i.e. MRO procurement) where multiple sourcing becomes important. For 
example, in a recent procurement auction run by internal procurement at IBM for a large quantity of chairs 
for one of their office buildings multiple sourcing was entertained provided some conditions across the 
supply pool was satisfied.   

In this paper we examine two extensions to the current formats used for multi-attribute auctions. First, we 
will analyze the winner determination problem in case of multiple sourcing. In this setting we examine the 
impact of several business rules that need to be imposed on the winner determination problem in order to 
obtain an acceptable supply from multiple suppliers.  Second, we will extend multi-attribute auctions to 
allow for configurability in bids. In contrast to traditional multi-attribute offers, configurable offers enable 
suppliers to specify multiple values and price markups for each attribute. The facility of providing 
configurable offers introduces a problem of informational complexity since the price function (over 
discrete attributes) now needs to be specified over an exponential number of combinations.   

In this paper, we restrict our attention to a special case where the price dependence on a attribute is 
specified as a markup over a base price thereby restricting the price function to an additive form.  This 
appears to be sufficient for many real world settings such as PC, logistics etc.  In addition, we allow 
suppliers to specify constraints that restrict the set of available conf igurations or alternately allow the 
specification of discounts based on levels of multiple attributes. In general, in practice we encounter only 
a small number of such higher order terms and hence they can be managed quite effectively. Moreover, 
such configuration rules and discounts can be adequately represented using propositional logic. The 
advantage of such a restricted representation for configurable bids is that propositional logic can also be 
represented by linear inequalities which can then be added to the winner determination problems. The 
extension of these multi-attribute allocation problems has been motivated by our work on a large-scale 
procurement marketplace for the retail industry and our experience with internal procurement auctions. 

In the next section we will provide a brief introduction into the literature of multi-attribute auctions. In 
section 2 we will describe the standard bid evaluation technique in multi-attribute auctions, namely the 
additive scoring function and elaborate on the issue of preference elicitation in multi-attribute auction. In 
section 4 we will analyze multi-attribute winner determination in the presence of multiple sourcing. 
Section 5 will introduce the concept of configurable offers and formulate the associated allocation 
problems. Finally, in section 6 we will summarize the article and provide an overview of a Java object 
framework implementing a variety of winner determination algorithms for electronic markets. The 
framework is currently used in a commercial implementation and can be used as a standard solver 
component in electronic procurement applications.  

2 REVIEW OF THE LITERATURE 

Only a small but steadily  growing number of academic papers have considered multi-attribute auctions so 
far. A thorough analysis of the design of multi-attribute auctions has been provided by Che [5]. He derived 
a two-dimensional version of the revenue equivalence theorem [8]. Che also designs an optimal scoring 
rule based on the assumption that the buyer knows the probability distribution of the supplier’s cost 
parameter. Branco’s analysis is based on Che’s independent cost model and derives an optimal auction 
mechanism for the case when the bidding firms’ costs are correlated [6]. Bichler [9] and Bichler and 
Kaukal [10] show some first Internet-based implementations of the concept and discuss MAUT as an 
algorithm for bid evaluation in single -sourcing, multi-attribute reverse auctions. A variety of different 
multiple issue auction algorithms are suggested by Teich, Wallenius and Wallenius [11]. Multi-attribute 
English auctions have also been analyzed in the context of service allocation amongst artificial agents 
[13].  
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One direction in auction design is concerned with efficient mechanisms. Here, the primary objective of the 
planner is to maximize allocative efficiency. Milgrom provides proofs that allocative efficiency is 
achieved in a single -sourcing multi-attribute auction if the auctioneer announces his true utility function as 
the scoring rule, and conducts a Vickrey auction based on the resulting scores [7]. Some first laboratory 
experiments on the efficiency of multi-attribute auctions have been described in [14]. In these experiments 
and the efficiency of price-only and multi-attribute auctions did not show significant differences. In 
addition, the value scores in multi-attribute auctions were significantly higher than in price-only auctions. 
In recent paper, Parkes and Kalagnanam [15] provide an iterative multi-attribute auction design based on a 
primal-dual algorithm. They show that this design is incentive compatible for the sellers and Pareto 
efficient with truthful buyers. 

Whereas efficient auction design is not concerned with how the surplus in an auction is divided among the 
bidders and the auctioneer, optimal auction design concentrates on auctions, which maximize the expected 
revenue of the seller. In multi-attribute auctions it is appropriate to speak about buyer utility maximization 
instead of revenue-maximization. As already suggested in Che’s analysis, the optimal scoring rule in a 
multi-attribute reverse auction may not be identical to the buyer’s true value function. Beil and Wein [17]  
focus on buyer utility-maximization in multi-attribute auctions, i.e. optimal auction design. The paper 
suggests an inverse-optimization based approach that allows the buyer via several changes in the 
announced scoring rule, to learn the suppliers’ cost functions and then determine a scoring rule that 
maximizes the buyer’s utility within an open-ascending auction format.  

In this paper we focus on winner determination problems in multi-attribute auctions with multiple 
sourcing and configurable offers. We do not make statements on the optimality of a scoring function, 
incentive compatibility of the payment schema or other mechanism design issues, but take the scoring 
function as given by the buyer and focus on the resulting allocation problems. The proposed optimization 
models are designed to maximize the buyer’s utility. 

3 SOLE SOURCING 

A popular approach to implement multi-attribute auctions is based on traditional decision analysis 
techniques. Here bidders submit bids as attribute-value pairs, which are evaluated by a value or scoring 
function provided by the buyer. In this section we will briefly describe this multi-attribute auction format 
and discuss some of the limitations of this approach. We first restrict our attention to the single sourcing 
problem, where the entire demand is purchased from a single supplier. 

3.1 The Standard Additive Scoring Function 

In practical implementations, the elicitation of a buyer’s preferences, and consequently the construction of 
an appropriate scoring function is of pivotal importance. A common approach is based on the use of 
established decision analysis techniques, such as MAUT [3], SMART [18] or AHP [19]. Although 
advanced versions of MAUT and AHP can model interactions among attributes, the basic techniques use a 
linear, weighted value function, which assumes preferential independence of all attributes. An attribute x 
is said to be preferentially independent of y if preferences for specific outcomes of x do not depend on the 
value of attribute y [20].  

We next introduce some terminology and notation. Consider I bids (or offers) and J attributes. Each 
attribute j ` J has an attribute space of =j. A bid, received by the buyer, can then be described as a vector 
xi. = (xi1 ,…, x iJ) where xij is the level of attribute j. The price pi is considered as one of the attribute values 
xij. In the case of an additive scoring function S(xi) the buyer evaluates each relevant attribute xij through a 
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scoring function Sj(xij). The overall value S(xi) for a bid xi is given by the sum of all individual scorings of 
the attributes. It is convenient to scale each of the single -attribute utility functions Sj from zero to one. 
That is, for a bid xi and a scoring function that has weights w1 ... wJ  , the overall utility for a bid is given 
by  

 1)()( === ∑∑
∈∈ Jj

j
Jj

ijjjii wandxSwSS x  (1) 

The problem a buyer faces is to determine appropriate Sj functions and wj weights. An optimal auction is 
allocating the deal to the suppliers in a way that maximizes the utility for the buyer. The function max Si 
with 1 ≤ i ≤ I provides the utility score of the winning bid. Bids can be collected through open-cry or 
sealed-bid auction schemes.  

3.2 Preference Elicitation 

The assessment of appropriate weights wj is key to MAUT and is an important aspect of a “good” scoring 
function in the multi-attribute auction. Several techniques have been proposed in the traditional decision 
analysis literature to help users assign reasonable weights. One approach is called pricing out because it 
involves determining the value of one objective in terms of another (e.g. dolla rs). For example, one might 
say that 5 days faster delivery time is worth $400. The idea is to find the indifference point, i.e. determine 
the marginal rate of substitution between two attributes. Although this concept seems straightforward, it 
can be a difficult assessment to make.  

Since many decision makers feel unable to provide exact weights, some of the more recent approaches 
only ask for uncertain estimates. For example, methods from fuzzy decision analysis use fuzzy sets for 
weights and individual scoring functions and fuzzy operators for the aggregation of those fuzzy sets [21]. 
AHP uses a different approach to weight determination. A principle used in AHP is that comparative 
judgments are applied to construct a symmetric matrix of pair-wise comparisons of all combinations of 
attributes. The method is based on the mathematical structure of consistent matrices and their associated 
right-eigenvector’s ability to generate true or approximate weights. The right eigenvector of the matrix 
results in the weights for the different objectives. More recent approaches try to estimate the buyers 
preferences based on comparisons of alternatives [22, 23]. These techniques assume weaker decision 
makers and do not ask for attribute-level utility assessments.  

The previous discussion assumes linearity of the buyer’s value function. Interaction effects among 
attributes although relevant in many considerations are often neglected in real-world implementations. 
Preferential dependencies impact the shape of the utility function and require the modeling of non-linear 
utility functions. Two attributes may to some extent be substitutes or may complement each another. In 
certain applications, one might even argue that price is preferentially dependent on qualitative attributes. 
For example, having the choice between a luxury and low-budget cars, the importance of price might 
depend on the type of the car evaluated. In order to express these interdependencies among two attributes, 
an additive utility function can be extended towards a so-called multilinear expression [3]. In general, 
however, the notion of interaction among attributes is one of the most difficult concepts in multi-criteria 
decision making and is certainly an important issue to consider in the design of multi-attribute auctions.  

4 MULTIPLE SOURCING 

Initially multi-attribute auctions have been analyzed in the context of DoD purchasing activities with high 
asset specificity, such as weapon systems. With their more wide-spread use companies start using multi-
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attribute auctions even for less specific products such as MRO equipment, where quality plays a role. In 
these situations, buyers need to buy larger quantities and are willing to purchase from multiple suppliers. 

4.1 Allocation to Multiple Suppliers  

A computationally simple case assumes submission of divisible bids, i.e. that the bidders are willing to 
accept partial quantities of their bids for the same unit price. Similar to section 2, the auctioneer can use a 
scoring function to sort the bids by descending score per unit. Since bids can be divided into smaller 
quantities winning bids are the ones where Σi∈I qi ·D with qi being the quantity provided in bid i and D 
being the demand. However, this is only applicable in a limited number of real-world scenarios.  

A more realistic assumption is indivisible bids. We consider a computer vendor who wants to buy 2000 
hard disks on a private exchange. Suppose we have decreasing average production costs, i.e. suppliers 
encounter economies of scale and the unit price of a hard disk is bound to the quantity sold. Again, the 
auctioneer tries to satisfy the buyer’s quantity at the lowest cost. The indivisibility assumption turns the 
problem into a computationally hard problem, which cannot be solved by sorting of bid scores. To 
illustrate this consider the following simple example with 4 bids and a demand of 40. 

Bid No. Quantity Score/Unit  Overall Score  
1 10 31 310 
2 40 25 1000 
3 30 24 720 
4 30 23 690 

Table 1: Example with Indivisible Bids 

There are several possible solutions sets to satisfy the buyer’s demand: {2}, {1, 3}, or {1, 4}. The optimal 
solution (overall score = 1030) is provided by bid set {1, 3}. Selecting the optimal set of bids is related to 
the well known 0-1 knapsack problem, which is known to be NP-hard, but can be solved efficiently in 
practice by using dynamic programming [24]. Since, in practice, the combinations hardly ever sum up to 
exactly the demand specified by the buyer, we use the following integer program (IP) formulation with 
acceptable lower and upper bounds for the demand (Dmin and Dmax). 

 ∑∑
i l

ililil xSq )(max  (2) 

            subject to    

    maxmin DxqD
i l

ilil ≤≤ ∑∑  (3) 

 Cxpq
i l

ililil ≤∑∑  (4) 

 Llx
i

il ∈∀≤∑ 1  (5) 

 { } LlIix il ∈∀∈∀∈ ,1,0  (6) 

The objective in this optimization is to maximize the overall score (2), where Sil is the unit score of a bid i 
from supplier l and qil is the quantity of bid i, so that the supplied quantity satisfies the lower and upper 
bound for the demand (3). The overall reservation price C is considered in (4) where pil is the unit price of 
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bid i from supplier l. Constraint (5) ensures that only one of the bids of a supplier is selected. We 
introduce the binary decision variables xil to indicate the bids selected by the buyer (6). 

In real-world settings there are several considerations besides cost minimization. These considerations are 
specified as a set of constraints that need to be satisfied while selecting a set of winning bids. We discuss 
two such rules, which have shown to be relevant in practical applications.  

4.2 Number of Winning Bidders  

An important multiple sourcing consideration is the number of winners. On the one hand, buyers want to 
make sure that the entire supply is not sourced from too few suppliers, since this creates a high exposure if 
some of them are not able to deliver on their promise. On the other hand, having too many suppliers 
creates a high overhead cost in terms of managing a large number of supplier relationships. These 
considerations introduce constraints on the minimum, Lmin, and maximum, Lmax, number of winning 
suppliers in the solution to the winner determination problem.  

 Iiyxy l
i

ill ∈∀≤≤ ∑ ε1.0   (7) 

 maxmin LyL
l

l ≤≤ ∑  (8) 

 { } Lly l ∈∀∈ 1,0  (9) 

We introduce an indicator variable yl for each supplier l, which takes the value 1 if the supplier has any 
winning bids and 0 otherwise. The first constraint (7) sets yl to 1 if supplier l2L has any winning bids. 
Note that the constant multiplier C, the number of a supplier’s bids, ensures that the right hand side is large 
enough when more than one bid of supplier l is selected.  

4.3 Homogeneity of the Purchase 

A basic problem, which arises from multi-attribute auctions in the case of multiple sourcing is the 
heterogeneity of goods purchased from different suppliers. The cost minimizing solution might be one 
where the bids of all winning suppliers have different values in all attributes. While this is not necessarily 
a problem for all attributes, it can be important in certain applications to enforce homogeneity of a certain 
attribute in the set of winning bids. In order to capture such constraints we introduce an indicator variable 
zjk that assumes the value 1 if any suppliers are chosen with a bid at level k for attribute j. Tkj is defined as 
the set of bids at level K for attribute J. This is formalized as follows: 

 JjzTxz jk
Tli

jklijk
jk

∈∀≤≤ ∑
∈,

,1.0  (10) 

 Jjz
k

jk ∈∀≤∑ 1  (11) 

 { } KkJjz jk ∈∀∈∀∈ ,1,0  (12) 

Notice that this constraint is for a given attribute of interest (such as color) at some level (say red). For 
each attribute, this formalism introduces as many constraints as there are levels and one extra constraint to 
enforce homogeneity. 
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4.4 Computational Issues 

A dynamic programming approach can be used to solve the above problems. We found that commercial 
integer programming software using a branch-and-bound approach was able to solve problems of 200 bids 
and 20 attributes on the order of a few seconds. As expected, the consideration of additional constraints 
described in section 4.2 and 4.3 impacts the runtime of the program.  

Figure 1 presents CPU time results (in seconds) for solving a randomly generated instance of the multi-
attribute auction. This problem had fixed problem size of 10 attributes and 100 bids. We set the minimum 
number of winning suppliers to be equal to the maximum number of winning suppliers, which we varied 
between 1 and 20. The optimal allocation for this problem without any side constraints on the number of 
winning suppliers had five winning suppliers. For a very large number of winning suppliers the problem 
becomes easier to solve, since it may not be possible to find an allocation which satisfies the total demand 
of the buyer. A constraint on only the maximum number of winners did not have a significant impact on 
the runtime. So the major influencing factor for the exponential runtime was the constraint on the 
minimum number of winners.  

0.000

20.000

40.000

60.000

80.000

100.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min number of winners

C
P

U
 t

im
e 

(m
in

u
te

s)

 
Figure 1: Experimental results for a multi-attribute auction, varying the number of allowed winning suppliers constraint  

Figure 2 shows the CPU time results for solving a problem with a fixed problem size of 100 bids, 20 
attributes and an increasing number of homogeneity constraints. The impact of adding these constraints on 
the runtime is close to linear. With low correlation of the bid data and a high number of possible attribute 
levels, this constraint can often not be satisfied and leads to infeasibility. We recommend enforcing the 
homogeneity constraint on as few attributes as possible in an auction with multi-attribute bids. 
Homogeneity constraints are very applicable to the evaluation of configurable offers discussed in the next 
section. 
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Figure 2: Experimental results for a multi-attribute auction, varying the number of homogeneity constraints 

5 ALLOCATION OF CONFIGURABLE OFFERS 

A basic assumption in our previous discussion has been that bids are described as sets of attribute-value 
pairs. In practice, however, many offers are specified as configurations, where each attribute can take a 
number of different attribute values. Lets assume a PC has only three attributes, namely processor speed, 
hard disk size, and price. A supplier could specify that there are three processors available {850MHz, 950 
MHz, and 1GHz}, as well as two sizes of hard disks {10GB and 15GB}. The base configuration 
(850MHz, 10GB) prices for $1000. A configuration with a 1GHz computer is $100 more, and one with a 
15GB hard disk costs an additional $200. Most services such as insurances or transportation can be 
considered as configurable offers in a similar way. The ability to express options in multi-attribute 
auctions is a crucial feature to further automate negotiations on complex goods and services.  

Configurable multi-attribute offers exhibit combinatorial features. With only 10 attributes and 5 possible 
attribute values for each of them, there are already 510 = 9.7 million possible configurations. Clearly, 
finding the best configuration among all these is not an easy task. Enumerating all possible configurations 
is mostly not a viable alternative, since a large amount of individual bids would have to be generated and 
communicated to the buyer. Therefore, suppliers often restrict the number of configurations they offer to 
only a small selection. As a result, buyers might not find the best configuration and choose the offer of 
another supplier, i.e. the situation might lead to inefficient outcomes. It is in the interest of both, buyers 
and suppliers, to communicate offers in a compact that cover a large space of possible product 
configurations. In the following we will propose a procedure to describe configurable offers and determine 
the best individual configuration based on a buyers’ scoring function. 

5.1 Functional Description of Configurable Offers  

There are many possible ways how multi-attribute offers can be made configurable. In this approach we 
allow suppliers to specify the possible values for each attribute in an offer in a functional format. In other 
words, we describe the possible configurations of a configurable offer as a function of price on quantity 
and qualitative attributes. Assuming additivity of the attributes, the total price pi for a particular bid/offer i 
can be written as: 

 ∑+==
j

ijijiibiiiii vfqqpqqpp )()(),( x   (13) 
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where qi is quantity, pbi(qi) is the base price per item as a function of quantity (i.e. specifies a volume 
discount), and f ij(vij)  is a functional specification for the impact of particular attribute values vij on the 
price of a product. The individual functions pbi(qi) and f ji(vij,) can in general be nonlinear. Examples would 
be discrete functions, which specify price markups for different types of CPUs (850 MHz, 900 MHz, 
1GHz), as well as continuous functions, which specify the impact of decreasing lead time on price. This 
functional form can be sent to the auctioneer in an XML-based interchange format. For these purposes, we 
have designed CPML, an XML schema to describe configurable multi-attribute offers. 

5.2 Allocation of Configurable Offers  

In this first analysis we restrict ourselves to a multiple sourcing procedure with discrete price markups, 
where each attribute value xjk of bid i has an individual markup mijk. In addition, each offer specifies a 
quality qi. The description of a configurable multi-attribute offer is now formulated as in (14) with pi being 
the unit price of the configurable offer.  

 ∑∑+==
j k

jkijkbiiii xmpqpp ),( x   (14) 

Assuming that there are no homogeneity constraints, we can solve the winner determination problem in a 
two-step procedure. In the first step we select the best possible configuration for each offer based on the 
buyer’s scoring function. In a second step, the resulting “best configurations” are in the form of 
conventional multi-attribute offers and can be allocated as described in section (2) – (9). 

The first step can be modeled as a variation of the multiple-choice knapsack problem [25]. We associate 
the binary decision variable xjk to each attribute value k of attributes j. The objective maximizes the 
weighted score sjk for each attribute value with weight being wj. The objective used in (15) denotes the 
price attribute p of a selected configuration as an extra variable. Note, that we assume an additive, quasi-
linear utility function with a linear (decreasing) scoring function on price, sp(p). Constraint (16) specifies 
that for each attribute exactly one value must be selected. Constraint (17) restricts the unit price to be 
smaller or equal to the buyer’s unit reservation price C. In (18) we determine the value of the continuous 
variable pi. This constraint could also be omitted, so that the price pi needs to determined outside the 
optimization based on the selected attribute values. 

 )(max pswxsw pp
j k

jkjkj∑ ∑ +







 (15) 

                subject to 

    Jjx
k

jk ∈∀=∑ 1  (16) 

 ∑∑ ≤+
j k

bijkijk Cpxm  (17) 

 ∑∑ =−
j k

biijkijk ppxm  (18) 

 { } KkJjx jk ∈∀∈∀∈ ,1,0  (19) 

The procedure allows suppliers considerably more flexibility in specifying offers, while at the same time, 
the bids can be ranked and suppliers can compete in an open-cry manner.  
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5.3 Winner Determination with Homogeneity Constraints  

The formulations in sections 5.2 work only under the assumption that there are no homogeneity 
constraints on the buyer’s side. Being able to formulate homogeneity constraints is a very useful feature 
for the evaluation of configurable offers, however, at the expense of complexity of the winner 
determination. The following formulas (20) – (28) show the overall MIP model for the evaluation of 
configurable multi-attribute offers considering multiple sourcing and homogeneity constraints. 

 ∑ ∑∑∑ ∑








+++








i
ibipp

j k
ijkijkpp

j k
ijkijkji ydpswxmswxswq )(max  (20) 
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The objective maximizes the overall score of the selected configurations. As in (15) we assume an 
additive and quasi-linear scoring function with a linearly decreasing function on price. The variable sijk 

again denotes the score for a particular qualitative attribute value, whereas xijk  is a binary indicator 
variable which indicates whether a particular attribute value has been chosen. The variable sp describes the 
slope of the linear scoring function for price, whereas d is its intercept.  

In (21) we select exactly one attribute value for each attribute in an offer, and introduce yi as an indicator 
variable for a particular offer. The constraint in (22) specifies a reservation price C. (23) restricts the 
quantity to match an upper and lower bound (Dmin and Dmax) specified by the buyer, and (24) limits the 
number of winners. Finally, (25) and (26) specify homogeneity constraints. In (25) we introduce the 
indicator variable zjk that assumes the value 1 if any suppliers are chosen with a bid at level k for attribute 
j. Tkj is defined as the set of bids at level K for attribute J. Compared to formula (2) – (6) we have dropped 
the index l, because we assume every bidder to submit only one configurable offer. 
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5.4 Treatment of Logical Configuration and Discount Rules  

It is often essential for suppliers to express rules, which define constraints on the combination of attribute 
values, or discounts and markups based on some combination of attribute values. For instance, a 
configuration rule may include compatibility restrictions, saying attribute value x12 cannot be connected to 
attribute value x23, or requirements like attribute value x12 and x32 needs attribute value x23. CPML provides 
the possibility to express these rules as logical implications. For example, the proposition  

 x23 => ¬ x31   (29) 

describes the configuration rule that if a certain motherboard, x23 is selected by the user, then the buyer is  
restricted from using a certain type of CPU, x31. Logical implication (=>) allows, that if any other kind of 
motherboard is selected, the particular CPU may or may not be chosen. Another type of rules, which is 
often found in practice are so called discount rules. For example,  

 x12 ∧ x31 ó p-
 (30) 

where xjk again describe particular attribute values and p- describes a certain discount (or markup) enforces 
a discount upon selection of these attribute values. The discount is only given, if and only if x12 ∧ x31 is 
true. If x12 ∧ x31 is false, then no discount will be granted. Therefore, we use the equivalence operator (ó) 
for discount rules. We use xjk to denote the logical as well as the binary variable in the MIP formulation. 
For ease of reading we omit the first subscript i for bids in the first part of this section.  

For the evaluation of a configurable offering, these additional rules have to be considered in the IP 
formulation. In order to obtain an equivalent mathematical representation for any propositional logic 
expression, one must first consider basic logical operators to determine how each can be transformed into 
an equivalent representation in the form of an equation or inequality. Raman and Grossman [26] specify 
transformations, which can then be used to convert general logical expressions into an equivalent 
mathematical representation. Some of these transformations are described in Table 2. 

 

Logical relation Pure logical expression Representation as linear inequalities 

Logical “OR” x1 ∨ x 2 ∨ … ∨ x n   x1 + x2  … + xn  õ 1 

Logical “AND” x1 ∧ x 2  ∧… ∧ x n   x1 õ 1; x1 õ 1; …; xn õ 1 

Implication (=>) ¬x1 ∨ x 2 1- x1 + x2  õ 1 

Equivalence (ó) (¬x1 ∨ x 2) ∧ ( ¬x2 ∨ x 1) x1 - x2  ï 0; x2 - x1  ï 0 

Table 2: Representation of logical relations with linear inequalities  

A common approach to convert a general logical expression into inequalities is to first transform it in its 
equivalent conjunctive normal form (CNF) representation. CNF involves the application of pure logical 
operations (and ∧, or ∨, not ¬), and is a conjunction of clauses. A clause is defined as a set of basic literals 
separated by ∨-operators, such as  

 (x12 ∨ x23) ∧ (¬x34 ∨ x 45) (31) 

CNF can then be expressed as a set of linear inequality constraints, as shown in Table 2. We have chosen 
this approach to transform the configuration and discount rules in CPML into appropriate constraints in 
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our IP formulation described in (20) – (28). Formulas (32) to (37) show how the proposition in (32) can be 
translated into linear constraints in our IP formulation.  

 x12 ∧ x23 ó p-
 (32) 

 (¬(x12 ∧ x23) ∨ p-) ∧ (¬p-∨ (x12 ∧ x23))  (33) 

 (¬x12 ∨ ¬x23 ∨ p-) ∧ (¬p-∨ x12) ∧ (¬p-∨ x23) (34) 

 x12 + x23 - p- ï 1 (35) 

 x12  - p-  õ 0 (36) 

 x23 - p-  
 õ 0 (37) 

In (33) the equivalence operator has been transformed into a proposition with pure logic operators. Using 
DeMorgan’s Theorem the negation operator of the first term in brackets is moved inwards, so that we get 
CNF in (34). Finally, in (35) to (37) CNF is translated into inequalities, which can be added to the integer 
programming formulation. In addition, we have to introduce an additional binary indicator variable for p-  
in our model, which indicates the discount if the rule takes effect.  

Logical expression Equivalent linear inequalities 

.xijk => xirs and icI , j,rcJ, kcKj, scKr, ≤ j! r Iixx
Rijk

irsijk ∈∀≥+−∑
∈

1)1(  

-xijk => xirs and icI, j,rcJ, kcKj, scKr, ≤ j! r IiRijkxx ijkirs ∈∀∈∀≥− ,0  

.xijk ó p- and icI, jcJ, kcKj Iipx
Rijk

ijk ∈∀≥+−∑
∈

1)1(   

IiRijkpx ijk ∈∀∈∀≥− ,0  

-xijk ó p- and icI, jcJ, kcKj Iipx
Rijk

ijk ∈∀≥−∑
∈

0  

IiRijkxp ijk ∈∀∈∀≥− ,0  

Table 3: Translation of typical configuration and discount rules  

The logical expressions in Table  3 describe common forms of configuration and discount rules with only 
conjunctions or only disjunctions in the antecedent and one literal in the consequent. We have used the 
notation with three subscripts so that the additional constraints can be added to the optimization 
formulation in (20) – (28). R is defined as the set of attribute values in the antecedent of a rule in an offer. 
Of course, the antecedent and the consequent of these rules can in general be any combination of 
conjunctions and disjunctions. In other words, with the relations given in Table 2 one can systematically 
model an arbitrary propositional logic expression as a set of linear equality and inequality constraints. 

5.5 Computational Issues 

From a computational point of view the allocation of configurable offers without homogeneity constraints 
is considerably easier to solve than the problem with homogeneity constraints described in section 5.3. 
Without homogeneity constraints, the overall winner determination can be split in several smaller 
problems (see section 5.2), in which the best possible configuration for each configurable offer is selected 
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based on a buyer’s scoring function. In our numerical simulations, the selection of the best configuration 
for an offer with four configuration rules, and ten attributes with four attribute values each could find the 
best configuration in the order of milliseconds using a commercial optimization package. The results of 
these individual selection problems are then used in the overall winner determination described in 
equations (2) – (9), the runtime of which has been analyzed in 4.4.  
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Figure 3: Experimental results for the allocation configurable offers with increasing numbers of bidders 

The winner determination problem is considerably harder to solve in the presence of homogeneity 
constraints, because all bids have to be considered at the same time. Figure 3 shows the CPU times of a 
randomly generated problem instance with 30 attributes, a single homogeneity constraint on one of the 
attributes, and an increasing number of bidders. Figure 4 investigates the impact of the homogeneity 
constraints on the runtime of the winner determination. The problem size was constant with 60 bids and 
20 attributes and no other side constraints were set for the experiment.  
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Figure 4: Experimental results for the allocation configurable offers with increasing numbers of homogeneity constraints  

In our future research, we plan to extend the analysis towards configurable offers, which allow the 
specification of volume discounts. This aspect adds an additional degree of flexibility to suppliers, 
however, again at the expense of complexity in the winner determination. 
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6 CONCLUSIONS 

In this paper we have discussed a number of winner determination problems in the context of multi-
attribute auctions. During the past few years many advances have been made in the area of computational 
mechanism design. Besides multi-attribute auctions, many new auction mechanisms such as combinatorial 
auctions [27-29] or volume discount auctions [30] have been developed. The winner determination in 
these auctions is usually a computationally hard problem. This computational complexity has been a 
significant hurdle for the widespread use of these advanced auction models.  

In an attempt to foster a more widespread (re-)use of multidimensional auction mechanisms, we have 
implemented the Multidimensional Auction Platform (MAP) [31], an object framework with a generic 
API to bid evaluation and allocation algorithms. MAP consists of a generic Java API for different 
allocation mechanisms, an XML schema to define various kinds of bids and asks, and a database schema 
to make these bids and asks persistent. Currently it implements winner determination algorithms for 
combinatorial and volume-discount auctions, as well as the multi-attribute allocation algorithms described 
in this paper. This framework enables application programmers to specify buyer preferences, allocation 
rules and supplier offerings in a declarative manner, and solve the allocation problems without having to 
re-implement the computationally complex algorithms. MAP is currently being used in a large-scale 
procurement marketplace for the retail industry.  
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